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Abstract

In this paper, cooperative resource allocation strategies are characterized for a spectrum-leasing based cognitive
radio network (CRN), where the primary system leases the licensed band to the secondary system for a fraction of time
in exchange for the secondary user (SU) acting as relay. Here, both amplify-and-forward (AF) and decode-and-forward
(DF) relay protocols are considered. Considering the delay-sensitive traffic in CRN, the proposed strategies ensure
delay provisioning for both primary user (PU) and SU with multiple system design objectives. In particular, we propose
a multi-objective optimization framework, which incorporates two important system design objectives: the average
sum power minimization and the leased time minimization. By integrating information theory with the concept of
effective capacity, the adopted multi-objective optimization problem is recast as a convex optimization one via
employing weighting method and sequentially solved by applying the Lagrangian dual method. It is shown that the
global optimal solution of the original problem is characterized by a Pareto set which provides a quantitative insight
into the tradeoff between the transmit power and leased time. Moreover, to learn the statistics of the wireless
channels on the fly, we also put forward a stochastic iterative algorithm to achieve the optimal power and time
allocation by employing the stochastic optimization theory. Numerical results not only reveal the nontrivial tradeoff
among the considered conflicting system design objectives but also demonstrate that the proposed strategies
perform better in saving wireless resources than existing resource allocation policies for different Quality-of-Service
(QoS) exponent sets, especially when the delay requirement is strict.

Keywords: Spectrum-leasing based CRN, Resource allocation, Effective capacity, Multi-objective optimization,
Stochastic optimization, Delay provisioning

1 Introduction
Dynamic spectrum sharing (DSS) in cognitive radio
networks has been widely considered as an effective
means to allow the secondary users to dynamically access
the licensed frequency bands and thereby to overcome
the problem of spectrum under-utilization caused by the
static spectrum allocation. In [1, 2], the dynamic spectrum
leasing was proposed as a new paradigm for DSS mech-
anisms, in which the secondary system is granted to use
the licensed frequency bands by the PU in exchange for
cooperation. The incentive for PUs to lease their licensed
bandwidth is that they will benefit from the enhancedQoS
thanks to cooperation with SUs. The spectrum-leasing
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based cooperation can guarantee the benefits of both PUs
and SUs simultaneously, achieving a “win-win” situation.
On the observations of the selfish properties of users

and the fact that the time for SU to access the licensed
band is obtained as a revenue for relaying the primary
traffic, there exists competition among PUs and SUs for
finite wireless network resources. And with the help of the
information theory, there has been extensive research on
how to guarantee the benefits of spectrum-leasing based
CRN via optimally allocate the wireless resources among
PUs and SUs [3–18], and a good summary of the state of
the art is provided in [3, 4]. Thereinto, the cooperation
among PUs and SUs was commonly modeled by the con-
vex optimization problem [5, 6] where the globally optimal
resource allocation is analytically derived, or by employing
the widely used economical concepts, such as a Stackel-
berg game [2], a Nash Bargaining game [7–9], contract
theory [10, 11], auction theory [12, 13], matching theory
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[14], etc. For example, aiming to optimally calculate the
design parameters of the primary and secondary net-
works, [5] has considered the problem of maximizing the
smaller of secondary transceiver average rates, while pre-
serving a minimum rate for the primary pair. Lu et al. [6]
studies the joint optimization of the set of subcarriers used
for cooperation, subcarrier pairing, and power allocation
such that the transmission rate of the secondary system is
maximized, while helping the primary system to achieve
its target rate. Toroujeni et al. [12] proposes an auction
framework in which the PU tries to find the optimum
amount of resources (in both time and frequency) leased
to SUs, whereas each SU’s goal is to find the optimum
power level to maximize its own profit. Inspired by the
matching approach, in [14], the network is modeled as a
matching market, where each PU puts forward a proposal
representing a combination of relay power and spectrum
access time to attract SUs, while each SU maximizes its
utility by selecting the most suitable PU.
Nevertheless, all the aforementioned models cannot be

directly applied to the spectrum-leasing based CRN sce-
nario with the delay-sensitive traffic, since Shannon the-
ory places no restriction on the delay of the transmission
scheme achieving capacity. Although some works [17, 18]
have been done for the delay-sensitive traffic, the delay
metric is considered in the context of the deterministic
delay guarantee, which is practically infeasible for wire-
less networks due to the time-varying nature of wireless
channels. To address this issue, the statistical delay pro-
visioning is adopted to ensure a small steady-state delay
violation probability for the delay-sensitive traffic. This
metric is closely tied back to the well-developed the-
ory of effective capacity [19]. It was first introduced by
Wu and Negi in [19] to describe the maximum arrival
rate a given service process can support in order to
guarantee a QoS requirement. From the definition of
effective capacity, it is observed that QoS provision-
ing performance is related with wireless channel service
rate via effective capacity. Thus, it can be employed to
model cross-layer design between the physical layer sys-
tem infrastructure and statistical QoS performance at the
data link layer. With it, a set of statistical delay QoS-
driven resource allocation policies has been addressed
[20–22]. In particular, [21] investigates resource alloca-
tion including subcarrier and power allocation for LTE-A
relay networks under statistical QoS constraints.With sta-
tistical QoS constraint, maximum acceptable end-to-end
queue-length bound outage probability has been inves-
tigated for a three-node buffer-aided relaying network
in [22].
Based on the aforementioned motivation, the current

work adopts the statistical delay provisioning and effective
capacity to allocate the wireless resources in a spectrum-
leasing based CRN. Specifically, by jointly considering the

physical layer and data link layer, we will develop a cross-
layer based, QoS-oriented power, and time allocation
policy. In the considered CRN scenario, the secondary
system helps the primary system via three-phase cooper-
ative relaying, where both AF and DF relay protocols are
discussed. Our work is motivated by the observation that
cooperationmodel brings a waiting delay to the PUs, since
SU has to alternately forward the primary traffic and send
its secondary traffic on the same channel. Given the com-
petitive and selfish properties of users, two design goals
are given. On one hand, the goal of the primary link aims
to minimize its expense of radio resources (i.e., the leased
time). On the other hand, the object is to minimize the
overall power consumption of the network. In practice,
these two design objectives are all desirable for the system
operators. However, they are conflicting with each other,
and each focuses on only one aspect of the system. Via
employing the multi-objective optimization theory, these
two design objectives are realized simultaneously with
statistical delay provisioning.
The main contributions of this work are summarized as

follows:

� Firstly, we formulate the resource allocation as a
cross-layer optimization problem, where multiple
conflicting objectives are interrelated and minimized
at the same time. Specifically, by employing
multi-objective optimization theory, we model the
resource allocation as minimizing both the power
consumption of the global network and the leased
time to SU simultaneously, while fulfilling the
statistical delay QoS constraints of all users. As far as
we know, this is the first work that configures
cooperative relaying schemes jointly with transmit
powers, leased time, and statistical delay QoS
requirements.

� Secondly, via employing weighting method, the
adopted multi-objective optimization problem is
recast as a convex optimization one. With it, the
closed-form expressions of the optimal power and
time allocation strategies are derived by using the
Lagrangian dual method. We show that the global
optimal solution of the original problem leads to a set
of Pareto-optimal resource allocation policies. That
is, we obtain a set of compromises characterized by a
Pareto set which provides a quantitative insight into
the fundamental tradeoff between the transmit power
and the leased time. Furthermore, we also analyze the
impact of delay exponents on the overall
performance and characterize the properties of the
optimal resource allocation strategies.

� Thirdly, considering that it is hard or impossible to
have a priori knowledge of the cumulative distribution
function (CDF) of the time-varying fading channels,
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we model the channel condition as a stochastic
process. Based on the stochastic optimization tools
[23–26], a stochastic iterative algorithm is proposed
to learn the underlying channel distribution.

The rest of the paper is organized as follows. Section 2
describes the system model of concern and the delay QoS
provisioning based on effective capacity. Sections 3 and 4
study the optimal resource allocation strategies such that
the minimum power and leased time are consumed while
fulfilling the statistical delay provisioning, when employ-
ing AF and DF relay protocols, respectively. In Section 5,
we propose the stochastic resource allocation algorithms
to approach the globally solutions. Numerical results are
illustrated in Section 6, followed by the conclusions drawn
in Section 7.

2 System overview
In the following, we detail the system model of spectrum
leasing, the main system parameters, and the concept of
effective capacity.

2.1 Systemmodel
We consider two infrastructure-based networks, where
the primary network and the secondary network are
located in the same area. The primary network is willing to
share its licensed spectrumwith the secondary network as
an exchange for cooperation. Thereinto, a primary trans-
mitter (PT) tends to communicate with primary receiver
(PR) with its own spectrum and a secondary transmit-
ter (ST) communicates with secondary receiver (SR) by
using the leased spectrum. As introduced, by employing
the effective capacity theory a cross-layer-based transmit-
ter structure is formulated, in which an infinite queue
(or buffer) operating in a first-in-first-out (FIFO) mode is
implemented at the data link layer to store frames to be
transmitted. Frames from upper layers are put into the
queue. Then at the physical layer, frames from the queue
are divided into bit-streams. The reverse operations are
executed at the receiver side.
We assume that both the PU and SU experience inde-

pendent fading, and their fading processes are station-
ary and ergodic with joint cumulative distribution. The
channel coefficients of PT→PR, PT→ST, ST→PR, and
ST→SR links are denoted as hpp, hps, hsp, and hss, respec-
tively. And the corresponding channel variance of each
link is denoted by, σ 2

pp, σ 2
ps, σ 2

sp, σ 2
ss. Without loss of gener-

ality, we assume that all the noise terms are white Gaussian
noise with zero mean and variance σ 2

pp = σ 2
ps = σ 2

sp =
σ 2
ss = 1. Additionally, the wireless links are assumed to

experience fading from one frame to another but remain
invariant within a frame duration. Thus, the channel gains
are denoted as γpp = |hpp|2, γps = |hps|2, γsp = |hsp|2,
and γss = |hss|2, respectively. γ is defined as γ :=

{γpp, γps, γsp, γss}. Let us denote the system’s total spec-
tral bandwidth by B. Suppose that perfect channel state
information is always available at transmitter side.We also
assume that proper channel code can always be found to
commit error-free transmission.
In this paper, we study the cooperation strategy with

time-division-based half duplex AF and DF relay proto-
cols, respectively. The cooperation between PU and SU
involves three phases. Phases I and II are called as the
cooperative communications, whose length of time are
both assumed Tp. In the phase I, the PT sends its signals
while SU and PR listen. If PT transmits over his assigned
time fraction Tp with rate ρp and power πp, then clearly its
overall transmission rate and power per spectrum sharing
period are rp = ρpTp and pp = πpTp, respectively. In the
phase II, SU forwards the received signal to PR according
to AF or DF relay policy. Then PR combines signal copies
from the two phases. Suppose that ST forwards the pri-
mary signals at his assigned time fraction Tp with rate ρsp
and power πsp, then clearly its overall transmission rate
and power per spectrum sharing period are rsp = ρspTp
and psp = πspTp, respectively. In phase III, ST is rewarded
the spectrum for its own transmission as a remuneration
of forwarding primary signals with a dedicated time dura-
tion. We premise that the ST transmits over its spectrum
sharing period ts with rate ρss and power πss, then clearly
its overall transmission rate and power per spectrum shar-
ing period are rs = ρssts and pss = πssts, respectively.
Thus, the period of cooperative spectrum sharing (i.e.,
phases I, II, and III) is

T = Tp + Tp + ts. (1)

Then with the AF relay protocol, using transmit power
πp and πsp, the transmission rate (bits/s/Hz) of the pri-
mary system at PR is [27, 28]

ρp = log2
(
1 + πpγpp + πpγpsπspγsp

1 + πpγps + πspγsp

)
. (2)

Taking into account the time fraction Tp, the service
rate1 of the primary system at PR during the cooperation
communication (phases I and II) reads

RAF
p =rpB=TpB log2

⎛
⎝1+ pp

Tp
γpp+

pp
Tp

γps
psp
Tp

γsp

1+ pp
Tp

γps+ psp
Tp

γsp

⎞
⎠. (3)

Similarly, with the DF relay protocol, the service rate
[29] at PR during the cooperation communication follows

RDF
p = rspB = TpB log2

(
1 + γpp

pp
Tp

)

+ TpB log2
(
1 + γsp

psp
Tp

)
.

(4)
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In phase III, using transmit power πss, ST can theoreti-
cally transmit with rate (bits/s/Hz)

ρss = log2 (1 + πssγss) . (5)

Taking into account the leased time ts, the service rate
of the secondary user is

Rss = tsB log2
(
1 + pssγss

ts

)
. (6)

2.2 Statistical delay QoS guarantees and effective
capacity

As mentioned, we will introduce effective capacity to
describe the system throughput with statistical delay QoS
guarantees. Before going further, we would first spend
some words on effective bandwidth [30] which is the dual
problem of effective capacity. The stochastic behavior of
a source traffic flow can be modeled asymptotically by
its effective bandwidth. In particular, it is defined as the
minimum service rate required by a given arrival process
for which a QoS requirement is guaranteed. As its dual
problem, effective capacity defines the maximum rate the
channel can support while guaranteeing a given delay QoS
requirement in terms of QoS exponent θ > 0.
In this work, by adopting effective capacity theory, the

delay QoS guarantees are considered in terms of θ . θ

is a crucial parameter describing the exponential decay
rate of the queue length. Specifically, based on the large-
deviation theory and premise that the steady-state queue
length exists, the probability of the queue length Q(t)
exceeding a certain threshold x decays exponentially fast
as x increases [30], shown as

− lim
x→∞

ln (Pr {Q(∞) ≥ x})
x

= θ . (7)

In (7), smaller and larger θ corresponds to slower and
faster decaying rate, indicating that the system can guar-
antee a loose and stringent violation probability require-
ment, respectively.
With the QoS exponent θ , the effective capacity can be

described mathematically as [19]

EC(θ) = −1
θ
log
(
E
[
e−θR]) , (8)

where E[·] is the expectation operator, and R is the max-
imum data rate supported by the physical layer for the
traffic flow in wireless networks. With θ , the probability
that the steady-state delay D(∞) experienced by a traffic
flow exceeds a specified delay bound Dmax [19] that can
be characterized by

Pr{D(∞) > Dmax} ≈ �e−θEBDmax , (9)

where � denotes the non-empty probability of the buffer,
and � ≈ EB/μC and μc � limθ→0 Ec(θ) [20], EB is
the effective bandwidth with QoS exponent θ of a source
traffic flow. For details, readers are referred to [19, 20, 30].

Mathematically, when EC(θ) ≥ EB holds, the delay QoS
guarantees of users can be satisfied. It serves as a reference
when assigning resource at physical layer. Then in current
work, in order to fulfill the statistical delay QoS require-
ments of PU and SU, the following constraints must be
satisfied

− 1
θp

log
{
E

[
e−θpRAFp

]}
≥ Ep, or

− 1
θp

log
{
E

[
e−θpRDFp

]}
≥ Ep,

(10)

− 1
θs

log
{
E

[
e−θstsB log2

(
1+ pssγss

ts

)]}
≥ Es, (11)

where θp and θs are the delayQoS exponents of PU and SU,
respectively. Ep and Es denote the required effective band-
width of the source traffic flow of the primary system and
the secondary system, respectively. Considering that log(·)
is a monotonically increasing function and θp > 0, θs > 0,
the above two constraints are equivalent to

E

[
e−θpRAFp

]
≤ e−θpEp , or E

[
e−θpRDFp

]
≤ e−θpEp ,

(12)

E

[
e−θstsB log2

(
1+ pssγss

ts

)]
≤ e−θsEs . (13)

3 Optimal power and time allocation with AF
relay protocol

In this paper, we focus on how to allocate the available
power and time between PU and SU so as to minimize
both the average sum power and the average leased time,
while fulfilling the statistical delay provisioning. When
employing the AF relay protocol, the optimization prob-
lem can be mathematically formulated as

P1 : min
p,ts

E
[
pp + psp + pss

]
,E[ ts] , (14)

s.t. E

⎡
⎢⎢⎣e

−θpTpB log2

⎛
⎝1+ pp

Tp γpp+
pp
Tp γps

psp
Tp γsp

pp
Tp γps+ psp

Tp γsp

⎞
⎠
⎤
⎥⎥⎦≤ e−θpEp ,

(15)

E

[
e−θstsB log2

(
1+ pssγss

ts

)]
≤ e−θsEs , (16)

where p = {pp, psp, pss} and ts are the optimization vari-
ables. Notice that, these two objectives conflict with each
other. For instance, in order to shorten the leased time
from the PU, SU must increase its transmit power to
satisfy the delay requirements. In fact, via the concept
of Pareto optimality, the tradeoff between these conflict-
ing design objectives can be investigated. In particular,
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the adopted multi-objective optimization enables the
design of a set of Pareto-optimal resource allocation
strategies [31].
A simple and efficient way to solve P1 is the weighting

method [32], which combines two objective functions into
a single objective function with weight factors. Thus, by
taking this approach, we can obtain

P2 : min
p,ts

ω1E
[
pp + psp + pss

]+ ω2E [ts] , (17)

s.t. (15), (16).

Thereinto, {ωk , k = 1, 2} are the non-negative weight
factors, and ω1 + ω2 = 1. They denote the impor-
tance of each objective function. The optimal solutions
to P2 for different values of ωk ,∀k, collectively form the
Pareto-optimal set of P2. That is, by tuning ωk , we are to
investigate the tradeoff between the transmit power and
the leased time with statistical delay provisioning.
The underlined optimization problem P2 is a convex

optimization problem, and a detailed proof is given in
Appendix 1. Then we will employ the Lagrangian dual
approach [33] to solve this optimization problem with
given ωk ,∀k.

3.1 Optimizing the dual problem
Mathematically, by relaxing the constraints, the
Lagrangian is expressed as

LAF (p, ts,Z1)=ω1E
[
pp+psp+pss

]+ ω2E [ts] + ξ

(
E

[
e−θstsB log2

(
1+ pssγss

ts

)]

−e−θsEs
)

+β

⎛
⎜⎜⎝E

⎡
⎢⎢⎣e

−θpTpB log2

⎛
⎝1+ pp

Tp γpp+
pp
Tp γps

psp
Tp γsp

pp
Tp γps+ psp

Tp γsp

⎞
⎠
⎤
⎥⎥⎦− e−θpEp

⎞
⎟⎟⎠ ,

(18)

where β and ξ are two introduced Lagrangian multi-
pliers associated with constraints. And Z1 is defined as
Z1 := {β , ξ}. The dual function is given by

DAF (Z1) = min
p,ts

LAF (p, ts,Z1) , (19)

and the dual optimization problem can be expressed by

max
Z1

DAF (Z1) , (20)

s.t. Z1 � 0.

Due to the convexity of the original problem P2, the
optimal value of the dual problem (20) coincides with
that of the optimization problem P2, i.e., strong duality
holds ([33], p. 226). Furthermore, since a dual function
is convex by definition [33], subgradient-based iteration
algorithm can be used to solve the dual problem (20) by
updating β , ξ along with appropriate directions, and it is

guaranteed to converge to the optimal solution {β∗, ξ∗}.
Mathematically, the subgradient of DAF(Z1) follows
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β[ n + 1]=
[
β[n]+s·

⎛
⎝E
⎡
⎣e−θpTpB log2

(
1+ p∗p(Z1)

Tp γpp+ γpsγsp
Tp · p∗p(Z1)p∗sp(Z1)

p∗p(Z1)γps+p∗sp(Z1)γsp

)⎤
⎦− e−θpEp

⎞
⎠
⎤
⎦

+
,

ξ [ n + 1]=
[
ξ [ n]+s ·

(
E

[
e−θstsB log2

(
1+ p∗ss(Z1)γss

t∗s (Z1)

)]
− e−θsEs

)]+
,

(21)

where n is the iteration index, s > 0 is defined as a pos-
itive stepsize, and [·]+ denotes the projection onto the
non-negative orthant. If the step size s follows the dimin-
ishing step size policy in [34], the subgradient method
above is guaranteed to converge to the optimal dual vari-
ables Z∗

1. The computational complexity of such update
method is polynomial in the number of dual variables [33].
Moreover, {p∗, t∗s } are the optimal solution of maximizing
LAF(p, ts,Z1) for given Z∗

1.

3.2 Optimal power and time allocation policy with given
Lagrangian variables

To find the optimal {p∗, t∗s } that minimizes LAF(p, ts,Z1)
in (19), we can equivalently solve the following problem

min
p,ts

L′
AF (p, ts,Z1) , (22)

where

L′
AF (p, ts,Z1) = ω1

(
pp + psp + pss

)+ ω2ts + ξe−θstsB log2
(
1+ pssγss

ts

)

+ βe
−θpTpB log2

⎛
⎝1+ pp

Tp γpp+
pp
Tp γps

psp
Tp γsp

pp
Tp γps+ psp

Tp γsp

⎞
⎠
.

That is, the problem of minimizing LAF(p, ts,Z1) in (19)
can be solved via decoupling the optimization problem
of minimizing L′

AF(p, ts,Z1) across fading states. The
detailed derivation of this result follows along the lines
of ([35], Appendix III), which is omitted here for lack of
space.
It can be easily shown that (22) is also a convex func-

tion of {p, ts}, and consequently the optimal solution can
derived by applying Karush-Kuhn-Tucker (KKT) condi-
tions. Thus, differentiating L′

AF(p, ts,Z1) with respect to
pss and setting the derivative equal to zero, we obtain

ω1 = ξθsBγss
ln 2

(
1 + pssγss

ts

)− ln 2+θsBts
ln 2

. (23)

Via solving (23), we can get the optimal value of allo-
cated power over the ST→SR link with given ξ , shown as

pss
ts

=

⎧⎪⎨
⎪⎩

�
ln 2

θsBts+ln 2
0

(
1
γss

) θsBts
θsBts+ln 2 − 1

γss
, �0 > 1

γss

0 �0 ≤ 1
γss

, (24)
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where �0 = ξθsB
ω1 ln 2 . Notice that, this power policy is the

deterministic function of delayQoS exponent θs and chan-
nel fading states. Apparently, it has a similar expression
with the conventional water-filling policy [36]. We take
the first part of formula as the water level just as defined
in water-filling policy. However, it is worth mentioning
that our proposed policy (24) is different from the classi-
cal water-filling policy in that the water level in our case is
a variable. It depends on delay QoS requirements θs. But
the water level given in water-filling policy is a constant
and is not related to the system delay requirement. In the
proposed policy, if there is no constraint on delay, θs will
be zero and the water level in (24) will become a constant.
At this moment, our policy converges to the conventional
water-filling policy. From this point of view, the proposed
policy is a delay QoS-based water-filling policy.
Simultaneously applying the derivative of L′(p, ts,Z1)

with respect to variable psp and pp, we obtain the optimal
power allocation

pp
Tp

=
⎧⎨
⎩

χ
psp
Tp

, if psp
Tp

>0
(

θpBβ

ln 2ω1

) ln 2
ln 2+θpBTp ·

(
1

γpp

) θpBTp
ln 2+θpBTp − 1

γpp
, if psp

Tp
=0

,

(25)

and

psp
Tp

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
χγps+γsp

χ2γppγps+χγppγsp+χγpsγsp

·
((

βθpB
ln 2ω1

· χ2γ 2
psγsp

(χγps+γsp)
2

) ln 2
ln 2+θpBTp −1

))+
, if γsp > γpp

0 if γsp ≤ γpp

(26)

where

χ =
√

γppγsp − γppγps + γpsγsp + γpp

γsp − γpp
· γsp
γps

, (27)

and (x)+ � (0, x). Refer to Appendix 2 for the details of
the proof.
It indicates from (25) and (26) that for some particular

channel states, i.e., γsp ≤ γpp, no power is assigned over
the ST → PR link. In this case, direct transmission (with-
out the help of relay) is preferred so as to save the con-
sumed power. And the power policy of direct transmission
follows the expression of delay QoS-based water-filling
approach shown as in (25). Otherwise if γsp > γpp, both
PT and ST should be assigned non-zero powers, which are
related through the parameter χ illustrated in (25).
Sequentially, we will derive the optimal time alloca-

tion policy by assuming the optimal power allocation has

been given. The derivative of L′(p, ts, ξ ,β) with respect to
variable ts follows as

ω2 = ξθsB
(
1 + pssγss

ts

)− θsBts
ln 2

⎧⎨
⎩log2

(
1 + pssγss

ts

)
−

pssγss
ts(

1 + pssγss
ts

)
ln 2

⎫⎬
⎭ .

(28)

In the case of pss > 0, substituting (24) into (28), we can
get

ω2
ξθsB

(�0γss)
θsBts

ln 2+θsBts − ln 2
ln 2 + θsBts

log2 (�0γss) (29)

+ 1
ln 2

− 1
ln 2

(�0γss)
− ln 2

ln 2+θsBts = 0.

It is observed that (29) is an equation with one unknown
variable. Thus, the optimal value of leased time for SU at
each fading state can be obtained via solving this equation.
More specifically, t∗s is the non-negative real root of (29),
and it is also related with delay QoS exponent θs. Till now,
we have achieved the optimized jointly power and time
assignment, based on the given Z1.

4 Optimal power and time allocation with DF
relay protocol

In this section, we extend the proposed power and time
allocation algorithm to DF cooperative communication
scheme. Mathematically, the resource allocation problem
of minimizing the overall transmit power and leased time
while fulfilling given delay QoS requirements of PU and
SU can be formulated as
P3:min

p,ts
E
[
pp + psp + pss

]
,E [ts] , (30)

s.t. E

[
e−θpB

[
Tp log2

(
1+γpp

pp
Tp

)
+Tp log2

(
1+γsp

psp
Tp

)]]
≤e−θpEp ,

(31)

E

[
e−θsBts log2

(
1+ pssγss

ts

)]
≤ e−θsEs . (32)

Problem P3 is similar to P1 in that it is also a multi-
objective optimization problem. Solving this problem
enables us to find the fundamental tradeoff between the
transmit power of the global network and the leased time
and provides a set of Pareto-optimal resource allocation
policy. The same approach used to solve P1 can also be
followed here. Firstly, the problem is transformed into a
convex one via using the weighting method. By combin-
ing two objective functions into a single objective function
with weight factors, problem P3 is transformed into (33)

P4: min
p,ts

ω1E
[
pp + psp + pss

]+ ω2E [ts] , (33)

s.t. (31), (32).

By changing the weight factors, the optimal solutions to
P4 can collectively form the Pareto-optimal boundary of a
power-time region while employing DF relaying protocol.
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4.1 Optimizing the dual problem
It can be easily proved that P4 is convex, meaning
that there exists a globally optimal solution. Similar to
AF cooperative communications, we will find an ana-
lytical solution based on the Lagrangian dual approach
and KKT conditions which are sufficient and necessary
for this problem. Thus, by relaxing the constraints, the
Lagrangian function can be formulated as

LDF (p, ts,Z2) = ω1E
[
pp + psp + pss

]+ ω2E[ts]

+ λ

(
E

[
e−θpB

[
Tp log2

(
1+γpp

pp
Tp

)
+Tp log2

(
1+γsp

psp
Tp

)]]
− e−θpEp

)

+ μ

(
E

[
e−θsBts log2

(
1+ pssγss

ts

)]
− e−θsEs

)
,

(34)

where λ and μ are Lagrangian multipliers, and Z2 :=
{λ,μ}. The dual function is given by

DDF (Z2) = min
p,ts

LDF (p, ts,Z2) , (35)

and the dual optimization problem can be expressed by

max
Z2

DDF (Z2) , (36)

s.t. Z2 � 0.

Similarly, subgradient-based methods can be used to
maximize DDF(Z2) with global convergence. Mathemati-
cally, the subgradient of DDF(Z2) follows
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�λ=E

⎡
⎣e−θpBTp

[
log2

(
1+γpp

p∗p(Z2)
Tp

)
+log2

(
1+γsp

p∗sp(Z2)
Tp

)]⎤
⎦− e−θpEp ,

�μ=E

[
e−θsBt∗s log2

(
1+ p∗ss(Z2)γss

t∗s
)]

− e−θsEs ,

(37)

where {p∗, t∗s } denote the optimal solution in (35) at dual
point Z∗

2. Using the step size following the diminishing
step size policy as in (21), this subgradient method above
can be used to calculate the optimal Z∗

2 with negligible
(linear) computational complexity [33].

4.2 Optimal power and time allocation policy with given
Lagrangian variables

Following the same approach adopted for AF scenario
in Section 3, decoupling the optimization problem of
minimizing LDF(p, ts, λ,μ) across fading states results in

min
p,ts

ω1
(
pp + psp + pss

)+ ω2ts

+ λe−θpB
[
Tp log2

(
1+γpp

pp
Tp

)
+Tp log2

(
1+γsp

psp
Tp

)]

+ μe−θsBts log2
(
1+ pssγss

ts

)
.

(38)

Evidently, the problem in (38) is convex and the
corresponding KKT optimization conditions hold. Differ-
entiating (38) with respect to pp, pss, psp, respectively, and
equating to zero results in

ω1 = μθsBγss
ln 2

(
1 + pssγss

ts

)− ln 2+θsBts
ln 2

, (39)

ω1 = λθpBγsp
ln 2

(
1 + ppγpp

Tp

)− θpBTp
ln 2 ·

(
1 + pspγsp

Tp

)− ln 2+θpBTp
ln 2

,

(40)

ω1 = λθpBγpp
ln 2

(
1 + ppγpp

Tp

)− θpBTp+ln 2
ln 2 ·

(
1 + pspγsp

Tp

)− θpBTp
ln 2

.

(41)

Simultaneously solving (39), (40), and (41), the optimal
value of allocated power over the ST→SR, PT→ST, and
ST→PR links can be obtained as

pss
ts

=
⎧⎨
⎩ �

ln 2
θsBts+ln 2

(
1
γss

) θsBts
θsBts+ln 2 − 1

γss
, � ≥ 1/γss

0 � < 1/γss
, (42)

pp
Tp

=

⎧⎪⎨
⎪⎩

�
ln 2

ln 2+2θpBTp ·
(

1
γppγsp

) θpBTp
ln 2+2θpBTp − 1

γpp , � ≥ �0

0 � < �0

, (43)

psp
Tp

=

⎧⎪⎨
⎪⎩

�
ln 2

ln 2+2θpBTp ·
(

1
γppγsp

) θpBTp
ln 2+2θpBTp − 1

γsp , � ≥ �0

0 � < �0

, (44)

where �0 =
(

1
γpp

) ln 2+θpBTp
ln 2 · γ

θpBTp
ln 2

sp , � = μθsB/(ω1 ln 2),
� = θpBλ/(ω1 ln 2). The power policies defined in (42),
(43), and (44) have been shown to be delay QoS-based
water-filling policies. In particular, the water level of pss/ts
depends explicitly on θs, while the water levels of the
power policy associated with PU, i.e., psp/Tp, pp/Tp, are
related with θp. Moreover, it is interesting to see that the
water levels of pp/Tp and psp/Tp are the same and dif-
fer from that of pss/ts. From this point of view, the power
allocation policies when adopting DF relay protocol is
multi-level QoS-based water-filling policies.
Again, differentiating the Lagrangian function (38) with

respect to ts and equating to zero results in

ω2 = μθsB
(
1 + pssγss

ts

)− θsBts
ln 2

·
⎧⎨
⎩log2

(
1 + pssγss

ts

)
−

pssγss
ts(

1 + pssγss
ts

)
ln 2

⎫⎬
⎭ . (45)

Substituting (42) into (45) in the case of pss>0 results in
ω2

μθsB
(�γss)

θsBts
ln 2+θsBts + 1

ln 2
− 1

ln 2
(�γss)

− ln 2
ln 2+θsBts

− ln 2
ln 2 + θsBts

log2 (�γss) = 0. (46)
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Via solving the Eq. (46), we can get the optimal value of
leased time for SU at each fading state.

5 The stochastic resource allocation algorithm
To solve the dual problem (20) with AF relaying strategy,
we need the explicit knowledge of fading channel CDF to
evaluate the expected values involved in the subgradient
algorithm (21). But in some practical mobile environ-
ments, it is infeasible or impossible to obtain the CDF of
the fading channels. Consequently, the power and time
allocation problem of operating without the knowledge of
channel CDF should be tackled urgently. As it turns out,
this problem can be solved via employing the stochastic
optimization theory [24]. Instead of the need of CDF in
(21), we drop the expectation operators E from the sub-
gradient in (21) and put forward the following iterations
based on one fading realization γ [n] per iteration n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̂ [n + 1]=
⎡
⎣β̂[ n]+s ·

⎛
⎝− e−θpEp

+e
−θpBTp log2

(
1+ p∗p(γ [n],Ẑ1[n])

Tp γpp+ γpsγsp
Tp

p∗p(γ [n],Ẑ1[n])p∗sp(γ [n],Ẑ1[n])
p∗p(γ [n],Ẑ1[n])γps+p∗sp(γ [n],Ẑ1[n])

)⎞
⎠
⎤
⎦

+
,

ξ̂ [t + 1]=
⎡
⎣̂ξ [t]+s ·

⎛
⎝e−θsBts log2

(
1+ p∗ss(γ [n],Ẑ1[n])γss

ts

)
− e−θsEs

⎞
⎠
⎤
⎦

+
.

(47)

And hats are used to underscore that these iterations are
stochastic estimate instead of average values of those in
(21). It only requires the fading state of the channels at
the current iteration, which can be easily measured. The
convergence of the stochastic subgradient iteration can be
guaranteed by the following lemma.

Lemma 1 If CDF of the ergodic fading channels is contin-
uous, when (21) and (47) are respectively initialized with
β[0]= β̂[0] , ξ [0]= ξ̂ [0], respectively, then

| β̂[ t]−β[t] | ≤ δT (s), | ξ̂ [t]−ξ [t] | ≤ δT (s), w.p. 1
(48)

works over time interval T with the constant δT (s) → 0 as
the stepsize s → 0.

The proof can be derived along the similar lines to
those in ([37], Theorem 9.1), which is omitted here. The
Lemma 1 implies the iteration of (47) converges to the
optimal {β∗, ξ∗} with probability 1 as stepsize s → 0.
Hence, the proposed stochastic policy is capable of iter-
atively finding the optimal {β∗, ξ∗}. Thus, the multi-
objective resource allocation with guarantees on the effec-
tive capacity constraints is obtained, even when the fading
channel distribution is unknown a priori. To go further,

with (47), a stochastic power and time allocation algo-
rithm with negligible (linear) computational complexity
can be brought forward to approach the global solution,
shown in Algorithm 1.

Algorithm 1 Stochastic Subgradient Iteration algorithm
Initialization: set t = 0 and β̂[0] and ξ̂ [0] equal to some
non-negative value.
Repeat: With β̂[n] , ξ̂ [n] available per slot n, allocate the
power and time according to (24)–(29) between PU and
SU, and update β̂[n + 1] and ξ̂ [n + 1] by using (47).
Until: Required precision is satisfied.
Output: β̂[n]= β∗, ξ̂ [n]= ξ∗.

To apply our stochastic resource allocation scheme to
the spectrum-leasing based CRN, we can implement it
in a distributed manner. The execution of the distributed
iterative algorithm is illustrated as follows. Firstly, sys-
tem performs some initialization such as setting β[0] and
ξ [0] to some non-negative values at PT and ST, respec-
tively. In time slot n, ST adjusts the leased time and the
transmit power over ST → SR link according to the cal-
culated values t∗s (ξ [n] ), p∗

ss(ξ [n] ), and computes its power
p∗
sp(β[n] ) over ST → PR link which is then fed back to

PT. Meanwhile, PT calculates its power value of p∗
p(β[n] ).

With p∗
p(β[n] ), p∗

sp(β[n] ) available, PT updates β[n + 1],
which is then delivered to ST. Simultaneously, using values
of p∗

ss(ξ [n] ), t∗s (ξ [n] ), ST node updates ξ [n + 1]. Simi-
larly, in time slot, n + 1 PT and ST work together well
to calculate the corresponding power and time values and
update the Lagrange multipliers. Eventually, the dual vari-
able β[n] , ξ [n] will converge to the global solution β∗, ξ∗.
Simultaneously, thanks to zero duality gap, the optimal
solutions p∗

ss(ξ [n] ), p∗
p(β[n] ), p∗

sp(β[n] ) will also converge
to the globally optimal variables p∗

ss, p∗
p, p∗

sp.
Similarly, the stochastic resource allocation policy can

also be proposed when employing DF relaying strategy.
A stochastic subgradient iteration algorithm based on per
slot fading realization is shown as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̂ [t + 1] =
⎡
⎣λ̂[t]+s ·

⎛
⎝e−θpBTp

[
log2

(
1+γpp

p∗p(γ [n],Ẑ2[n])
Tp

)
+log2

(
1+γsp

p∗sp(γ [n],Ẑ2[n])
Tp

)]

−e−θpEp

⎞
⎠
⎤
⎦

+

,

μ̂ [t + 1] =
⎡
⎣μ̂[t]+s ·

⎛
⎝e−θsBt∗s

(
γ [n],Ẑ2[n]

)
log2

(
1+p∗ss(γ [n],Ẑ2[n])γss

t∗s (γ [n],Ẑ2[n])

)
− e−θsEs

⎞
⎠
⎤
⎦

+
.

(49)

Lemma 1 holds true for λ̂, μ̂, which can guarantee
the convergence of this iteration. Furthermore, similar
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stochastic subgradient iteration algorithm as Algorithm 1
can also be proposed.

6 Numerical results
In this section, we evaluate the performance of the pro-
posed algorithms and the tradeoff between the consumed
sum power and leased time by simulations. Throughout
our simulation, we consider a CRN with one pair of pri-
mary transceiver and one pair of secondary transceiver,
which operate in time-slotted mode. The channel gains
γpp, γps, γsp, and γss undergo identical Rayleigh fading
independently, and the average channel gains of all links
are the same, which are set to 3. We assume the sys-
tem bandwidth is B = 1 kHz and the duration of the
cooperative communication is 1 ms, i.e., Tp = 0.5 ms.
Furthermore, we assume that all users hold still, and the
arrival rate of the source traffic flow is assumed to be con-
stant. In the simulations, we set Ep = 1 and Es = 1. To
facilitate discussion of the impact of the weight factor on
the overall transmission power and leased time, five sets of
weight factor are supposed as following, {ω1 = 0.1, ω2 =
0.9}which is labeled as w1, {ω1 = 0.3, ω2 = 0.7} labeled as
w2, {ω1 = 0.5, ω2 = 0.5} labeled as w3, {ω1 = 0.7, ω2 =
0.3} labeled as w4, and {ω1 = 0.9, ω2 = 0.1} labeled as w5.
More detailed parameters will accompany with results in
figures to be shown.
Figure 1 shows the tradeoff regions achieved by the pro-

posed optimal resource allocation scheme when employ-
ing AF and DF relay protocols, respectively. The Pareto
boundary of the region in Fig. 1a, b is obtained by solving
problems P1 and P3 via varying the values ofωk , k ∈ {1, 2}.
For a given delay QoS exponent, when ω1 is set to a small

value, e.g., ω1 < 0.3, the Pareto boundary of the region
is very sensitive to the leased time. In such scenario, the
system design objective attaches importance to the leased
time, and its target is to shorten the leased time at the
expense of the overall power consumption. However, for
higher values of ω1, the sensitivity of the tradeoff region
is relatively dependent of the consumed power. In this
case, the leased time explosively increases, while the con-
sumed power would be inclined to a constant, e.g., 3 when
θp = 1, θs = 1. It is noted that as θs varies from 5 to 1, the
Pareto region is narrowed. This verifies that the consumed
wireless resources (i.e., power and time) decrease with the
delay QoS exponents. Comparing Fig. 1a with Fig. 1b, it
is no doubt that they two perform similarly in achieving
the tradeoff region. The difference lies mainly in the size
of the tradeoff region, resulting from the different relay
protocols.
Next, we further investigate the impact of the weight

factor on the consumed sum power and the average leased
time. Numerical results are plotted in Figs. 2 and 3 for
θp = θs = 1 when AF and DF relay protocols are
employed, respectively. In Figs. 2 and 3, the legend of PS
represents the average power allocated over the PT→ST
link, SP denotes the average power allocated over the
ST→PR link, and SS denotes the average power allo-
cated over the ST→SR link. As shown in Figs. 2 and 3,
the average consumed power and average leased time
simultaneously varies with the weight factors for given
QoS requirements. In particular, with the increase of ω1,
the consumed power decreases, but the average leased
time synchronously becomes larger, and vice versa. This
implies that the consumed power of the overall network

a b

Fig. 1 System design objective tradeoff regions achieved by the proposed optimal resource allocation. aWhen employing AF relaying protocol.
bWhen employing DF relaying protocol



Ma et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:108 Page 10 of 14

Fig. 2 The average sum power (left) and average leased time (right)
with AF relay protocol. θp = θs

can be reduced via adjusting the weight factor at the
expense of prolonging the leased time. Such behavior of
the power and time allocation curves further characterizes
the tradeoff between the transmit power and the leased
time. Moreover, we can observe from Fig. 3 that due to the
same fading channels and the same water level, the aver-
age transmit power of PU and that of ST forwarding the
primary signals are the same when adopting the DF relay
protocol. Nevertheless, this conclusion does apply to the
AF relay networks, as shown in Fig. 2. This observation is
coherent with the theoretical analysis made in (43), (44),
and (25). Moreover, it is interesting to note that the power
allocation policies in (25), (26), (43), and (44) depend on
ω1. However, from Figs. 2 and 3, we can see that power val-
ues of PS and SP almost do not change with the weight fac-
tor. That is, the weight factor ω1 has little effect on these
power values, which is different from the behavior of SS.

Fig. 3 The average sum power (left) and average leased time (right)
with DF relay protocol. θp = θs

This is because the duration of the cooperative communi-
cations is fixed to 1 and has nothing with the weight factor.
To gauge the performance of the proposed algorithms,

we compare them with other power and time allocation
policies. With an equally divided time allocation, i.e., ts =
Tp = 0.5 ms, one scheme is derived from the overall aver-
age power minimization problem. It is named equal time
policy. Another one is min-power policy, whose leased
time is equal to the average leased time of the optimal
algorithms, and its power allocation minimizes the over-
all average power. Figures 4 and 5 plot the average sum
power and leased time against the delay QoS exponent θ

for different resource allocation with AF relay protocol,
when the weight factor is {ω1 = 0.5, ω2 = 0.5} and {ω1 =
0.8, ω2 = 0.2}, respectively. The optimal policy in Figs. 4
and 5 is the resource allocation schemewhose subgradient
iterative is based on the expected values in (21), and the
stochastic policy is obtained by employing the stochas-
tic subgradient iteration algorithm proposed in Section 5.
It can be observed that by carrying out the optimal pol-
icy, the average sum power is monotonically increasing
with respect to QoS exponent θ . This demonstrates that
more power must be consumed in order to guarantee the
more strict QoS requirements. Interestingly, the average
leased time may not comply with this rule. In particu-
lar, for small θs, the leased time increases with the QoS
exponent θs. However, the increasing velocity of the leased
time reduces or even the leased time decreases with θs.
This implies that for some given weight factors and relay
protocols, larger transmission rate is a must to guarantee
the more stringent QoS requirements, inducing the larger
ratio of the power to leased time.
As expected, the optimal policy demonstrates the same

performance with the stochastic policy. This verifies
that the proposed stochastic scheme can learn the chan-
nel fading knowledge on the fly and can approach the
optimal policy. Remarkably, as shown in Figs. 4 and 5,
the proposed policy always achieves the minimum power
consumption among all control policies. In fact, in the
proposed optimal scheme, both the transmit power and
the leased time are jointly optimized for performing
resource allocation. In contrast, the min-power policy
and equal time policy are done without jointly optimiza-
tion, leading to fewer degrees of freedom for resource
allocation. Interestingly, the min-power performs close
to the curve achieved by the optimal resource alloca-
tion scheme in loose delay QoS requirements. This
observation indicates that as QoS requirement becomes
loose, the leased time allocation plays only a small part
in achieving the optimization objectives. As the QoS
requirement getting strict, the joint power and time pol-
icy considering QoS requirement shows its advantage in
power saving. And the advantage is getting larger as the
requirement on delay QoS becomes more strict. Results
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a b

Fig. 4 a, b Average sum power and leased time versus delay QoS exponent θ with AF relay protocol when {ω1 = 0.5,ω2 = 0.5} is adopted

when DF relay protocol is employed are also given in the
case of {ω1 = 0.5,ω2 = 0.5} and {ω1 = 0.8,ω2 = 0.2}, as
shown in Figs. 6 and 7, respectively. Similar conclusions
can be made that the proposed policies outperform other
control policies in power saving even with loose delay
QoS requirements. In summary, from Fig. 4 to Fig. 7, we
can observe that the QoS requirement variations have
significant impact on the effective capacity, and thus on
the resource allocation of CRN.

7 Conclusions
In this paper, we have studied the resource allocation for
spectrum-leasing CRNwith effective capacity-based delay
provisioning for delay-sensitive traffic. In such network,

the secondary system can have the opportunities to access
the licensed spectrum by employing AF/DF relay proto-
cols to assist the primary data transmission. By integrating
the multi-objective optimization theory and the concept
of the effective capacity, we have formulated two opti-
mization problems aiming to minimizing both the overall
power consumption and the average leased time while
fulfilling statistical delay provisioning. To solve the estab-
lished problems, we resort to the weighting method that
yields a convex optimization one. Then by the Lagrangian
dual method, the closed-form expressions of the opti-
mal power and time allocation strategy have been derived
given the underlying statistical delay QoS constraint.
We also analyze the fundamental tradeoff between the

a b

Fig. 5 a, b Average sum power and leased time versus delay QoS exponent θ with AF relay protocol when {ω1 = 0.8,ω2 = 0.2} is adopted
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a b

Fig. 6 a, b Average sum power and leased time versus delay QoS exponent θ with DF relay protocol when {ω1 = 0.5,ω2 = 0.5} is adopted

transmit power and the leased time via a Pareto set, the
impact of delay exponents on the overall performance, and
characterize the properties of the optimal resource alloca-
tion strategies. Furthermore, we have presented stochastic
resource allocation schemes that can learn the statistics of
the fading channels and adaptively approach the optimal
strategies on the fly. The numerical results for Rayleigh
fading channels demonstrate that our proposed policies
exhibit excellent performance compared with min-power
policy and equal time policy.

Appendix
1 Proof the convexity of P2
Firstly, the objective function in P2 is convex given that
ω1(pp + psp + pss) + ω2ts is linear with respect to

pp, psp, pss, ts and that the integral preserves convexity.
Then, we will demonstrate the constraint functions are
all convex, guaranteeing that the feasible set of this opti-
mization problem is convex. By evaluating the Hessian

matrix of f (pp, psp) = 1 + pp
Tp

γpp +
pp
Tp γps

psp
Tp γsp

pp
Tp γps+ psp

Tp γsp
at pp

and psp, we can prove that f (pp, psp) is concave. Thus, the
log2(f (pp, psp)) is concave as log(·) function can preserve
concavity. Considering that exponential function exp(·)
and the integral preserve convexity, the first constraint
function in P2 is convex. Given a convex function f (x),
its perspective g(x, t) = tf (x/t) is also convex for t > 0
[33]. For this reason, −ts log2

(
1 + pssγss

ts
)
is the convex

function of (pss, ts). Then, the second constraint function
is convex given that exponential function exp(·) and the

a b

Fig. 7 a, b Average sum power and leased time versus delay QoS exponent θ with DF relay protocol when {ω1 = 0.8,ω2 = 0.2} is adopted
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integral preserves convexity. Therefore, the problem in P2
is a convex optimization problem and there exists a unique
optimal solution.

2 Proof of optimal solution in (25) and (26)
The derivative of L′

AF(p, ts,Z1)with respect to variable psp
and pp is given by

∂L′
AF (p, ts,Z1)

∂psp
= ω1 − θpTpβ

ln 2

⎛
⎝1+ pp

Tp
γpp+

pp
Tp

γps
psp
Tp

γsp
pp
Tp

γps + psp
Tp

γsp

⎞
⎠

−1− θpTp
ln 2

·
p2pγ 2

psγsp

T3
p(

pp
Tp

γps + psp
Tp

γsp
)2 ,

(50)

∂L′
AF (p, ts,Z1)

∂pp
= ω1− θpTpβ

ln 2

⎛
⎝1+ pp

Tp
γpp+

pp
Tp

γps
psp
Tp

γsp
pp
Tp

γps + psp
Tp

γsp

⎞
⎠

−1− θpTp
ln 2

·
⎛
⎜⎝γpp

Tp
+

p2spγpsγ 2
sp

T3
p(

pp
Tp

γps + psp
Tp

γsp
)2
⎞
⎟⎠ .

(51)

We first investigate the scenario where both psp and pp
are positive. Setting (50) and (51) to zero, we obtain

γpp
Tp

+
p2spγpsγ 2

sp
T3
p(

pp
Tp

γps + psp
Tp

γsp
)2 =

p2pγ 2
psγsp

T3
p(

pp
Tp

γps + psp
Tp

γsp
)2 , (52)

which results in
pp
Tp

= χ
psp
Tp

, (53)

where

χ =
√

γppγsp − γppγps + γpsγsp + γpp

γsp − γpp
· γsp
γps

. (54)

In order to guarantee p∗
sp > 0, χ > 0 must be satisfied.

Thus, we have γsp > γpp. Substituting (53) into (50), we
can get

psp
Tp

= χγps + γsp
χ2γppγps + χγppγsp + χγpsγsp

·
⎛
⎝
(

βθp
ln 2ω1

· χ2γ 2
psγsp(

χγps + γsp
)2
) ln 2

ln 2+θpTp

− 1

⎞
⎠ .

(55)

In the case where (55) is negative, psp
Tp

should be set to
zero. When γsp ≤ γpp, it can be also proved that p∗

sp = 0.

For these two cases, the allocated power over the PT→ST
adheres to the QoS-based water-filling policy shown as

pp
Tp

=
(

θpTpβ

ln 2Tpω1

) ln 2
ln 2+θpTp ·

(
1

γpp

) θpTp
ln 2+θpTP − 1

γpp
. (56)

Thus, the optimality of solution p∗
p and p∗

sp in (25) and
(26) is proved.

Endnote
1 The unit for service rate and the effective capacity is

bits per frame.

Acknowledgements
This work was supported by the National Science Foundation of China with
Nos. 61571272, 61201269, and 61403230. The authors would like to thank the
anonymous reviewers for their constructive comments, which helped a lot to
improve the presentation of this paper.

Authors’ contributions
In this research paper, the authors proposed an resource allocation algorithm.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 27 December 2016 Accepted: 21 May 2017

References
1. S Jayaweera, G Vazquez-Vilar, C Mosquera, Dynamic spectrum leasing: a

new paradigm for spectrum sharing in cognitive radio networks. IEEE
Trans. Veh. Technol. 59(5), 2328–2339 (2010)

2. O Simeone, I Stanojev, S Savazzi, Y Bar-Ness, U Spagnolini, R Pickholtz,
Spectrum leasing to cooperating secondary ad hoc networks. IEEE J Sel.
Areas Commun. 26(1), 203–213 (2008)

3. M Naeem, A Anpalagan, M Jaseemuddin, D Lee, Resource allocation
techniques in cooperative cognitive radio networks. IEEE Commun. Surv.
Tutor. 16(2), 729–744 (2014)

4. A Ahmad, S Ahmad, M Rehmani, N Hassan, A survey on radio resource
allocation in cognitive radio sensor networks. IEEE Commun. Surv. Tutor.
17(2), 888–917 (2015)

5. A Gavili, S ShahbazPanahi, Optimal spectrum leasing and resource
sharing in two-way relay networks. IEEE Trans. Sig. Process. 62(19),
5030–5045 (2014)

6. W Lu, Y Gong, S Ting, X Wu, N Zhang, Cooperative OFDM relaying for
opportunistic spectrum sharing: protocol design and resource allocation.
IEEE Trans. Wireless Commun. 11(6), 2126–2135 (2012)

7. M Hafeez, J Elmirghani, Analysis of dynamic spectrum leasing for coded
bi-directional communication. IEEE J. Sel. Areas Commun. 30(8),
1500–1512 (2012)

8. M Pandian, M Sichitiu, H Dai, Optimal resource allocation in random
access cooperative cognitive radio networks. IEEE Trans. Mobi. Compu.
14(6), 1245–1258 (2015)

9. A Ghosh, S Sarkar, Quality-sensitive price competition in secondary
market spectrum oligopoly—-single location game. IEEE/ACM Trans.
Netw. 24(3), 1894–1907 (2016)

10. L Duan, L Gao, J Huang, Cooperative spectrum sharing: a contract-based
approach. IEEE Trans. Mobi. Comput. 13(1), 174–187 (2014)

11. B Nazari, A Jamalipour, Contract-auction based distributed resource
allocation for cooperative communications. IET Commun. 10(9),
1087–1095 (2016)

12. S Toroujeni, S Sadough, S Ghorashi, Spectrum leasing for OFDM-based
cognitive radio networks. IEEE Trans. Vehi. Tech. 62(5), 2131–2139 (2013)



Ma et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:108 Page 14 of 14

13. A Alsharoa, H Ghazzai, E Yaacoub, M Alouini, A Kamal, Joint bandwidth
and power allocation for MIMO two-way relays-assisted overlay cognitive
radio systems. IEEE Trans. Cogni. Commun. and Net. 1(4), 383–393 (2015)

14. X Feng, G Sun, X Gan, F Yang, X Tian, X Wang, M Guizani, Cooperative
spectrum sharing in cognitive radio networks: a distributed matching
approach. IEEE Trans. Commun. 62(8), 2651–2664 (2014)

15. M Shamaiah, S Lee, S Vishwanath, H Vikalo, Distributed algorithms for
spectrum access in cognitive radio relay networks. IEEE J Sel. Areas
Commun. 30(10), 1947–1957 (2012)

16. I Balapuwaduge, F Li, A Rajanna, M Kaveh, Channel occupancy-based
dynamic spectrum leasing in multichannel CRNs: strategies and
performance evaluation. IEEE Trans. Commun. 64(3), 1313–1328 (2016)

17. L Wang, V Fodor, Dynamic cooperative secondary access in hierarchical
spectrum sharing networks. IEEE Trans. Wireless Commun. 13(11),
6068–6080 (2014)

18. W Li, X Cheng, T Jing, X Xing, in Proc. IEEE INFOCOM. Cooperative
multi-hop relaying via network formation games in cognitive radio
networks, (Turin, 2013)

19. D Wu, R Negi, Effective capacity: a wireless link model for support of
quality of service. IEEE Trans. Wireless Commun. 2(4), 630–643 (2003)

20. J Tang, X Zhang, Quality-of-service driven power and rate adaptation over
wireless links. IEEE Trans. Wireless Commun. 6(8), 3058–3068 (2007)

21. Y Li, L Liu, H Li, J Zhang, Y Li, Resource allocation for delay-sensitive traffic
over LTE-advanced relay networks. IEEE Trans. Wirel. Commun. 14(8),
4291–4303 (2015)

22. K Phan, T Le-Ngoc, L Le, Optimal resource allocation for buffer-aided
relaying with statistical QoS constraint. IEEE Trans. Commun. 64(3),
959–972 (2016)

23. R Rockafellar, R Wets, Stochastic convex programming: basic duality. Pac.
J. Math. 62(1), 173–195 (1976)

24. P Kall, S Wallace, Stochastic programming. (Wiley, New Jersey, 1994)
25. S Yang, Z Sheng, J McCann, K Leung, Distributed stochastic cross-layer

optimization for multi-hop wireless networks with cooperative
communications. IEEE Trans. Mobile Compu. 13(10), 2269–2282 (2014)

26. D Wang, X Wang, X Cai, Optimal power control for multi-user relay
networks over fading channels. IEEE Trans. Wireless Commun. 10(1),
199–207 (2011)

27. X Wang, G Giannakis, Power-efficient resource allocation for time-division
multiple access over fading channels. IEEE Trans. Inf. Theory. 54(3),
1225–1240 (2008)

28. J Laneman, D Tse, G Wornell, Cooperative diversity in wireless networks:
efficient protocols and outage behavior. IEEE Trans. Inf. Theory. 50(12),
3062–3080 (2004)

29. J Laneman, G Wornell, Distributed space-time-coded protocols for
exploiting cooperative diversity in wireless networks. IEEE Trans. Inf.
Theory. 49(10), 2415–2425 (2003)

30. C-S Chang, Performance guarantees in communication networks,
(Springer-Verlag London, 2000)

31. L Zadeh, Optimality and non-scalar-valued performance criteria. IEEE
Trans. Autom. Control. 8(1), 59–60 (1963)

32. K Miettinen, Nonlinear multiobjective optimization. (Kluwer Academic
Publishers, Dordrecht, 1999)

33. S Boyd, L Vandenberghe, Convex optimization. (Cambridge University
Press, 2004)

34. S Boyd, A Mutapcic, Subgradient methods, notes for EE364, Standford
University, Winter 2006-07

35. Y Ma, H Zhang, D Yuan, D Jiang, Power-efficient resource allocation with
QoS guarantees for TDMA fading channels. Wirel. Commun. and Mobi.
Comput. 12(11), 1023–1036 (2012)

36. A Goldsmith,Wireless communications. (Cambridge University Press,
Cambridge, 2005)

37. V Solo, X Kong, Adaptive signal processing algorithms: stability and
performance. (Prentice Hall, New Jersey, 1995)


	Abstract
	Keywords

	Introduction
	System overview
	System model
	Statistical delay QoS guarantees and effective capacity

	Optimal power and time allocation with AF relay protocol 
	Optimizing the dual problem
	Optimal power and time allocation policy with given Lagrangian variables

	Optimal power and time allocation with DF relay protocol 
	Optimizing the dual problem
	Optimal power and time allocation policy with given Lagrangian variables

	The stochastic resource allocation algorithm
	Numerical results
	Conclusions
	Appendix
	1
	2
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	References

