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Abstract

A new state-of-the-art multi-cell minimum mean square error (M-MMSE) scheme is proposed for massive
multiple-input-multiple-output (MIMO) networks, which includes an uplink MMSE detector and a downlink MMSE
precoder. Contrary to conventional single-cell schemes that suppress interference using only channel estimates for
intra-cell users, our scheme shows the optimal way to suppress both intra-cell and inter-cell interference
instantaneously by fully utilizing the available pilot resources. Specifically, let K and B denote the number of users per
cell and the number of orthogonal pilot sequences in the network, respectively, where 8 = B/K is the pilot reuse
factor. Our scheme utilizes all B channel directions that can be estimated locally at each base station, to actively
suppress both intra-cell and inter-cell interference. Our scheme is practical and general, since power control,
imperfect channel estimation, and arbitrary pilot allocation are all accounted for. Simulations show that significant
spectral efficiency (SE) gains are obtained over the conventional single-cell MMSE scheme and the multi-cell
zero-forcing (ZF) scheme. Furthermore, large-scale approximations of the uplink and downlink
signal-to-interference-and-noise ratios (SINRs) are derived, which are tight in the large-system limit. These
approximations are easy to compute and very accurate even for small system dimensions. Using these SINR
approximations, a low-complexity power control algorithm is further proposed to maximize the sum SE.
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1 Introduction
Multi-user multiple-input-multiple-output (MU-MIMO)
communication has drawn considerable interest in recent
years. By scheduling multiple users on the same time-
frequency resource, the spatial degrees of freedom offered
by multiple antennas can be exploited to focus signals
on intended receivers, reduce interference, and thereby
increase the system throughput [1-6]. These features
motivate that MU-MIMO technology is incorporated
into recent and evolving wireless standards like 4G LTE-
Advanced [7].

Massive MU-MIMO is an emerging 5G technology that
scales up MU-MIMO by orders of magnitude [8, 9]. The
idea is to employ an array comprising a hundred, or more,
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antennas at the base station (BS) and serve tens of users
simultaneously per cell. Compared to the contemporary
cellular systems, the system throughput can be drastically
increased without consuming extra bandwidth [7-9]. The
uplink and downlink transmit power can also be reduced
by an order of magnitude since the phase-coherent pro-
cessing provides a comparable array gain [10]. In the
limit of an infinite number of antennas, intra-cell interfer-
ence and uncorrelated noise can be averaged out by using
simple coherent precoders and detectors, and the main
performance limitations are pilot contamination and the
distortions from hardware impairments [8, 11].

In the uplink reception and downlink transmission, the
most common processing schemes are matched filtering
(ME), zero-forcing (ZF), and minimum mean square error
(MMSE) processing, where the latter is referred to as
single-cell MMSE (S-MMSE) in this work.! A key char-
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acteristic of these schemes is that the BS only utilizes
the instantaneous realizations of the channels to its own
intra-cell users when creating the precoders/detectors,
while users in other cells are either neglected or only
considered based on their long-term statistics [12].
This is why we refer to MF, ZF, and S-MMSE as single-cell
schemes. In the coordinated multipoint (CoMP) literature,
there also exist multi-cell schemes that exploit the instan-
taneous channel realizations of the users in all cell; see [13]
for an overview. However, there is no scalable solution for
estimating all these channel realizations in a large system.

Massive MIMO addresses the channel estimation issue
by operating in time-division duplex (TDD) mode and
requiring only uplink pilots for channel estimation.
Hence, the pilot overhead scales linearly with the num-
ber of users, instead of the number of BS antennas, which
allows for adding additional antennas without affecting
the pilot overhead [14]. The BS first listens to the uplink
pilot signaling from its own cell, estimates the K intra-
cell channels, and then constructs its precoders/detectors
based on these channel estimates to mitigate the intra-
cell interference [12, 15—17]. In principle, the BS can also
estimate and utilize the channels from users in neighbor-
ing cells, but the channel estimates can be very unreliable
due to pilot contamination. As shown in [17], the gains
are marginal in the baseline scenario with uncorrelated
Rayleigh fading channels and every pilot being reused in
every cell, and a similar conclusion is drawn in [18].

In this work, we explore multi-cell scenarios where the
pilot signals are not reused in every cell. Let B denote
the number of orthogonal pilot sequences and K denote
the number of users in each cell. The pilot reuse factor
is B = B/K > 1, which implies that 1/8 of the cells
use a particular pilot sequence. In this case, a BS can
estimate the channels to inter-cell users more reliably by
utilizing the B — K pilots that are not used in the own
cell. In our previous work [19], we used these estimates to
propose a multi-cell ZF detector (referred to as full-pilot
ZF detector in [19]) to cancel interference from neigh-
boring cells. Unfortunately, the gains over the single-cell
schemes were marginal, partly due to the loss in array gain
of B in multi-cell ZF, instead of K as with single-cell ZF.
Therefore, in this work, we derive and analyze the uplink
multi-cell MMSE (M-MMSE) detector and downlink M-
MMSE precoder instead, under arbitrary pilot reuse and
pilot allocation. This is a generalization of the M-MMSE
schemes considered in [17] and [20] for the special case of
B = K and in [21] for the idealized case of perfect channel
state information (CSI).

The main contributions of our paper are:

e A new state-of-the-art M-MMSE scheme is
proposed, which includes an uplink detector and a
downlink precoder. The novelty is that all B pilots are
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exploited at each BS to actively suppress both
intra-cell and inter-cell interference. It brings
significant SE gains over conventional single-cell
schemes which dominate the MIMO literature.
Moreover, we prove that the computational
complexity of the scheme is scalable since the KL
channels, in an L-cell setup, are fully represented by
only B channel direction estimates. The proposed
scheme is general since it accounts for imperfect
channel estimation, power control, and arbitrary pilot
allocation.

e Large-scale approximations of the uplink and
downlink signal-to-interference-and-noise ratios
(SINRs) for the proposed M-MMSE scheme are
derived, which are asymptotically tight in the
large-system limit. The approximations are very
accurate even for small system dimensions and are
easy to compute, which enables performance analysis
and optimization without the need for heavy
Monte-Carlo simulations.

e By utilizing the SINR approximations, a
low-complexity power control algorithm for sum SE
maximization is proposed. Since the SINR
approximations depend only on long-term statistics,
the computation complexity can be spread over time.
Compared to equal power allocation, the proposed
algorithm significantly improves the sum SE and
provides good user fairness.

The paper is organized as follows: In Section 2,
we describe the system model and the construction of
the M-MMSE scheme. Large-scale approximations of the
uplink and downlink SINRs are derived in Section 3.
A power control algorithm is proposed in Section 4.
Simulation results are provided in Section 5 before we
conclude the paper in Section 6.

Notation: Boldface lower and upper case symbols rep-
resent vectors and matrices, respectively. The trace,
transpose, conjugate, Hermitian transpose, and matrix
inverse operators are denoted by tr(-), OF, ¢, OF,
and (-)~, respectively. The function diag(-) constructs a
diagonal matrix by selecting the diagonal elements of a
matrix.

2 System model and transceiver design

We consider a synchronous massive MIMO cellu-
lar network with multiple cells. Each cell is assigned
an index in the cell set £, and the cardinality |L|
is the number of cells. The BS in each cell is equipped
with an array of M antennas and serves K single-antenna
users within each coherence block. We assume that each
time-frequency coherence block consists of T, seconds
and W, Hz, such that 7, is smaller than the coherence
time of all users and W, is smaller than the coherence
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bandwidth of all users. This leaves room for § = T, x
W, transmission symbols per block, and the channels
of all users remain constant within each block. Let hyy
denote the channel response from user k in cell / to
BS j within a block, and assume that it is a realization
from a zero-mean circularly symmetric complex Gaussian
distribution:

hjy ~ CN (0, dj (zy) Tur) - (1)

The vector z; € R? is the geographical position
of user k in cell /, and d;j(z) is an arbitrary func-
tion that accounts for the channel attenuation (e.g.,
path loss and shadowing) between BS j and any user
position z. Since the user position changes relatively
slowly, d; (zy) is assumed to be known at BS j for all
land all .

We consider a TDD protocol in this paper, where the
downlink channels are estimated by uplink pilot signal-
ing by exploiting channel reciprocity.? In TDD mode, each
transmission block is divided into two phases: 1) uplink
channel estimation phase, where each BS acquires CSI
from uplink pilot signaling which occupies B out of S
symbols in each block, and 2) uplink and downlink pay-
load data transmission phase, where each BS processes
the received uplink signal and the to-be-transmitted
downlink signals using the estimated CSI Let ¢* and
¢4 denote the fixed fractions allocated for uplink and
downlink payload data transmission, respectively. These
fractions can be selected arbitrarily under the conditions
that ¢ + ¢4 = 1 and that ¢"(S — B) and ¢9(S — B)
are positive integers. The uplink channel estimation is
first discussed to lay a foundation for the transceiver
design.

2.1 Uplink channel estimation

The B pilot symbols in a coherence block are used for
transmitting B-length pilot sequences. We consider a set
of B orthogonal sequences with unit-modulus entries,
denoted as vi,...,vg € CB. These sequences could, for
instance, be selected as the columns of a discrete Fourier
transform (DFT) matrix. By gathering the sequences in a
matrix V = [vy, ..., vg] € CB*5, our orthogonality and
scaling assumptions lead to V'V = Blp.

Arbitrary pilot allocation is considered in this work,
with the only requirement of B > K. The param-
eter 8 = B/K > 1 is called the pilot reuse fac-
tor. If the pilots are allocated wisely in the network,
a larger B brings a lower level of interference during
the pilot transmission, also known as pilot contamina-
tion. Let iz € {1,...,B} denote the index of the pilot
sequence used by user k in cell /, which implies that
the user sends the pilot sequence v;, (ie, the ixth
column of V).

Page 3 of 15

In the uplink channel estimation phase, the collective
received signal at BS j is denoted as Y; € CM*5, Then, Y;
can be expressed as

K
Y; = Z Z «/szhjzkvgk +N;j, (2)

lel k=1

where hjy; is the channel response defined in (1), py > 0
is the transmit power for the pilot of user & in cell /, and
the additive white Gaussian noise (AWGN) term N; €
CM*B contains independent and identically distributed
(iid) elements that are distributed as CA/(0, o2).

Based on the received signal in (2), BS j can compute the
MMSE estimate of the uplink channel hj; from user & in
cell / as [19]

A~ —1
hjy = /pidj(zi) Y, (‘I’,*) Vi (3)

K
where ¥; = z% legmdj(zm)vimvgm +02I. As pointed
el m=

out in [19], the part Y; (‘II]*) ' v;‘lk in (3) depends only on
which pilot sequence that user k in cell / uses and is oth-
erwise the same for all users. Consequently, users who use
the same pilot sequence have parallel estimated channels
at each BS, while only the amplitudes of their estimates
are different (due to the factor ,/pyud;(zy) in (3)). To show

this explicitly, define the M x B matrix

N A A -1
HV,/' = I:hv'jl’ ...,hv,,'BiI = Y,‘ (‘I’]*) [V’f, ...,VE] ,  (4)

which allows the channel estimate in (3) to be reformu-
lated as

fljzk = JPid; (zy) Hy jey,, (5)

where e; denotes the ith column of the identity matrix Ip.
The property that users with the same pilot have parallel
estimated channels is utilized to derive and analyze new
SE expressions in the sequel.

Notice that the estimate hj; is a zero-mean com-
plex Gaussian vector and its covariance matrix is

= {f‘ﬂkﬁj]z{k] = pudj(zi)?$ji, In, where
B
D ter Zﬁﬂ Pemd; (sz)vgkv,'zm + o2

This is straightforward to prove by utilizing the fact
that3

-1 _ q;ﬁlk
vgi‘llj - B VZ @)

According to the orthogonality principle of the MMSE
estimator, the estimation error hjy = hj; — hjy is inde-

Bjiy =

(6)

pendent of hj and has zero mean, and the covariance
matrix
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Ci = {h;lkh } = dj (z) (1 — pid; (Zix) (i;ji[k) Ly (8)

Finally, notice that also hyj is a zero-mean com-
plex Gaussian vector and its covariance matrix is

E {ﬁv,jiﬁ{_}{ji} = q;j,-IM.

2.2 Uplink M-MMSE detector

Based on the channel estimates, we will now derive the
optimal M-MMSE detector in the uplink. After the uplink
channel estimation, during the uplink payload data trans-
mission phase, the received signal y; € CMx1 at BS j is

K
yj = Z Z Vuhjgxy + nj, )
leL k=1
where 7y is the transmit power of the payload data from
user k in cell , x ~ CN(0,1) is the transmitted sig-
nal from a Gaussian codebook, and n; ~ CN(0,021yy) is
AWGN. Denoting the linear detector used by BS j for an
arbitrary user k in its cell as gj € CM, the detected signal
QACjk is
R = gy = /T8 ik
+ gfz Z thlmxlm + g}an.
(L) #(jik)

By using (10), the following achievable ergodic SE can
be achieved for this user [12]:

B
ul _ oul _ 2 ul
Kje=¢ (1 S) Eli | frog, (1 +i!)}.
where ]E{h 3 denotes the expectation with respect to all
the channel estimates obtained at BS j, the instantaneous
effective SINR % k is

(10)

(11)

H{ TH
ul kg ey gk

Mk =
gH <f}kC]k + Z Tim (ﬁ/lmhﬂm
(Lm)#(jik)

) + 021M> g;‘k.

(12)

Recall that Cjx and C
matrices, deflned in (8). Note that R/‘.‘kl is a lower bound on
the uplink ergodic capacity.

The uplink SINR in (12) has the form of a generalized
Rayleigh quotient. Therefore, a new M-MMSE detector
can be derived to maximize this instantaneous SINR for
given channel estimates:

jlk are estimation error covariance

1.
g]l\]f MMSE (Hv,,A HV/ (02 + (,0/‘) IM> hyjg,
(13)
where Aj = ) Z r;kplkd (zlk)e,,k in e CB*B is a diag-

leL k=1
onal matrix, and its ith diagonal element 1;; depends on
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the large-scale fading, the pilot and payload power of the
users that use the ith pilot sequence in V. The scalar ¢; is
defined as

K

¥ = Z Z Tikddj(Zik) (1 - kadj(sz)QBﬁ,k),

lel k=1

(14)

where qzmk is defined in (6). As the name suggests,

M—-MMSE
Tk g]k

in estimating xj [22], E { |5cjk — Xjk ’2 |f1(j) }

also minimizes the mean square error (MSE)

Remark 1 To elaborate the advantages of our M-MMSE
scheme, we compare it with the related S-MMSE detector
from [12, 15, 16], which is defined as

-1
g M = (Z Tmhyjmhll, + Z; + 021M> hyj.

(15)

This detector only contains channel estimates from intra-
cell users, which is why we refer to it as a single-cell scheme.
The matrix Z; € CM*M s zero in some prior works and
otherwise equal to the covariance matrix

K
Z o jm + Z Z Tmbjimh Jlm
m=1 I#j m=1
(16)

of the intra-cell estimation errors plus the inter-cell inter-
Sference. When Z; in (16) is used, Tik8ji S MMSE ) inimizes

the MSE E{|xjx — x| |h}71, ce ij} under the assump-
tion that only estimates of the intra-cell channels are
available, but we stress that this is a limiting assumption
in multi-cell scenarios since also the inter-cell channels
can be estimated without any additional pilot overhead.
As we will show numerically in Section 5, the bene-
fit of the M-MMSE detector over S-MMSE grows with
B, since the estimates of the inter-cell channels then
improve, and this allows for more efficient interference
suppression.

Remark 2 The M-MMSE detection vector in (13)
involves the inversion of an M-dimensional matrix, but the
dimension can be substantially reduced by some matrix
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algebra. By gathering the K detection vectors in cell j in
matrix form, we notice that

M—-MMSE M—-MMSE
g1 oo BiK

~ N -1
x F, [ B (21) €00 -0 i (i) e | (17)
A N A —1
= HV,]' (AjH]{;IJ'HV,j + (02 + (pj) IB>

x [V (zn) €0 oy () e |

by exploiting the fact that (C1Cy + I)71C; = C1(CoCy +
D)~! for any matrices C1,Cy of compatible dimensions.
Hence, only a B-dimensional matrix needs to be inverted
and only once per cell and not once per user. The compu-
tation of the M-MMSE detectors in a cell requires approx-
imately %BZM complex multiplications. This is greater
than with the S-MMSE detector, which after similar matrix
algebra requires the inversion of a K-dimensional matrix,
and thus, %K 2M complex multiplications are required.* In
summary, the increased complexity compared to S-MMSE
is about % (,32 — 1) K2M complex multiplications. Since
in massive MIMO systems M > K is often assumed, the
complexity increase is not a big issue when K is small or
moderate, particularly since the computational efficiency
of digital hardware grows rapidly and is not expected to
be a bottleneck in the future. One way to reduce the com-
plexity is to check which of the diagonal elements of A; are
below a certain threshold and put these values to zero, to
effectively reduce the matrix to be inverted in the M-MMSE
expression. This approximation can significantly reduce
the complexity if only a few of the B — K pilots that belong
exclusively to other cells are used by users that cause strong
interference. Note that the M-MMSE scheme can be seen as
a CoMP coordinated beamforming scheme, but since there
is no signaling between the BSs (BS j estimates I:IW from
pilots), the M-MMSE scheme is fully scalable.

2.3 Downlink M-MMSE precoder

Next, we will propose a new M-MMSE precoder for the
downlink. During the downlink payload data transmis-
sion, the received signal at user k in cell j is

K
Jik = Z h;Ik Z A ClmWimSim + Hjk (18)

lec m=1

where w;,, € CM*1 is the precoder used by BS / for user m
in its cell, s;,, ~ CN(0,1) is the payload data symbol
for user m in cell [, gy, is the corresponding downlink
transmit power, and nj; ~ CN (o, 02) is AWGN.
Recently, an uplink-downlink duality for massive MIMO
systems was established in [19] which proves that the
uplink SEs can be achieved also in the downlink if each
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downlink precoder is a scaled version of the correspond-
ing uplink detector and the downlink transmit power is
selected properly. Since the M-MMSE detector proposed
in the Section 2.2 is the state-of-the-art uplink scheme, we
apply the same methodology for downlink precoding. The
downlink M-MMSE precoder is constructed as
gM—MMSE
WII'\IilfMMSE _ , (19)
ik

where yy = IE{Hg}‘,f‘MMSE

age transmit power for the user k in cell j to

2
M—-MMSE
E { H\/ OimW Sim H } = Qim-

In this paper, we use uplink pilots, but to limit the
pilot overhead, there are no downlink pilots and we
rely instead on channel hardening. Thus, the users do
not know their instantaneous channel realizations. How-
ever, they can learn their average equivalent channels,

2
” } normalizes the aver-

/O E n) {hi]kajk}, and the total interference variance.

Then, the received signal yj; in (18) can be rewritten as

K
Yik=/QjkEn) {hfj{;(ij }Sjk +) W O WimSim

lec — m=1 20)
— /ijE{h} {hﬁ(wjk} Sjk + Hjg.

Consequently, a downlink SE
B
Rj‘% =4 (1 - S) log, (1 + nf,j)

can be achieved for user k in cell [ [12, 19], where r)/‘.ikl is

(21)

o 2
dl_ Ojk ‘E“‘] {hlikwjk}‘
njk =

K " 2 H 2 ’
> > omEm {‘hljkwlm) } ~ Ok ‘E“‘} {hiikwka +o
leL m=1

(22)

This downlink SINR holds for any linear precoding
scheme, and we omit the superscript “M-MMSE” of wj;
for brevity. By treating ,/0xE(n) {h}%wjk} as the true
channel, and the last three term in (20) as uncorre-
lated Gaussian noise, the user applies semi-coherent sym-
bol detection and achieves the effective SINR in (22).°
Thus, R].“}i is a lower bound on the downlink ergodic
capacity.

By utilizing all the available estimated directions, the M-
MMSE precoder can suppress intra-cell interference and
also reduce the interference caused to other cells. Thus,
a higher SINR is expected by our precoder than con-
ventional single-cell precoders, at least if an appropriate
power control is applied [19]. In [20], the authors also
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proposed a M-MMSE precoder, but it does not account
for arbitrary or optimized pilot allocation. Moreover, no
closed-form performance expression is provided in [20],
which makes it cumbersome to analyze the performance
and optimize the power control.

Looking jointly at the uplink and downlink, the ergodic
achievable SE for user k in cell j is

= (1=5) (524 Lo (o)

(23)
+c4 log, (1 + nf,&)) .

3 Asymptotic analysis

In this section, performance analysis is conducted for the
proposed M-MMSE scheme. Since the uplink SINR in (12)
depends on the stochastic channel estimates in each
block, the uplink SE in (11) cannot be computed in closed
form. Therefore, a deterministic equivalent expression for
the SINR is computed instead which is tight in the large-
system limit. A large-scale approximation of the downlink
SINR is also provided. The large-system limit is consid-
ered, where M and K go to infinity while keeping K/M
finite and non-zero. In what follows, the notation M — oo
refers to K, M — oo such that K/M — ¢ € (0,00).
Hence, B/M — PBc. The results should be understood in
the way that, for each set of system dimension parameters
M, K, and B, we provide large-scale approximative expres-
sions for the uplink SINR and downlink SINR, and the
expressions are tight as M, K, and B grow large. The main
feature is that they are deterministic and can be computed
efficiently without the need for time-consuming Monte

Carlo simulations. Almost sure convergence of a stochas-
a.s.

, and denotes
o0

tic sequence is denoted by
— 00

convergence of a deterministic sequence.

Before we continue with our performance analysis, a
useful theorem from large random matrix theory is first
recalled.

Theorem 1 ([23]) Let T = diagity,...,t3} € REXB
be deterministic with t, > 0 (b = 1,...,B) and H €
CM*B pe random with independent column vectors hy, ~
CN (0, ﬁlb). Assume that 1\% — Bc € (0, 00), then for any
p >0,

1 H -1 as.
i ((HTH + ply) ) —mo(p) =20, (24)
where m,(p) is the solution of the following equation:
L Bes B
m = — E _ . 25
o(p) ( B 1 i tb””o(ﬂ)) (25)

Based on Theorem 1, we obtain the following
Theorem 2 which is useful in our analysis.
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Theorem 2 Under the same conditions on T and H as in
Theorem 1, for any p > 0,

1 - .
~tr ((HTH + plyy) ™ (HTHY + ply) ™)
M (26)
— my(p) === 0

0 M— o0 ’

where m;(,o) is defined as

pe < z )
() = m? 1—my(p)— T
my(p) =m (p)( 5 (p) B 1; (1+tbmo(p))2>

(27)

and my(p) is defined in Theorem 1.

3.1 Large-scale approximations of the SINRs with the
M-MMSE scheme

Next, we derive the deterministic equivalent ﬁ ! of n‘ﬂ with

the M-MMSE detector, and the large-scale approx1mat10n

ﬁ]‘.ikl of 17]‘.1k1 with the M-MMSE precoder, such that

— a.s. —
ul 0, dl

Mg — n,k % — 15 o0 (28)

Theorem 3 For the uplink M- MMSE detector in (13), we

ul

have ﬁ}‘,{l ik MT) 0, where 1) 1] ! is given by

L8
vad? (2. i 2L
Tikpjkd; (2jk) By 9

i’jt,k#/ > TnbDimdy @) + 3 Timdl) (Zim) 20 + M
L) k)im=ijk ipm#Fijk
(29)
where
24y

1 §; = my(w) is given by Theorem 1 for w = UT and
T = ®;A;, with the diagonal matrix

®; = diag [$j1,...,$jB]~
2 9=
T = ®;A; with ®; = diag {&jb---,fl;jB}-

~ 2
(1“1% Bt 5/)

, . o2+y;
m,'(w) is given by Theorem 2 for v = —~,

3 Wim = 1 — pimdj (i) iy,

Proof : See Appendix 1. O

The ﬁ;‘kl
imation but also shows how the signal, the interference,
and the noise change as M grows large. The first term
of the denominator represents the interference from the
pilot-sharing users, i.e., those users with i;,, = ij. This
term is at the same order of magnitude as the signal
power (notice the 8].2,( in both terms), since the estimated
channels of these users are parallel with the target user.

above not only provides a tight SINR approx-
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The second term of the denominator is the interference
from the non-pilot-sharing users, i.e., those users with
ijnw # ijk. Since their estimated channels are indepen-
dent of the channel of the target user, their interference
decreases and goes to zero as M — 00. So does the third
term which represents the noise. Thus, only the signal and
the interference from the pilot-sharing users remain as
M grows, which is referred to as the pilot contamination
effect [7-10].

Next, we provide the large-scale SINR approximation
for the downlink M-MMSE precoder.

Theorem 4 For the downlink M-MMSE precoder

in (19), we have ﬁ}‘,ikl — /‘.ikl oo 0, where ﬁ}?ikl is given by

~ 82
o d? (z: A
_dl ojkpjkd; (2jk) B v

n/k = - 52 )
Pik > 0md} (2) i 5o + X 0umdi (z1) G + =
(L) (k) i =i i, Flik
(30)
where 8}, ik, and O are given in Theorem 3.
Proof : See Appendix 2. O

By utilizing Theorems 3 and 4, the ergodic SEs Rj‘}(l
in (11) and R}?‘}(l in (21), after dropping the prelog factor

log, (1 + ﬁ;*,:) and I_?l‘.ikl =

log, (1 —f—ﬁ]‘,ikl) in the large-system limit, respectively.

1 - %), converge to 1_3}1,(1 =

Therefore, a large-scale approximation of the joint ergodic
SE in (23) is provided by (1 — %) (;“‘R]‘ﬂk‘ + é’dll_?l‘.ikl>. This
approximation is easy to compute and only depends on
the long-term parameters: large-scale fading, power con-
trol, and pilot allocation. As shown in Section 5, this
approximation is very accurate even for small-system
dimensions.

3.2 Uplink-downlink duality

It is pointed out in [19] that when the precoder is a scaled
version of the detector, the same per-user SEs as in the
uplink can be achieved in the downlink by properly select-
ing the downlink payload power. We establish this uplink-
downlink duality also for our M-MMSE scheme, using the
large-scale SINR approximations given by Theorem 3 and
Theorem 4.

Theorem 5 For the proposed M-MMSE scheme, if ﬁ}‘kl
in (29) is achievable in the uplink for user k in cell j, then
a downlink power control policy {ojr} can be obtained by
transforming the corresponding uplink power {tjy}, such
that the total transmitted power remains the same, i.e.,
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K K
2. 2Tk = ). ) Qjk and that the same SE is achieved
jeL k=1 jeL k=1

in the downlink, i.e., r_)]‘.ikl = ﬁ}‘,lkl, The transformation is
_~
e=(P-vF') ®-EPT, (31)

,ork)T e
Jile} € REKXIK Tpe

where T =[t11,..., k]’ € REEXL, 9 =[ 013, ...
REEXL and E = diag{ﬁﬂ,...

matrix F € REXIK gud the diagonal matrix D € REKXLK
are defined as
8 Dimd; 24m)
T if it = i .
F,, = v i =iy diag (F),
’ A (Ziy) Wjim o .
- M lf Um 7é l}k!
(32)

whereu = k—|—(j - 1) K,v =m+( — 1) K. The symbol [-];;
represents the element in the ith row and the jth column of
the corresponding matrix.

Proof : The proof follows the same lines as the duality
proofin [19] and is thus omitted. O

Remark 3 By utilizing the large-scale SINR approxima-
tions, Theorem 5 provides a powerful tool to obtain a
judicious downlink power allocation whenever the same
SEs are desired in both uplink and downlink. However,
a certain level of BS coordination is required for this
downlink power control policy. Specifically, LK elements
in E, LK elements in t, and 2KL? elements in F need
to be exchanged (F can be represented by 2KL? elements
from its definition). Therefore, the exchange overhead is
2KL(L + 1) elements. Fortunately, this overhead is accept-
able since the exchanged elements are long-term statistical
parameters.

4 Iterative power control

Power control for sum SE maximization has been widely
studied in cellular networks [13, 24—30]. However, the
power control with the M-MMSE scheme is compli-
cated since the detector/precoder depend on the power
control parameters and since the SINRs can not be
computed in closed form. In this section, we provide
a key application of the results from Theorem 3: joint
uplink payload power control for sum SE maximiza-
tion in multi-cell network. Since the downlink payload
power can be obtained according to Theorems 4 and 5,
the optimized uplink SEs can also be achieved in the
downlink.

Define r = [r1,..., 7] = [r‘;i‘ll,...,ﬁzﬁ(]T e RIKx1
and suppose the uplink pilot powers are given.
We want to find the uplink payload powers {zj} that
maximize the weighted uplink SE. The problem is called
P in the following, where P, is the maximum radiated
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transmit power of each user and & > 0 is the weight for
the corresponding user.

P : maximize
T

LK

> &logy 1+ 1)
=1

st. 0=<1 <Py VI

Power control problems for sum SE maximization are
strongly NP-hard [31]. Thus, lower bounding of log, (1 +
r7) by log,(r;) is often used to construct an approxima-
tive problem [32, 33]. This approximative problem can be
further turned into a geometric programming (GP) prob-
lem for fixed F and D, by introducing the auxiliary vector
q with its /th element q; < rl% . The corresponding GP
problem is shown as P;j.

LK

[Ta
=1

P1: maximize
7,9
1

T (S Frg o) e ipl <1, i
Sboap \ 2 BGtar o Py = b Ve

0 <17 < Puax, VL.

It can be solved numerically with the convex optimiza-
tion toolbox in MATLAB, and a low-complexity fixed
point iteration method is also proposed in [33] to solve the
problem of the same type. With our notation, the power
coefficient t; is updated as
LXK: &1 ()

33
Djt; (t) (33)

;Pmax ’

77 (t+ 1) = min 51/

j=1

where t is the iteration index in the fixed point algorithm,
fort =0,1,.... It is proved in [33] that starting from the
initial point 7;(0) = Py, for all [, the above algorithm
converges at a geometric rate to the optimal solution of P;
(for fixed F and D).

In our case, however, F and D are not fixed since §; and
¥; will change as 7; changes. Hence, P; in our work is not
a pure GP. Therefore, Algorithm 1 is proposed to iterate
between solving P for fixed F and D and updating F and
D using the current 7.

The rigorous proof of convergence of R(t) is intractable,
since D and F depend in a very complicated way on the
powers 1, of all users, and we update D and F after each
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Algorithm 1 : Approximated Sum SE Maximization
Power Control Algorithm

1: Initialize 7(0) = Py, for t = 0 and select € > 0.
LK

Calculate F(0), D(0) and R(0) = }_ & log,(r;) using
=1

7(0).
2 Leti = 0,and RV (¢ + 1) = R(¢). Do:
update 7+ (¢ + 1) using F(¢) and D(¢) by (33);
calculate ROV (¢ + 1) based on 7@V (¢ + 1), F(¢) and
D(®);
update i with i + 1;
until [RED(E+1) — RO+ 1D)| <e.
LetT(¢t+1) = TV (¢+1) and R(¢+1) = REFD (¢41)
3: Update F(¢+1) and D(¢+1) with 7(¢+ 1), and update
the time slot index ¢ with ¢ + 1.
4: Repeat step 2 — 4 until R(¢) converges.

iteration. However, numerical results testify the fast con-
vergence: about five iterations are enough. Therefore, our
algorithm can converges to some local optimal solution
of P1, and the involved information exchange overhead
is acceptable. Moreover, since only long-term parame-
ters need to be exchanged, the exchange overhead can be
spread over time.

5 Simulation results
In this section, we illustrate the analytical contributions
by simulation results for a symmetric hexagonal network
topology. We apply the classic 19-cell-wrap-around struc-
ture to avoid edge effects and guarantee consistent simu-
lated performance for all cells; see Fig. 1. Each hexagonal
cell has a radius of r = 500 m and is surrounded by six
interfering cells in the first tier and 12 in the second tier.
To achieve a symmetric pilot allocation in this network,
the pilot reuse factor can be 8 € {1, 3,4, 7}. For each pilot
reuse policy, the same subset of pilots are allocated to
the cells with the same color, and pilots in each cell are
allocated randomly to the users.

The user locations are generated independently and uni-
formly at random in the cells, but the distance between
each user and its serving BS is at least 0.14r. For each

p=4

Fig. 1 The 19-cell-wrap-around hexagonal network topology for = 1,8 =3, =4,and 8 =7
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user location z € R2?, a classic pathloss model is con-
sidered, where the variance of the channel attenuation is
di(z) = T b i . The vector b; € R? is the location of the

BS in cell j, k is the pathloss exponent, and || - | denotes the
Euclidean norm. C; > 0 is independent shadow fading

2
( o f)
In the simulation, we assume k¥ = 3.7, a? 5 and the
coherence block length S = 1000.°

for some user location z with 10log;, (C(z)) ~

5.1 Benefits of the proposed M-MMSE scheme

In this subsection, we show the benefits of our M-
MMSE scheme over the conventional alternatives. Statis-
tical channel inversion power control is applied to both
pilot and uplink payload data, i.e., pjx = T = dz(lzk) [19].
Thus, during the uplink phase, the average effective chan-
nel gain between users and their serving BSs is constant:
E{pi Ihul*} = E{ti Ihul*} = Mp. Then, the aver-
age uplink SNR per antenna and user at its serving BS is
p/o?. This is a simple but effective policy to avoid near-
far blockage and, to some extent, guarantee a uniform user
performance in the uplink. For downlink payload data
transmission, the transmit power g is selected according
to Theorem 5 to achieve the same downlink SE at each
user as in the uplink. In our simulation, p/o? is set to 0
dB to allow for decent channel estimation accuracy, and
the time proportions for the uplink and downlink are set
togt = zdl = 1,

To verify the accuracy of the large-scale approximations
from Section 3, 10,000 independent Monte-Carlo chan-
nel realizations are generated to numerically calculate the
joint achievable SE in (23). The numerical results and
their approximations from Theorems 3 and 4 are shown
in Fig. 2. As shown in the figure, the achievable sum
SE increases with B for the considered range of values.

—
=
o

—— Approximation [
Approximation [

- = = Approximation |
 Approximation [

> Simulation 3 =

S

0 O

o o o
T T T

Simulation 3
Simulation 3
Simulation 3

\,
o
oo

Achievable sum SE per cell (bit/s/Hz
[=2)
o

50

wg o

T T e
‘‘‘‘‘‘‘ 090

2 g

180100 200 300 200 500

Number of Antennas

Fig. 2 Achievable sum SE as a function of the number of antennas M,
for B € {1,3,4,7}, K = 10and c = 0.0001
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This is because a larger 8 results in a lower level of pilot
contamination, which contributes to a higher channel
estimation accuracy, and thereby increases the achievable
SE. Moreover, a larger 8 provides more estimated channel
directions in the construction of the M-MMSE scheme;
thus, a higher inter-cell interference suppression can be
achieved.” Figure 2 shows that the numerical results and
the large-scale approximations match very well, even for
small M and small K.

To show explicitly the advantages of our M-MMSE
scheme, simulation results for the MF scheme from [8],
the multi-cell ZF (M-ZF) scheme from [19], and the S-
MMSE scheme from [12, 15, 16] (and given in (15)) are
provided for comparison. The same downlink power allo-
cation from Theorem 5 and normalization based on (19)
are applied for all precoders. Notice that M — BK > 0 is
needed for the M-ZF scheme; thus, the minimum value
of M for M-ZF is BK + 1. Simulation results are shown
in Figs. 3-4 for 8 = 1 and B = 3, respectively. The
MEF scheme always achieves the lowest performance since
it does not suppress any interference. Compared to S-
MMSE, our proposed M-MMSE always achieves a higher
sum SE, and the advantage becomes more significant as j
and/or K increases. For 8 = 3 and M = 200, the SEs of
M-MMSE are 30% and 42% higher than those of S-MMSE
for K = 10 and K = 30, respectively. For 8 = 7, the gains
increase to 42% and 82% for K = 10 and K = 30, respec-
tively (the related figure is omitted for brevity). The higher
performance gain at larger K or 8 comes from the fact
that more channel directions can be learned and utilized
for interference suppression by M-MMSE, while S-MMSE
always uses K directions regardless of 8. The advantage of
M-MMSE over M-ZF is minor for small 8 and small K, but
the gain becomes notable as # and K grow. Since the com-
plexity of our M-MMSE scheme is the same as for M-ZF,

Achievable sum SE per cell (bit/s/Hz)

Number of Antennas

Fig. 3 Achievable sum SE of M-MMSE (squares), M-ZF (triangles),
S-MMSE (diamonds), and MF (circles) with 8 = 1
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—
N
o

—
o
o

[os}
o

D
o

S
o

20

Achievable sum SE per cell (bit/s/Hz)

160

Number of Antennas

Fig. 4 Achievable sum SE of M-MMSE (squares), M-ZF (triangles),
S-MMSE (diamonds), and MF (circles) with B = 3

and M-ZF can sometimes achieve very low SE for small M,
in general, our scheme is the a better choice if high system
SE is desirable.

Since the optimal pilot reuse factor may be different for
different schemes, we further compare the performance
when each scheme uses its own separately optimized 8, €
{1,3,4,7}. The results are shown in Fig. 5. We notice that
our M-MMSE scheme prefers a higher pilot reuse policy
Bo = 7 while S-MMSE prefers 8, = 3. Moreover, our M-
MMSE achieves a significantly higher performance than
S-MMSE, also when considering separately optimized
pilot reuse factors.

5.2 Effectiveness of joint power control
In this subsection, the effectiveness of the proposed power
control scheme is testified. Statistical power control py =

—
N
o

—
N
o

—
o
o

o
o

D
o
a2

o
(=]

Achievable sum SE per cell (bit/s/Hz)

Tho 200 300 200 500
Number of Antennas

Fig. 5 Achievable sum SE of M-MMSE (squares), M-ZF (triangles),
S-MMSE (diamonds), and MF (circles) with optimized B, € {1,3,4,7}
and K = 30
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dl%z,k) is still applied for pilots, while the uplink payload

power Tjy is optimized. p/o? is still set to 0 dB, and
the maximal transmit power P,,,, in P is selected as in
Section 5.1. Results for equal maximum power allocation
(i-e., Tik = Pmax) are provided as a baseline. We also apply
Algorithm 1 to the instantaneous SINR in (12) for com-
parison. The following results are obtained for M = 300
and K = 10. After generating user locations and shadow
fading realizations, the 9 users with the worst channel
conditions in the whole network are dropped to provide
95% coverage.

We first consider the average per-user SE which is cal-
culated as the network sum SE divided by the number
of served users. The cumulative distribution functions
(CDFs) over user locations are shown in Fig. 6 for g = 3.
As seen from the figure, the CDF curve with long-term
power control based on Algorithm 1 coincides with those
with short-term power control optimized for the instanta-
neous SINR at every coherence block, which validates that
there is negligible loss associated with our power control
based on the large-scale SINR approximation. Further-
more, compared with the equal power allocation policy,
the average user SEs can be significantly improved by
our power control scheme. At the 50th percentile, 16%
increase can be achieved by our scheme.

We also analyze how the per-user SE at different parts
of the cells is affected by our power control. Results are
provided for the power control proposed in [35], which
tries to provide equal SE for users in the same cell so
that, to some extent, intra-cell user fairness is guaran-
teed. The CDF of the per-user SE is shown in Fig. 7.
With our algorithm, in contrast to equal power alloca-
tion, the majority of the users can enjoy higher SEs at
the cost of a small degradation for the users with the
strongest channels. This is because our algorithm assigns

1
Proposed scheme for instant. SINR
Proposed scheme for determ. SINR

0.8 | = = = Equal power allocation b

06 J .

CDF
‘.

04t ’l . 4

021 , 1

4z 48 5.2 56 6 6.4
Average user SE (bit/s/Hz)

Fig. 6 CDFs of average user SE with 8 = 3
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0.2 F Fd Proposed scheme for instant. SINR
S Proposed scheme for determ. SINR
,.#| = = = Equal power allocation
,""" == Intra-cell equal SE power control
OO 2 4 6 8 10 12 14 16 18
Per-user SE (bit/s/Hz)
Fig. 7 CDFs of per-user SE with 8 = 3

lower transmit powers to the few users close to the center
of the cell and higher powers to the many users fur-
ther away, so that the interference caused by the former
to the latter is reduced. In this way, our algorithm sup-
presses interference. Compared with the power control
from [35], our algorithm provides essentially the same
SE for the weakest users, while pushing the SE of the
majority of the users to higher values. Despite the larger
SE variations, the proposed power control brings a bet-
ter type of user fairness than the scheme from [35] since
the strong users get higher SEs without degrading for the
weakest ones.

6 Conclusions

In this paper, a new state-of-the-art M-MMSE scheme
is proposed, which includes an uplink M-MMSE detec-
tor and a downlink M-MMSE precoder. It brings very
promising sum SE gains over S-MMSE and other
single-cell schemes by actively suppressing both intra-
cell and inter-cell interference. Since imperfect CSI is
accounted for in our scheme, the gains obtained by our
scheme are likely to be achievable in practical systems.
Furthermore, large-scale approximations of the uplink
and downlink SINRs are derived for the proposed M-
MMSE scheme. The approximations are very accurate
even for small system dimensions and are easy to compute
since they only depend on long-term statistics. Hence, the
expressions can be utilized for efficient performance anal-
ysis, without the need for Monte-Carlo simulations. The
SINR approximations can further be used for power con-
trol design, and a low-complexity power control algorithm
for sum SE maximization is proposed. The proposed algo-
rithm brings a notable sum SE gain and also provides
good user fairness compared to the equal power alloca-
tion policy. Since the SINR approximations depend only
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on long-term statistics, the complexity of the algorithm
can be spread over a long time period.

Endnotes

!These schemes have several names in the litera-
ture: MF is also known as maximum ratio combin-
ing/transmission; ZF is also known as channel-inversion;
and regularized ZF (RZF) is a simple variation on S-
MMSE.

2In practice, only the propagation channels are recip-
rocal, while the hardware used for uplink and downlink
This
calibration of the hardware, but there are many

communication is not. requires reciprocity-
algorithms for this, and the variations are slow so the
calibration overhead is negligible [34].

3 Notice that \/LEV = \/Lﬁ[vl’ ...,vgle CB*B ig an
orthogonal basis for a B dimensional space. Therefore, a
singular value decomposition of ¥; is ¥; = %VA]'VH ,
where A; is a diagonal matrix with its bth element as
ajp = B/qgjb. Then, (7) is obtained.

*Only multiplications are counted in the complexity
comparison, since additions and subtractions have a neg-
ligible complexity in comparison.

>This method works well in massive MIMO systems
due to channel hardening—the effective channel is rela-
tively close to its mean, while the performance loss would
be large in a small-scale MIMO system.

6This coherence block can, for example, have the
dimensions of T, = 10 ms and W, = 100 kHz.

7 One should notice that K and 8 cannot be increased
indefinitely due to the prelog loss in the achievable SE.

Appendix 1
Proof of Theorem 3

Define X; = (I:IV,jAjl:Il\f,j + (0'2 + ¢j) IM> 1, then the M-
MMSE detector in (13) is gy = Zjﬁjjk We omit the
superscript “M-MMSE” in the proof for brevity. In the
following proof, we use < to denote the almost sure con-

vergence such that a < b represents a — b 250

M—o00
Define

Hy i = [hv,ﬂ, e MY i —1), By g1y e hv,/B],
Ajie = diag {Aj1, - Ajiiy—1)» Mg +1)> s A |
®; = diag{¢j1, ... $a},
N A 2 -1
Tjic = (HVJ'/kAiikHv,jjk +(0%+9) IM) ’

% = M, and Ty = My,

SANEE R

then we have the following lemma.
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Lemma 1 Let flﬂk and
hjyc as in (5) and its estimation error, respectively, then

pikd; (i) $jidj  as.

b hyy — . (34)
P L d 8y Moo
B %y — 0. (35)

Proof Let x = ﬁ”h;(): jfljjk, then

2 LH he. ..
“1. (@ P/kd' (zi) b} Jis ik i
ik =

)h
H nH
x_h/]k< ik + ll,thJi/th,ji/k) Iy h l'l
Tk NV i ik Vijijk

ﬁpikd/‘z (i) f‘g Jji kE//'jkf‘V'ﬁ/k ®) ﬁpikd/ (zik ¢1’iktr (Z/‘jk)
B I+ ﬁ)\iiik(ﬁﬂik tr (2/,‘jk)
wiid; (2c) B te (2]') @ P} (i) by

I+ %}“l‘l‘/ké]‘i/ktr (Z//) R )L/iikq;ﬂik‘s/ ,

I+ }‘/i/k MhV]Lk E//khvvﬁ/k

(c

(=

where (a) follows from Lemma 1 in [12] and ﬁ,yk =
de(zjk)flv,ji,k and (b) follows from Lemma 12 in [36],
which can be applied since E;.jk has uniformly bounded
spectral norm with respect to M, because ¢; scales as K

nd % > 0 by assumption; thus, % > 0 for all M. (¢)
follows from Lemma 14.3 in [37]. In step (d), we define

S = 02+<p/ . . .
i = m,,( o ) which is obtained by Theorem 1 for

T =®A; andp—a+‘p’

Lety = h « Zjhjim, then

-1 .
h}/k( jik ﬂzth'/ th/lk) B

@ «/P]kd (z]k)h Vi ]/kh
1+ )‘lljkhv,jirk J]thJl'
(b) «/pjkdj (zjk) }1\4

1+)‘/l;k hV]Lk 11th'l’;k

Vi Ellkhﬂm (©

<0,

(36)

where (a) and (b) follow from Lemma 1 in [12] and
Lemma 12 in [36], respectively. O

We use Lemma 1 in the following to determine the
asymptotic behavior of each term in (12).

Signal power
Since gf! ik hjj = h X h/k, then according to Lemma 1, it is
obv10us that

pikd; (k) $jindi  as.
L+ Xjiy i O

g;zhjjk -

(37)

M—o0

flﬂk denote the MMSE estimate of
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By the continuous mapping theorem [38], we further

obtain
2 ~ 2
.2 (o (i) G\ s
gl | - - 0. (38)
L+ Xy By oo
Channel uncertainty
According to Lemma 1, gf’ ik = h”kE h]k M—> 0.

Thus, by the dominated convergence theorem [39] and the
continuous mapping theorem, we have

(39)

E{‘Ejk ‘g}l«;([flj} ‘ 'h(,)} ————) 0.

Interference power

. H _ T . .
Since 8 = X hjj, the interference power from user m in
cell /is

2| A
Emy { ‘gﬁfhﬂm‘ ‘hm}

2|
{ ’ ik /hﬂm‘ ’ hg) } (40)
The computation depends on which pilots that are used.

im =g = o

In this case, user k in cell j use the same pilot sequence
as user m in cell j, and there will be coherence pilot
contaminated interference. Since

. - | Pim 9j(Zim) »
Wi = Pimdj(Zim)hy jiy = Bim 5 m) by

Pk dj(zjk

(41)

we have

) iyt
h i Zhjim = pix di(zix) h/} bk +h1‘1‘k21h/‘lm
A/ }kplm({b]z/k /

)“1 Lk ¢]l]k 81

2 4 i (zj1)dj (sz) (42)

where in step (a) the first term remains and the sec-
ond term vanishes according to Lemma 1. Indicated by
the dominated convergence theorem and the continuous
mapping theorem, we have

E{‘h”k): h,,m’ ‘h(,)} & () d? (24m)
R AN (43)
X ~ 2 M—o00 0.
(1 + X P 5/)
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lim 7 ik
In this case, two users have different pilots, such that

‘ iz ’

@ pikdj (ij) M2hV1lkE//kh] hjj, =

jlm 1/kh
2
(1 + )‘/l’/khv,jivk Ejjkhv,ji.k>
2 |
s 2
(1 + A/"'/k‘bJ‘i/k‘S/')
) By
pikd} (2ic) By tr (E/J’kh h}lm )://k)
By 2
(1 + )»ji;k Pl 5;‘)

Pkd zjx) ¢ji, Wil X T chy;
(1 + g Bjie 5;‘)

where step (a) follows from Lemma 1 in [12] and the def-
inition of E]/.jk. Step (b) follows from Lemma 12 in [36],
Lemma 14.3 in [37], and Theorem 1. It remains to obtain a
deterministic equivalent of the numerator in (44). Define

_ 1
X jkim = (E ik

Lemma 2 in [12] we have

. . -1
.. L KB i
= Aig,, b iy, hv,ﬁ;,,,) , then according to

- hy, o hH y
E]}k lm)\'/llm hvxlllm hV,jilm E/,/k,lm (45)

ik = Xjjkim —
1+ )“/llth/llm E/,fk,lmhvrjilm

Plugging (45) into the numerator of (44), we obtain

hﬂm Xjjk ijkh jlm = h/[m 2//k Im E11'k,lmhjlrr1 — (intf. 1)
YRR NCED NP FTR N N N P |
Jitm Wl & jijkilm &,k m AV jiy, Ny, ok dm Wjlm X
—2Re i — bVl — (intf. 2)
L+ R, 0 i g imby iy,
A 24 A~
H H H .
) ’hjlm Tt iy | B G Bt X i )
+ i | - — (intf.3).

L RH S R,
‘1 + i W i, Tk mb i,

Deterministic equivalent of (intf.1): Define E;., ki =
MZX; ji i, then following similar procedures as before, it is
straightforward to show that

W s by = DA (s
ilm “jyjkdm &,k imMlm = M2 tr Gk, dm < jjk,lm

d‘ ’ ’ d
= /j(\f[lzm)tr():j):j> EZM) v,
(46)
24y,

where ¥; = m,’ (UT) is given by Theorem 2 for p =

2 .
UT_HOI and T= <I>1'Aj.

Deterministic equivalent of (intf. 2): Instead of tackling
the expression in (intf.2) directly, we derive the deter-

ministic equivalents of its numerator and denominator,

(2017) 2017:117
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i + hjlm and hjlm =
VPimj(Zy)hy ji, into the numerator, we have that

~ (@) \/led (zlm) -
hﬂm 1]k,lmzj,jk,lmhv,ji1m = M2 ¢,,,mtr (ZjE,)

- \/plmd (Zpm) ~
A M

respectively. Plugging by, =

(2

T i, Oy (47)

Step (a) follows from Lemma 12 in [36] and Lemma 14.3
in [37]. Similarly, we have

Pim (2 by,
hV,mm X jkmMjim = Wtf (%))
= /Dim (21 by, 5» (48)
- A .
hv'/ilm Zj’ikrlmhv,jilm = ¢jilm8j’ (49)
where §; is given in Lemma 1. Based on (47) — (49), the

equivalents of the denominator and numerator are given
Z 1 »

as 1 + Ajy, ¢ji,,6; and M)»ﬁlmplmdjz(zlm)qb]%lmﬁjz?j, respec-

tively. According to the continuous mapping theorem,

_2¢~)j2ilm ;) plmdlz Zim) Mipy  as.
1+ iy, B, 6 M

(intf. 2) —

M—o00

(50)

Deterministic equivalent of (intf. 3): Based on the tech-
niques used to characterize (intf.1) and (intf.2), it is
straightforward to show that

9 ~
’)Vjilm| ¢1?;lm8j2ﬂj plmdlz (Zim) as.

(intf. 3) — - 5 M FYa
(1 F At Bt 5/)

0.

(51)

Plugging (46), (50), and (51) into (44), we have that

2 p/k¢1z]k (z]k) d; i (Zim) Mim
R %hy| = e )
(1 + )‘/ijkq)fijk(s/) M
2+¢~7jilm)~jilm5j .

where Witm = U} = Pim (Zm) My, 076 ¢Jll - 2 18
(1+)\ﬂlm ¢jilm 8/)
defined. Consequently, we have by the dominated conver-

gence theorem that

Pjk d’/t/k (Z]k) d; (Zlm)l/v}lm as.

2
<l + A;i,kquiik(sj) M

M— o0

]E{‘h”k): h,,m‘ ‘ﬁ(,»)}

(53)
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Noise power
The noise term in (12) is scaled by ||gij2 for which we
have that

”g/’k”2 = h MDY h l’/kd (zjk)

fH
h Vijij J/k JlthJ’/k

- N 2

(1 + Ay i ZJ‘/‘khWi,-k)
2 7.

) Pikdj (ij) Bjiy U

- 2
(14 % 8y) M

IS

; (54)

where step (a) follows from Lemma 1 in [12] and step
(b) follows from Lemma 12 in [36], Lemma 14.3 in [37],
and Theorem 2. Then, by the dominated convergence
theorem, we have

E gH 2. ’ p}kdlz (zjk) d;ji/k 19] a.s.
H jk - ~ 2 Moo
(1 + M P 5/) M

0. (55)

Finally, by the continuous mapping theorem, we arrive
at the expression in (29).

Appendix 2
Proof of Theorem 4

Except for the channel variance var [h};(wjk} =

2
E { ‘hj]]?;(wjk —E {hﬁ(w/k” }, large-scale approximations
of the signal power and the interference in (22) can be cal-

culated by following similar procedures as in Appendix 1.
Thus, only the channel variance is considered here.

Define ¢ = fn}ljf,(zjﬁ,,k, ¢ = E{ﬁ;{Ejflljk}, and b =

h]]kE h jjk» then

1
var {h/kwjk} = ﬁE{Ic—E—FbIZ} (56)
1 1
= —E{(c—0(c+0}+—E{b},
Yik Yik

where the last step is due to the fact that fljjk is indepen-

dent ofh jk and that E{b} = 0.
From step (a) of Eq. (36), we have

ijd (zlk)h Vi //khw
1+ )‘Jl,kh Vi kzuthJ

Plkd (ZJk)h Vi //khw
= rH
A, by,
2
pikd; (zi)
Aji

0. (57)
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Therefore, ¢ < 6 and same bound also holds for ¢. Thus,
we have

20 1
var (Wiwi | < ZEle—cl)+ —E{b2).  (8)
Yik Yik
d?(zj)8; S
It is shown by Lemma 1 that ¢ — 1’4_()\1’7]()[;'( 250
Jijk %k M— o0

Since ¢ and ¢ are bounded, this implies by the dominated
convergence theorem that E{|c — ¢|} — 0as M — oo.
Furthermore,

E (b2} = E{h”kZh LS8 }
= E { R 2,05 |

@ 1 ~ by N
< EE {hjjkcjjkh]jk}
]

1 ~
= —tr (q)“kC"k) ,
(p2 JIK™>J)

J

(59)

where step (a) holds because X; < (’%IM (where A < B
means that B— A is positive semi-definite). Since <pj2 scales

as K? or equivalently as M2, and tr(@ljijjk) scales as M,
we have that E{|b|?} — 0as M — oco. Consequently,

var {h]kw]k} ——;?) 0. (60)
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