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Abstract

For analog signals comprised of several, possibly overlapping, finite duration pulses with unknown shapes and time
positions, an efficient sub-Nyquist sampling systems is based on Gabor frames. To improve the realizability of this
sampling system, we present alternative method for the case that Gabor windows are high order exponential
reproducing windows. Then, the time translation element could be realized with exponential filters. In this paper, we also
construct the measurement matrix and prove that it has better coherence than Fourier matrix. Besides, for satisfying
restricted isometry property (RIP), we reduce the row number and the sparsity by stretching windows and raising E-spline
smoothness order. We deduce the signal reconstruction error bound, proving that appropriate selection of the stretching
factor and smoothness order guarantees low reconstruction error. At last, we also provide the error bound in presence of
noise, showing that the sampling scheme holds nice robustness with high Gabor frames redundancy.
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1 Introduction
Sub-Nyquist sampling, which can acquire signals even at
very low sampling rate and yet maintain high approxima-
tion precision, has been developed over the past years to
process certain signal models [1]. Unlike the traditional
sub-Nyquist methods such as demodulation, under sam-
pling ADC, and periodic nonuniform sampling, Xampling
originates from CS theory (compressed sensing) and ends
up in some less sophisticated front-end hardware [2–5].
Until now, a variety of different applications of Xampling
is developed for multipulse signals, such as radar signals
[6, 7], ultrasound signals [8], and certain signals prevalent
in smart power system [9, 10] and smart city [11, 12].
However, all the applications are based on finite-rate-of-
innovation (FRI) signals sampling [13, 14], and the pulse
shape should be a priori known. Gabor frame sub-Nyquist
sampling is proposed for making up for the weakness of
FRI signals sampling and can acquire both location and
shape information for multipulse signals [15]. Unlike the
FRI signals sampling, which just collects the signal Fourier
coefficients and reconstruct original signal with kernel
functions, it operates short-time Fourier transform on sig-
nal and collects the Gabor time-frequency coefficients.

Structurally, Gabor frame sub-Nyquist sampling scheme
gets a little more closer to the time domain edition of
modulated wideband converter (MWC) [16], which cuts
the frequency domain into many lattices and measures the
linear compressive translations [17]. It cuts the time
domain with modulated window sequences, namely
Gabor frames, and recovers exact time locations and
shape with CS algorithms.
We focus here on a class of multipulse signals, which

have limited time duration and short pulses with arbi-
trary shapes and positions, and may even overlap. The
only parameters assumed are the duration T, the number
Np of pulses, and the maximal width W. The multipulse
signal, x(t), supported on the interval [−T/2,T/2], which
can be expressed as

x tð Þ ¼
XN
n¼1

hn tð Þ; where maxn supphnj j≤W ð1Þ

If ϵΩ < 1, a signal with ϵΩ—bandlimited to F= [−Ω/2,Ω/2],
named as essential band, is defined as

Z
Fc
jx̂ ifð Þj2df

� �1=2

≤�Ω∥x tð Þ∥2 ð2Þ

where x̂ ifð Þ denotes the Fourier transform of x(t) and
the symbol Fc the complement of the set F.
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Theoretically, all square-integrable time-limited signals
can be well approximated by truncated Gabor series. Under
Gabor sampling scheme, the sampling rate equals 1/T and
the sampling number is about only 4μ− 1Ω′WNp, where Ω′
is related to the essential bandwidth of the signal and μ ∈ (0,
1) is the redundancy of the Gabor frames used for process-
ing. The sampling scheme in [15] is demonstrated to possess
great reconstruction performance with time domain modu-
lation measurement functions constructed by Bernoulli
random matrix and Gabor window sequences, such as
piecewise spline or B-spline window sequences. Unfortu-
nately, there still exists a gap between the theory and prac-
tice, because the shifting Gabor windows modulated by
random measurement matrix is hard to be realized with
simple circuit, and its complexity and synchronization preci-
sion also greatly affect the reconstruction performance.
The first and main contribution of this paper is introdu-

cing the exponential reproducing windows into Gabor
sampling scheme and reducing the time domain modula-
tion functions, constructed by appropriately weighted win-
dow sequences, to simple exponential functions. The time
domain modulation functions of this study can avoid
holding complicated function structures and intricate sys-
tem functions, which are difficult to realize in real world.
Any time domain response function from E-spline system
could be defined as exponential reproducing function, the
simplest one being E-spline itself [18]. Interestingly, with
appropriate weighting coefficients, the exponential repro-
ducing window sequences can be synthesized to a simple
exponential function. It could be viewed as the impulse re-
sponse representation of an exponential filter, which can
be carried out with simple passive electric circuit [19, 20].
For this study, we deduced the representation of the
filter form of the time domain modulation functions
in Gabor sampling scheme and chose the appropriate
E-spline parameter vector α for guaranteeing the win-
dow positive real functions. Then, we constructed the
measurement matrix for CS recovery and calculated
each entry and proved that such measurement matrix
has better coherence than that of DFT matrix. Hence,
the measurement matrix satisfies the RIP, making it
possible to recover the sparse Gabor coefficient
matrix perfectly.
Next, we study the effect of frame window width Wg on

the signal reconstruction performance. In [15], the frame
window width is the same as the pulse width of the signal
to be measured and the Gabor frames is not quite redun-
dant. So the sparsity S of the Gabor coefficients recovered
for signal representation is very small and the column di-
mension to row number ratio r of the measurement matrix
is large enough to result in good RIP. However, to ensure
enough sampling channel number in the sampling scheme
proposed here, the E-spline smoothness order N should not
be too small. According to [21], if N is large, which means

the frame windows are high order exponential reproducing
windows, the frames will be very redundant, and so the RIP
may be hard to be satisfied [22]. In this study, we find that,
for neutralizing the disadvantage caused by the redundancy,
the frame windows width Wg could be stretched wider to
bring down S and increase r, enhancing the measurement
matrix RIP. Then, we deduce the signal reconstruction
error bound, proving that it is effective for improving signal
reconstruction performance.
As a third contribution, we study the robustness of the

proposed sampling scheme. We deduce the signal recon-
struction error bound with noise injected to the sam-
pling scheme. From the error bound representation, we
discover that when N is raised to a bigger number, the
redundancy would be μ≪ 1, which enables the Gabor
frames to hold good robustness. If the sampling channel
numbers are the same, our sampling scheme can sup-
press noise better than in [15].

2 Background and problem formulation
2.1 Gabor sampling scheme
For any functions x(t), g(t) ∈ L2(ℝ), whose modulation
and translation operators are defined as Mblx(t) =
e2πiblt and Takx(t) = x(t − ak), there exist constants 0
< A ≤ B <∞, making a collection G g; a; bð Þ ¼
MblTakg tð Þ ¼ e2πibltg t−akð Þ; k; l∈ℤ� �

satisfy

Ajjxjj2≤
X
k;l∈ℤ

j x;MblTakgh ij2≤Bjjxjj2; ð3Þ

then G g; a; bð Þ is a Gabor frame. If we define Gabor
frame coefficients as zkl =Vgx(ak, bl) = 〈x,MblTakg〉, then
signal x(t) can be expanded with Gabor frames as

x ¼
X
k;l∈ℤ

zk;lMblTakγ ð4Þ

In Eq. (4), γ(t) is the dual window of g(t) and G γ; a; bð Þ
is the corresponding dual frame. Generally, if g(t) is
compactly supported on some interval [−Wg/2,Wg], with
a = μWg, b = 1/Wg for some μ ∈ (0, 1), the frame operator
takes on the particularly simple form S tð Þ ¼P

k∈ℤ
g t−akð Þj j2,

and the canonical dual will be γ(t) = bS− 1g(t) [23]. In
addition, here there exists γ(t) ∈ S0, where S0 is the Segal
algebra space, defined as [24]

S0 :¼ x∈L2 ℝð Þj xk kS0 ¼ Vφx
�� ��

L1 ℝ�ℝ̂ð Þ < ∞
� �

ð5Þ

In the sampling scheme, the signal x(t) enters J ×M
channels simultaneously. In the (j,m) th channel, x(t)
was multiplied by a function qj,m(t) and processed by
an integrator. The structure of the scheme is shown
in Fig. 1.
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Matusiak and Eldar [15] set Wg =W, and g(t) essen-
tially bandlimited to [−Bg/2, Bg/2]. For some, μ ∈ (0, 1),

qj,m(t) = wj(t)sm(t) is defined, wherewj tð Þ ¼
XL0
l¼−L0

djle−2πiblt

; sm tð Þ ¼
XK0

k¼−K0

cmkg t−akð Þ. Here, K0 ¼ ⌈ TþW
2Wμ ⌉−1 and L0

¼ ⌈
ΩþBð ÞW

2 ⌉−1, and then the numbers of time and fre-
quency shifts are respectively K = 2K0 + 1 and L = 2L0 +
1. The output of the (j,m) th channel is

yj;m ¼
Z T=2

−T=2
x tð Þqj;m tð Þdt ¼

XL0
l¼−L0

djl

XK0

k¼−K0

cmkzkl ð6Þ

Equation (6) can be written in the matrix equation as

Y ¼ DUT; with U ¼ CZ ð7Þ
For general multipulse signals, matrix D was used only

to simplify hardware implementation, but not to reduce
sampling rate. Matusiak and Eldar [15] chose matrix D as
D = I or other full bank matrix with J ≥ L, reducing the pri-
mary mission of Eq. (7) to U =CZ. Relying on ideas of CS,
the signal can be recovered from a small number of sam-
ples by exploiting its sparsity. Then, the multipulse signal
x(t) can be recovered according to Eq. (4).
Recovering matrix Z is referred to as a multiple meas-

urement vector (MMV) problem [21]. In [15], matrix C
was chosen as Gaussian or Bernoulli random matrices,
which have RIP of the order S, if M ≥ 2⌈2μ− 1

⌉Nlog(K/
2⌈2μ− 1

⌉N). The RIP is defined as follows.
For every S-sparse vector x, matrix Φ has the (S, δS)-

restricted isometry property (RIP), if

1−δSð Þ xk k2≤ Φxk k2≤ 1þ δSð Þ xk k2 ð8Þ
for the smallest constant δS, which is called restricted
isometry constant (RIC).

2.2 Exponential reproducing windows
An exponential reproducing window is any function g(t)
that, together with its shifted versions, can generate
complex exponentials of the form eαnt , such asX

k∈ℤ

vn;kg t−kð Þ ¼ eαnt ð9Þ

where n = 0, 1,…,N, and αn ∈ℂ. The coefficients are

given by representation vn;k ¼
Z
−∞

∞

eαntγ t−kð Þdt . Know-
ing that the coefficients vn,k are discrete-time exponen-
tials, we express them in another form

vn;k ¼
Z ∞

−∞
eαnteαnkγ tð Þdt ¼ eαnkvn;0 ð10Þ

The theory relating to the reproduction of exponen-
tials derives from the concept of E-splines [18]. A
function with the time domain representation βα ¼ eα

rect t− 1
2

	 

is called cardinal E-spline of first order.

Through convolution of βα, Nth order E-splines can be

obtained, e.g., βα tð Þ ¼ βα1 � βα2 �⋯ � βαN
� �

tð Þ, where α

= (α1, α2,…, αN), and it can be written in the Fourier do-

main as β̂α ωð Þ ¼
YN
n¼1

1−eαn−jω

jω−an
. As exponent αn can be

complex, implying that E-splines may not be real, we
can avoid this case by choosing complex conjugate

Fig. 1 Gabor sampling scheme for multipulse signals
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exponents. The function βα is of compact support, and a
linear combination of its shifted versions βα(t − k) repro-
duces the exponential eα. Besides E-splines, any function
g(t) = ψ(t) * βα(t) holds the property of reproducing expo-
nentials in the subspace spanned by eα1 ; eα2 ;…; eαNf g.

3 Sampling scheme with exponential reproducing
windows
We now present a sampling scheme with exponential re-
producing windows that can greatly simplify the time
domain transform function sm(t) using the exponential
reproducing property. Primarily, compared with the time
duration [−T/2,T/2] set in [15], shifting the time dur-
ation to a complete positive scope [0,T], E-splines are
generally defined in a positive domain. For short pulse
stream, it satisfies that WNp≪ T and matrix Z is sparse.

3.1 Exponential reproducing transform windows
According to Section 2.2, exponential reproducing windows
g(t) =ψ(t) * βα(t) is considered as response to sampling ker-
nel function ψ(t) filtered with E-splines βα(t). Under ideal
conditions, here let ψ(t) = δ(t), the windows is reduced to
g(t) = βα(t). Operating a time scaling on N th order cardinal
E-spline function βα(t) with factor N/Wg, the Gabor window
and its dual window can be expressed as g(t) = βα(tN/Wg)
Then, Gabor window g(t) is compactly supported in

interval [0,Wg]. In this scenario, the lattice parameters
are a = μWg and b = 1/Wg. If we let μ = 1/N, the follow-
ing equation is obtainedX

k∈ℤ

vn;kg t−kð Þ ¼
X
k∈ℤ

vn;kβα tN=Wg−k
	 
 ¼ eαnNt=Wg ð11Þ

In fact, the time duration of the signal is [0,T] and the
sampling rate is restricted to 1/T, so that the window
sequence can be truncated. To ensure that the exponen-
tial functions constructed by the shift windows can cover
[0,T] in time domain, they were calculated by assuming
the lower and upper shift counts limit as K1 and K2:

K1a≥−Wg

K 2a≤T þWg
→

K 1 ¼ −N

K2 ¼ ⌈ T þWg
	 


N

Wg
⌉−1 ð12Þ

Equation (12) shows that the time domain is divided into
K = K2 − K1. Then according to Eq. (11), the time domain
transform function is

sm tð Þ ¼ eαnNt=Wg t∈ 0;T½ �
0 t∉ 0;T½ �

�
ð13Þ

3.2 Filter form
Equation (13) has an exceedingly simple form, as com-
pared with that of the general settings discussed in [15].
Nonetheless, sm(t) is implemented with a filter.

First of all, construct function χ�m tð Þ ¼
XK2

p¼K1

vm;p

βα −tN=Wg þ μN p−1ð Þ	 

here. Given that μ = 1/N, p,

q ∈ {K1, K1 + 1,…, K2}, p + q = K − 2N, and the integral
interval is restricted to [0,T], let χm tð Þ ¼ χ�m tð Þrect
t−T=2ð Þ. Then Eq. (6) can be transformed as

yj;m ¼
Z T

0
x tð Þwj tð Þsm tð Þdt

¼
Z T

0
x tð Þwj tð Þ

XK2

q¼K1

cm;qβα tN=Wg−q
	 


dt

¼
Z T

0
x tð Þwj tð Þ

XK2

p¼K1

cm;pβα tN=Wg−μN K−2N−pð Þ	 

dt

¼
Z T

0
x tð Þwj tð Þ

XK2

p¼K1

cm;pβα − τ−tð Þ N
Wg

þ μN p−1ð Þ
� �

dt

¼ x tð Þwj tð Þ � χm tð Þ	 

τ½ �

ð14Þ

Evidently, χm(t) represents the unit impulse response of
the filter in the (j,m)th channel. What is notable is that
yjm is the integral result in time τ =Wg(K − 2N + 1)/N. Ac-
cording to Eq. (13), τ =Wg(K2 −K1 − 2N + 1)/N = [T] ≥T.
Consequently, if the sampling action occurs in ts, it sug-
gests that the sample yj,m is acquired from the (j,m)th
channel. In addition, index m corresponds to n and the
total number of time domain transform functions equals
the order of E-splines, namely M =N. Figure 2 shows the
transformation of Gabor sampling scheme with sm(t), car-
ried out by filters other than waveforms.
By inserting Eq. (6) into the expression, χm(t) can be

reduced to a simple form as χm tð Þ ¼ e−αmNt=Wg rect
t−T=2ð Þ , which is an exponential function truncated by
a rectangle window supported in [0,T]. Then, the
Laplace transform of χm(t) is expressed as

Xm sð Þ ¼ 1−e−T sþαmN=Wgð Þ
sþ αmN=Wg

ð15Þ

Besides the order of the E-splines and window width,
the parameter vector α is the adjustable variable that de-
cides the filter characteristics. Each entry αm consists of
real and imaginary parts. For the exponent item of Eq.
(15), the real part was used to simplify the expression.
Choose αm = α0 + imλ, where m = 1, 2,…M. To fulfill the
convergence requirement of Laplace transform, it is ne-
cessary that Re[s] > − α0. The optimal setting being α0 =
Wg/WN, if s = iω, for T≫W and Wg≫W, it follows that

e−T sþαmN=Wð Þ ¼ e−TWg=W 2
eiT mλN=W−ωð Þ→0 . Particularly, if

Wg =W, α0 will have simpler form as α0 = 1/N. In this
case, the utility of sm(t) becomes a first order RC filter
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Xm sð Þ ¼ 1
sþαmN=W . At the same time, for τ = [T] ≥ T, the

sample acquired in t = ts, after passing the filter, does not
lose any signal information in interval [0,T].

3.3 Signal recovery and measurement matrix
As explained in Section 2.1, the relation between the
samples yj,m and Gabor coefficients can be represented
with matrix Eq. (7). In this paper, Eq. (7) is reduced to
U =CZ, assuming in case that D = I. For every l, the
column vectors Z[l] of matrix Z have only S nonzero
entries out of K, which correspond to the pulse loca-
tions. Besides, all nonzero entries are in the same rows
of column vectors Z[l]. Matrix Z can be recovered by
solving MMV problem. In [22], it is suggested that,
given U ∈ℝM × LandC ∈ℝM × K with M < K, one can find:

Z′ ¼ argmin suppZj js:t:U ¼ CZ ð16Þ

For this study, we focus mainly on the construction of
measurement matrix C. To bring out the concrete meas-
urement matrix cm,k, the first and foremost task is to fix
αm. For the above analysis, we have chosen αm = α0 +
iλξ(m), with α0 =Wg/NW, and here we just need to
decide λ. According to Eq. (10), cm;k ¼ eαmkcm;0 . If there
is a component such as 2πim in λ, it is possible to con-
struct a measurement matrix that has the same proper-
ties as those of Fourier matrix. So, if we fix λ as λ = 2π/

K, then αm ¼ Wg

NW þ i 2πξ mð Þ
K .

According to Section 3.2, and given that p, q ∈ {K1,
K1 + 1,…, K2}, p + q = K − 2N, we can compute cm,k as
follows:

cm;k ¼ vm;q ¼ vm; K−2N−pð Þ

¼
Z þ∞

−∞
e−αmNt=Wg

~
βα
∼

−tN=Wg þ K−2N−p−1ð Þ	 

dt

¼ eαm K−2N−pð Þ
Z þ∞

−∞
e−αmNt=Wg

~
βα
∼

−tN=Wg−1
	 


dt

¼ eαmq
Z þ∞

−∞
e−αmNt=Wg ~β−α

∼ tN=Wg
	 


dt

¼� eαmk Ξ mð Þ
Ξ mð Þj j2 ;

ð17Þ

where Ξ mð Þ ¼ Wg

N

YN
n¼1

1−eαnþαm

αn þ αm
; k∈ K1;K1 þ 1;…;K2f g.

To avoid g(t) = βα(tN/Wg) from being a complex-
valued function, we need α to be a vector with Im(αm) +
Im(αM −m) = 0, because βα(tN/Wg) is the convolution of
functions βαm tN=Wg

	 

and the convolution of βαm

tN=Wg
	 


and βαM−m
tN=Wg
	 


generates a real value. So

for Im αmð Þ ¼ i 2πξ mð Þ
K ;m ¼ 0; 1;…;M−1, we can let

Im αmð Þ ¼
i
2π
K

2m−M þ 1ð Þ M is even

i
2π
K

2m−M þ 1
2

M is odd

8><
>: ð18Þ

Until now, we have deduced the representation of cm,k,
which is the (m, k)th entry of measurement C. And, we
also determine the parameter vector α, with the mth

entry expressed as αm ¼ Wg

WN þ i 2πξ mð Þ
K .

However, for measurement of CS recovery, C should sat-
isfy the RIP. We can see that C is a weighted DFT matrix.

Fig. 2 Filter form of Gabor sampling scheme
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As there is still no effective and easy method to compute
the RIC of such kind of matrices except ergodic calculating,
we detect the RIP by comparing it with DFT matrix, which
was proved to satisfy RIP for sparse signal reconstruction
[23]. We need to explore the matrix coherence θ. And for
any matrix Φ, it is defined as [22]

θ Φð Þ :¼ max
i≠j

ϕi;ϕj

D E


 



ϕik k2 ϕjk k2

ð19Þ

Then by applying Gershgorin’s circle theorem, we can
conclude that δS ≤ (S − 1)θ(Φ). Furthermore, a (2S, δ)-
RIP matrix with δ2S < 1 necessarily has all subcollections
of 2S columns that are linearly independent, so, as [24],
a normalized DFT matrix satisfies δ2S = (2S − 1)θ(Φ).
Here, we use matrix coherence to judge the 2S-order
RIP of matrix C. Taking Eq. (17) into Eq. (19), we get

θ Cð Þ ¼ j < ck ; cl > j
jck jj2jjcljj j2 ¼

XM−1

m¼0

eαmkeαm l

Ξ mð Þj j2












ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM−1

m¼0

eαmkeαmk

Ξ mð Þj j2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM−1

m¼0

eαm leαml

Ξ mð Þj j2
s

¼

XM−1

m¼0

e
i
2πm
K

l−kð Þ

Ξ mð Þj j2




















XM−1

m¼0

1

Ξ mð Þj j2
≤

XM−1

m¼0

e
i
2πm
K

l−kð Þ















M ¼ θ DFTQ

	 

;

ð20Þ
where θ(DFTQ) is a class of submatrices of Fourier
matrices DFT, which are K × K matrices with each entry
as DFTð Þm;k ¼ 1ffiffiffi

K
p exp i 2πmk

K

	 

, and Q is an index set {1,

2,…,M}with M ≤ K. As a result, the weighted DFT
matrix C also satisfies RIP and many other properties of
DFTQ. In [22], theorem 3.3 shows that for any t > 1 and
any K, S > 2, a random subset Q of average cardinality

M ¼ CtS logKð Þ log CtS logKð Þ log2S ð21Þ
satisfies the RIP condition with probability of at least 1
− 5e− ct and that the C with possible indices denotes ab-
solute constants. In any fixed probability of success such
as 0.99, then Eq. (21) yields the best known bound on
the number of Fourier measurements M =O(S log4K).
With Eq. (4), we are able to finish the signal recon-

struction. The atoms of the dual Gabor frames corre-
sponding to the nonzero Gabor coefficients can
construct a Gabor subspace of the signal. Consequently,
it can be said that a class of signals, constructed by the
same kinds of pulses, belong to a union of Gabor

subspaces according to [5]. The recovery of Gabor coef-
ficient matrix Z is called subspace detection. So, for per-
fectly reconstructing the original signal, the critical
problem is how to construct the sampling scheme with
appropriate relation between S and K.
In this study, we can solve the problem from the two

entry points: the windows width Wg and the index set of
measurement matrix C. On the one hand, in a fixed time
duration, K is determined by the time shifting parameter
a. With Wg increasing, K gets smaller. On the other
hand, Wg is intimately involved with sparsity S. If the
windows are wide enough, the sparsity S can be reduced
to half of that proposed in [15]. What is more, E-splines
have a special property: the higher the order N, the more
the energy is centralized to a shorter time domain sup-
port [18]. Then the essential window width gets short
and the ratio M

S ¼ N
S== was brought down.

4 Frame window width for sample number
In sampling scheme, K is the dimension of vectors Z[l],

where there exists K ¼ TþWg

Wg
N þ N−1 from Eq. (12).

Here, we represent window width as Wg = ζW, ζ ≥ 1, then

a ¼ ζW=NandK ¼ T
ζW þ 2
� �

N−1 . We can see that the

larger the ζ is increased, the smaller the K is. In [15],
there exists Wg =W, and so K ′ ¼ T

W þ 2
	 


N−1. For T≫
W, we can greatly reduce K by this way.

In another parameter, the sparsity is represented as S

¼ WgþW
a Np

h i
. As discussed in [15], Wg =W and S

= [2μ− 1] = 2NpN. Here, forming Wg = ζW, we get S ¼ ζþ1
ζ

NpN≤2NpN . If Wg≫W, S ≈ [μ− 1]Np =NpN. As we can
see, wider window width also means smaller sparsity S.
For more accurate analysis, we take a good property of

E-splines into account: the higher the order N, the more
the energy is centralized to a shorter time domain support
[18]. Here, introducing the concept of “essential frame
windows width,” we say that φ(t) has ϵW-essential window
width WE = |TE|, when TE = [t1, t2], where 0 ≤ t1 < t2 ≤Wg.
Defining Tc

E1 ¼ 0; t1½ �, Tc
E2 ¼ t2;Wg

� �
, if for some ϵW < 1

Z
Tc

E1þTc
E2

φ tð Þj j2dt
 !1=2

≤�W φ tð Þk k2 ð22Þ

With the increase in the order N, the ϵW-essential
windows width WE gets shorter. Defining essential window
width factor η=WE/Wg, we can measure precisely how
much of the window width has been cut down, with the
reserved part still holding most energy. When the order N of
E-spline is high enough, the essential window width factor η
becomes very small, whereas stricter ϵW means wider scope
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of permissible η. Based on the foregoing assumption, the

sparsity can be described as S ¼ WEþW
a Np

� � ¼ ηζþ1
ζ NpN .

Then, the practical sparsity get smaller. As a result, to

ensure that C satisfy RIP, we need M ¼ O

ηζþ1
ζ NpN log4 TN=ζWð Þ

� �
. Note, in this study, M =N.

So, for perfect subspace detection, if there exists con-
stant C' > 0, the following equation must be satisfied:

ηζ þ 1
ζ

NpN log4 TN=ζWð Þ≤ 1

C
0 ð23Þ

For matrix C, the ratio M
.
K≈ζW

.
T is mainly decided

by ζ. So, larger ζ means C has better orthogonality and
better RIP. In addition, if we enlarge ζ, Eq. (23) is easier
to be satisfied. As the channel number of the sampling
scheme is decided by M, we can increase N to acquire
more measured samples, which means better recon-
struction performance. As η and N are inversely corre-
lated in Eq. (23), sometimes we need not to worry that
N is too large to prevent Eq. (23) from being satisfied.
Next, we will analyze the effect of stretching the frame

windows width on the signal reconstruction error. First,
we offer a lemma here.

4.0.0.1 Lemma 1 For any Gabor window functions
g(t) ∈ S0, if there exists a constant 0 < ζ <∞, we have

g t
ζ= ÞkSo ¼ ζ g tð Þk kS0

���� , and g t
ζ= Þ∈S0ð .

4.0.0.2 Proof If g ' (t) = g(t/ζ), then its Fourier transform-
ation is as the following equation

Vg 0g
0 τ; fð Þ ¼ ζ

Z ∞

−∞
e−

2πiωt
ζ g

t
ζ

� �
g

t
ζ
−τ

� �
d
t
ζ
¼ ζVgg τ; fð Þ

Then

g 0 tð Þk kS0 ¼
Z ∞

−∞

Z ∞

−∞
Vg0g

0 τ; fð Þ

 

dτdf ¼ ζ

Z ∞

−∞

Z ∞

−∞
Vgg τ; fð Þ

 

dτdf ¼ ζ g tð Þk kS0

According to the definition of Segal algebraic space,
for any g(t) ∈ S0, g tð Þk kS0 < ∞ is able to be satisfied
under condition 0 < ζ <∞. So g 0 tð Þk kS0 ¼ ζ g tð Þk kS0 < ∞
and g(t/ζ) ∈ S0. Prove up.
According to the lemma, if the windows are stretched

ζ times, the S0-norm is proportional to the stretching
factor. What is surely guaranteed is that the S0-norm
does not relate to the size of the grid in time and
frequency plane and the redundancy. Consequently, we
can propose the following theorem about the signal
reconstruction error bound.

4.0.0.3 Theorem 2 Given that x(t) is a finite duration sig-
nal supported on the interval [0,T] with ϵΩ-bandlimited

[−Ω/2,Ω/2], and G g; a; bð Þ is a frame with each atom g(t)
supported on [0,W] and ϵB-bandlimited on [−B/2, B/2], of
which the dual atom γ(t) ∈ S0. For each atom g′(t) = g(t/ζ),
with its dual atom γ′(t) ∈ S0, and ϵB > 0, there exist K1 <
0 , K2 > 0 and L0 > 0, depending on γ(t) and the essential
bandwidths of g(t), the following inequality is satisfied

x−
XK 2

k¼K1

XL0
l¼−L0

zk;lMb′lTa′kγ
′

�����
�����
2

≤C0 xk k2 þ C1 Z−ZΛk k2;1

ð24Þ

where a′¼ζa; b′¼b=ζ; C0¼ζC2
ζ ζ �Ω−�B�Wð Þþ ffiffiffi

ζ
p

�Bþ�Wð Þ	 

∥γ∥S0∥g∥S0

and C1 = ζCζC1
' ‖γ‖S0 with Cζ= (1 + 1/ζa)

1/2(1 + ζ/b)1/2, ZΛ is
the best S row approximation of Z, with |Λ| = S.
The proof is rooted [15] with appropriate adjustments

according to Lemma 1.
Theorem 2 shows that the reconstruction error is com-

prised of two parts. The first part comes from Gabor series
truncating and window cutting. For Gabor windows g(t) sup-

ported on a quite short time interval, Cζ≈ 1þ 1

ζWN

�1
2
≫1:

�
.

With ζ increasing, Cζ decreases evidently and C0 is brought
down. Meanwhile, the higher the E-spline smoothness order
N is, the smaller Cζ is, which results in the error reduction.
The second part ζ comes from subspace detection error. As
analyzed, larger ζmeans that C has better RIP, which can also
decrease the error. So, we can reduce the signal reconstruc-
tion error bound by enlarge window width.
The total number of Gabor coefficients is related to a

somewhat larger interval [0,T'], where T' = T + 2ζW, with

K≈
T
0
N
�
ζW

in time domain, and [0,Ω'], where Ω
0 ¼ Ω

þB
ζ= , with L ≈ ζWΩ' in the frequency domain. Overall,

the required number of samples is KL≈ T
0
N

ζW ζWΩ
0 ¼ T

0
Ω

0

N . To decrease KL further, b can be maintained constant
at b ¼ 1

W= . Then L ≈WΩ' and the size of matrix Z be-

comes KL≈T
0
Ω

0
N
.
ζ . By this method, if ζ is big enough,

the calculation load can be greatly reduced. Reducing Ga-
bor coefficient numbers may enlarge the error bound, but
we still can acquire acceptable error with suitable factor ζ.

5 Noisy measurements
All the signals, hitherto considered for sampling, were
noise-free or exactly multipulse. But when the signals to
be measured are noisy, according to [15], the Gabor
sampling scheme is robust to bounded noise in both the
signal and the samples. Here, we will study the robust-
ness of the sampling scheme proposed in this paper.
The signals are limited to the interval [0,T], which means

the noise or the energy leaks between the pulses are also
limited. As a result, the column vectors Z[l] are no longer
sparse. Nonetheless, according to earlier analysis, Z can be
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well approximated to a sparse Z, which consists of |Λ| rows
of Z with largest l2 norm, and zeros, otherwise referred to
as the best |Λ|-term approximation. If the indice sets Λ is
complete, |Λ| = S. Then, Eq. (7) can be written as

Y ¼ DUT þN′; withU ¼ CZþN ð25Þ
With D having a full column rank, the relation to Eq.

(25) can be reduced to U =CZ +N, where N =D†N′. By
utilizing CS algorithms, Z' can be resolved well even with
noisy terms, and the following inequality, satisfying [25]:

Z−Z′
�� ��

2≤C
′
1 Z−ZΛk k2;1 þ C′

2 Nk k2 ð26Þ

where C ' 1 and C ' 2 are constants depending on the RIP
constant δ2S of C. Then, according to Theorem 2, we
can deduce the error bound as follows:

x−
X
k∈Λ

X
k¼−L0

L0

zk;lMb′lTa′kγ
′

������
������≤C0∥x∥2 þ C1 Z−ZΛk k2;1 þ C2 Nk k2

ð27Þ
where C0 is the same as that in Theorem 2, while C1

¼ ηζC ζC′
1∥γ∥S0 and C2 ¼ ηζC ζC′

2∥γ∥S0 .
Here, the third part of the error bound comes from

the noise. As analyzed above, increasing ζ and N is also
beneficial to bring down Cζ and minimize the impact of
the noise. What is more, with increase in the smooth-
nees order N of the windows, the norms gk kS0 and γk kS0
decrease rapidly, which is able to make the error bound
going down as well. To the contrary, if we increase N,
the RIP of C may get worse, and C'

2, which is the conver-
gence factor for the noise, may be enlarged. Then, the
noise suppression generated by the CS iteration will be
weak. However, comparing the variation trends of the
several factors following N, Cζ and γk kS0 play a leading
role on improving the sampling scheme robustness. If N
rises, the redundancy of the Gabor frames would get
higher. So, the analysis happens to coincide the conclu-
sion in Eq. (26), which indicates that higher frames
redundancy causes better robustness.

6 Simulation and discussion
We now present some numerical experiments to illustrate
the reconstruction performance of short pulses with sub-
Nyquist sampling, using the scheme proposed above.
The sampling scheme was tested on a range of multi-

pulse signals of duration T = 20ms, and the pulses mak-
ing up the signals were randomly chosen as a set of
three different pulses: cosine, Gaussian, and B-spline of
three orders. The number of pulses was varied between
Np = 1, 3, 5, the maximum pulse width being W = 0.5ms.
The locations of the pulses were also chosen at random.
Monte Carlo method was used for simulations averaged

over 500 trials. Throughout the experiments, we chose
D = I and measured the relative error x−x̂k k2= xk k2.
In the first experiment, we studied the effects of stretching

Gabor frame windows width on the reconstruction error.
The smoothness order of the E-spline windows was chosen
as a fixed number M=N= 100. The Gabor coefficients Z
was acquired by solving the MMV problem with SOMP.
Figure 3 shows the relative error between the recon-

structed signals and the original signals with the increase in
window stretching factor ζ and the pulse number Np. The
two curved surfaces represent respectively the error vari-
ation trends under the conditions of b = 1/W and b = 1/ζW.
It can be seen that when b = 1/ζW and ζ ≥ 7, the signals can
be reconstructed with minimum error, and the variation of
Np had little effect on the error. With increasing ζ, the
dimension K of Z significantly decreased, which means that
the measurement matrix has correspondingly fewer col-
umns, and can hence be recovered with higher accuracy. In
this case, time samples satisfied K ≤ 716; also, Eq. (21) can
be easily satisfied and even more pulses reconstructed. For
reducing the size of Gabor coefficient matrix Z, we can also
choose b = 1/W. When ζ ≈ 7, the recovery error of the sig-
nal will be approximately the same as that when b = 1/ζW.
In the second experiment, we studied the effects of E-

spline smoothness order N on the relative reconstruc-
tion error under different stretching factor ζ. We chose
Np = 3 with no other signal parameters not changed. The
simulation was started with N = 25, adding N at uniform
interval ΔN = 5 until N = 100, while the windows stretch-
ing factor ζ was raised from 2 to 15. The results are
shown by Fig. 4a, b. According to the figures, when N
was small, the error was generally large. In the case that
ϵW = 0.1 and N = 25, there existed η ≈ 0.2, and the mini-
mum error was on the row ζ = 5. When N was not large
enough, the measurement matrix C was too flat to re-
cover Z perfectly. With increasing N, the optimal
stretching factor was raised to about ζ = 7. When N was
large enough, with appropriate ratio M/K and essential

Fig. 3 Relative reconstruction error variation curve with the
increasing of window stretching factor ζ and pulse number Np
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WE, the errors became quite small, enabling broadening
of the range of feasible window width.
In the third experiment, we verified the robustness of

the proposed sampling scheme. In the simulation, with
Np = 3, Gaussian noise with noise/signal ratio (SNR) of
15 dB was injected into the channel. The smoothness
order N was equivalent to M, increasing from 25 to 100.
Figure 5 shows the SNR of output signals from the sam-
pling schemes with redundancy μ ¼ 1

N= relating to this
study, and with μ = 0.5, μ = 0.3, μ = 0.75 relating to [15].
It was seen that for the sampling scheme proposed, the
SNR increased with the raising of N, improved by about
20 dB compared with that of the input signals. When
the channel numbers were the same, it was generally
much higher than that of the sampling scheme in [15],
showing better performance on noise suppression.
Finally, we compared the reconstruction error of the

sampling scheme proposed in this paper with that of a
specific example in [15]. In Table 1, Schemes I and II

relate respectively to the sampling schemes proposed in
this paper and that in [15]. As the scheme structure chan-
ged significantly and, at the same time, the parameters M,
K, μ, and ζ could not remain the same, the comparison
was restricted to some typical cases with the same signal.
Here, we chose Np = 3 and set other signal parameters as
they were before. Table 1 shows that, under appropriate
parameter setting, the reconstruction performance of both
schemes were similar. Therefore, the sampling scheme
proposed here can be considered effective and feasible.

7 Conclusions
We introduced high order exponential reproducing win-
dows into Gabor sampling scheme for sub-Nyquist sam-
pling of short pulses, which notably simplified the filter’s
structure of the sampling system and enabled it to be
realized by RC filters. Subject to choosing an appropriate
E-spline parameter vector α, the Gabor windows could be
a positive real function and it is possible to construct the
measurement matrix as a weighted DFT matrix for Gabor
coefficients recovery, which is proved to have good coher-
ence. Meanwhile, we developed methods for good RIP by
stretching windows and increasing E-spline smoothness
order N. With that, the ratio r of the row dimension and
the column dimension of the measurement matrix could
be improved. Also, the sampling system was proved to
hold acceptable reconstruction error bound. Because the
energy of the E-splines would concentrate to a narrower
support with the increasing of N, the Gabor coefficient
matrix holds lower sparsity and hence its recovery by
using CS algorithms is more reliable. For reducing the
coefficients of samples further, we compressed the dual
Gabor frames and proved that the reconstruction of the
original signals was still under a low error bound and that
it benefited from the nice robustness caused by high
frames redundancy. With high frames redundancy, the
sampling scheme holds nice robustness.

Fig. 4 Relative reconstruction error variation with increased E-spline smoothness order N under different stretching factors ζ. a is in the case that
b = ζ/W when b is in the case that b = 1/W

Fig. 5 SNR of the sampling schemes with redundancy as μ = 1/N
relating to this study, and μ = 0.5, μ = 0.3, μ = 0.75 relating to [15]
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Table 1 Reconstruction errors of sampling scheme proposed in this paper and that in [15]

Parameters M= 50 M = 75 M = 100

Scheme I b = 1/W ,ζ = 7 0.0542 0.0168 0.0023

b = 1/W ,ζ = 14 0.5525 0.3803 0.2912

b = 1/ζW ,ζ = 7 0.0192 0.0108 0.0091

b = 1/ζW ,ζ = 14 0.0093 0.0091 0.0090

Scheme II μ = 0.3 0.0053 0.0053 0.0053

μ = 0.5 0.0064 0.0064 0.0064

μ = 0.75 0.0113 0.0113 0.0113

Wang et al. EURASIP Journal on Wireless Communications and Networking  (2017) 2017:72 Page 10 of 10

http://dx.doi.org/10.1016/j.adhoc.2016.02.009
http://dx.doi.org/10.1016/j.adhoc.2016.04.005

	Abstract
	Introduction
	Background and problem formulation
	Gabor sampling scheme
	Exponential reproducing windows

	Sampling scheme with exponential reproducing windows
	Exponential reproducing transform windows
	Filter form
	Signal recovery and measurement matrix

	Frame window width for sample number
	Noisy measurements
	Simulation and discussion
	Conclusions
	Acknowledgements
	Authors’ contributions
	Competing interests
	Author details
	References

