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Abstract

In this paper, we study a K-user fading multiple access channel (F-MAC), with and without an eavesdropper (Eve).
In the system without Eve, we assume that each user knows only its own channel gain and is completely ignorant
about the other users’ channel state. The legitimate receiver sends a short acknowledgement message Acknowledge
(ACK) if the message is correctly decoded and a No Acknowledge (NACK) if the message is not correctly decoded.
Under these assumptions, we use game theoretic learning setup to make transmitters learn about the power
allocation under each state. We use multiplicative weight no-regret algorithm to achieve an ε-coarse correlated
equilibrium. We also consider the case where a user can receive other users’ ACK/NACK messages. Now, we can
maximize a weighted sum utility and achieve Pareto optimal points. We also obtain Nash bargaining solutions, which
are Pareto points that are fairer to the transmitting users. Fairness among users is quantified using Jain’s index.
With Eve, we first assume each user knows only its own channel gain to the receiver as well as to Eve. The receiver
decides whether to send an ACK or a NACK to the transmitting user based on the secrecy-rate condition. We use the
above developed algorithms to get the equilibrium points. Next, we study the case where each user knows only the
distribution of the channel state of Eve. Finally, we also consider the system where the users do not know even the
distribution of the Eve’s channel.

Keywords: Physical layer security, Power control, Fading channel, Coarse correlated equilibrium, Nash bargaining,
Multiple access wiretap channel

1 Introduction
Amultiple access channel (MAC) is a basic building block
in wireless networks [1]. Also, it models the uplink in
a wireless cellular system. Therefore, it has been stud-
ied extensively over the years ([2–4]). More recent, it has
also received attention from information theoretic secu-
rity point of view. In this paper, we study a MAC with
and without an eavesdropper using game theoretic tech-
niques. This allows operating in the capacity region which
is fair to the users and also provides distributed algorithms
with local information at the users. First, we provide a
literature survey on this problem.
A general M-user fading MAC is considered in [5]

where the receiver has perfect channel state knowledge
and broadcasts channel state information of all the users
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to all the transmitters. The authors prove that the capac-
ity region of a M-user MAC has a polymatroid structure,
and they exploit this structural property to find the opti-
mal power and rate control policy. Time-varying additive
white Gaussian noise (AWGN) MAC is studied in [6]
where it is assumed that only the receiver can track the
channel and not the transmitters. In that case, the trans-
mitters allocate fixed powers (which satisfy the average
power constraint) and transmit data over the channel.
In [7], the authors propose a distributed power alloca-

tion scheme usingGame Theory. The authors assume that
each user knows the channel gain of other users also, in
addition to knowing his own channel gain. The authors
prove that the sum-rate point on the capacity region is
a Nash equilibrium when the decoding strategy of the
receiver is not known to the transmitters. The authors
also prove the existence of a Stackelberg equilibrium in
which the receiver acts as a leader and the transmitters
play a low-level game. Using repeated games, the authors
prove that each point on the capacity region of a fading
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MAC is achieved by some power control policy. In [8],
the authors prove stronger results by assuming that each
user knows only its own channel gain but knows the dis-
tribution of channel gains of the other users. Under these
conditions, the authors prove the existence and unique-
ness of a Bayesian equilibrium. In an orthogonal multiple
access channel, the authors in [9] have used evolutionary
game theory to obtain a power allocation scheme, while
assuming that each user knows the channel gain of all
users via feedback.
With security constraints, a multiple access wiretap

channel (MAC-WT) has been well studied in literature.
One of the early works is reported in [10] where only
one user has confidential messages to be transmitted.
The authors have obtained upper bounds on the secrecy-
rate regions. In [11], the authors consider a more general
setup wherein they consider a discrete memoryless mul-
tiple access channel where the transmitting users receive
a noisy version of each others’ conversation, and they
do not trust each other. In this scenario, the authors
have obtained an achievable secrecy-rate region and some
outer bounds. In some special cases, this provides secrecy
capacity region. A multiple access wiretap channel with
feedback has been studied in [12]. An achievable region
of a Gaussian multiple access wiretap channel (G-MAC-
WT) was obtained in [13] (the secrecy capacity region is
still an open problem).
In the above work, weak secrecy criterion is used. A

strong secrecy-based achievable rate region for a MAC-
WT is reported in [14]. In [15], the authors find secure
degrees of freedom for a MAC-WT. More recently in
[16], the authors have studied a compoundMAC-WT and
have characterized inner and outer bounds on the secrecy
capacity region. In [17], the authors have studied a fad-
ing MAC-WT with full Channel State Information (CSI)
of Eve and also when each user knows the channel state of
all the users to the receiver but is ignorant of the instanta-
neous value of channel state to the eavesdropper (only its
distribution is known). But knowing other users’ channel
gains to the legitimate receiver may also not be practi-
cal: it needs a lot of signalling overhead and feedback
information. Hence, in this paper, we present a game-
theoretic solution to the resource allocation scheme under
the hypothesis that each user only knows its own channel
gain and is completely ignorant of other users’ channels
(not even the distributions).
In interference channel model [18], the authors use

learning algorithms to study a stochastic game and learn
optimal power allocation policies. The authors use no-
regret algorithm to prove the existence of a correlated
equilibrium. It is assumed that each user knows power
allocation policy of other users, which is not always realis-
tic. The same authors extend this work to the case where
each user knows only his own channel gain and does not

know the power levels used by other users. The authors
prove the existence of a coarse correlated equilibrium
usingmultiplicative weights no-regret algorithm [19].
In this paper, we first consider a fading MAC (F-MAC)

without security constraint. We assume each user knows
only its individual channel gain (unlike [8], we do not
assume that it knows the distributions of channel gains of
others). Since the receiver is receiving data from all the
users, it is quite practical to assume that the receiver has
channel state information of all the transmitting users.
Once a user sends a codeword corresponding to a partic-
ular message, the receiver sends an ACK if it decodes it
successfully, else it sends a NACK. Each user computes
a utility based on the ACK/NACK. We use multiplicative
weight no-regret algorithm to obtain a coarse correlated
equilibrium (CCE). We also assume in the later part of
the paper that each user can decode ACK/NACK of other
users and hence knows their utility. Then we aim to maxi-
mize the sum utility and propose an algorithm to obtain a
Pareto point (PP). We also find a Nash bargaining solution
(NBS) which provides a Pareto point and ensures fair-
ness among users. We also study the case where users can
transmit at multiple rates rather than fixed rates.
Next, we consider a fading MAC-WT where we first

assume that each user knows its channel gains to the
receiver and Eve. In this case, we repeat all the algo-
rithms which we used for a F-MAC (without security), i.e.
multiplicative weight (MW), PP, and NBS, and also con-
sider the multiple rates case. Since it is not practical to
assume instantaneous channel gain of the eavesdropper
to be known at the transmitter and the receiver, we next
consider the case where the receiver only knows the distri-
bution of the Eve’s channel gains. The receiver calculates
secrecy outage and sends an ACK/NACK based on that.
We again obtain a CCE, PP and a NBS. To the best of
our knowledge, this is the first paper which is using game
theory on MAC-WT.
Finally, we compare the sum rates obtained via all these

algorithms to the global CSI case and also with the sum
rate obtained in [17].
The rest of the paper is organized as follows. In

Section 2, we describe the channel model for F-MAC
without the security constraint and formulate the prob-
lem. In Section 2.1, we usemultiplicative weight algorithm
to obtain a CCE. In Sections 2.2 and 2.3, we obtain Pareto
optimal points and NBS. In Section 3, we consider a fad-
ingMAC-WT. First, we consider the case when CSI of Eve
is available at the transmitters. In Section 3.1, we consider
the case when CSI of Eve is not available at the transmit-
ters (only its distribution is known) and obtain a CCE, a
NBS and a PP for both the scenarios. Section 4 general-
izes these results to multirate scenario. In Section 5, we
compare the various schemes on an example. Finally, in
Section 6, we conclude the paper.
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2 FadingMAC: without security constraint
A time-slotted F-MAC channel is considered with K-
users who have messages to be transmitted to a receiver.
Let {˜Hi(t)} be the channel gain process from user i to the
receiver at time t. It includes path loss, fading and shad-
owing. User i transmits ˜Xi(t) and the receiver receives

˜Y (t) =
K
∑

i=1

˜Hi(t)˜Xi(t) + η̃b(t), (1)

at time t, where η̃b(t) is white Gaussian noise with mean
zero and variance σ 2

b , denoted byN
(

0, σ 2
b
)

, an d indepen-
dent of {˜Xi(t)} and {H̃i(t)}. We transform the input-output
relationship of F-MAC in (1) by appropriate scaling:

Y (t) =
K
∑

i=1

̂Hi(t)Xi(t) + ηb(t), (2)

where
• X(t) = 1

σb
˜X(t)

• ̂H(t) = 1
σb
˜H(t)

• ηb = 1
σb

η̃(t), where now η(t) ∼ N (0, 1)

Let Hi(t) �
∣

∣̂Hi(t)
∣

∣

2. The channel gains are assumed dis-
crete valued, in the sets Hi � {h(1)

i , . . . , h(M)
i }, where M

is the number of possible states. Also, {Hi(t), t ≥ 0} are
independent and identically distributed (iid) sequences
with distributions

{

α
(1)
i , . . . ,α(M)

i

}

. To transmit any code-
word, user i can choose any power level from the set
Pi �

{

P(1)
i , . . . ,P(M)

i

}

. Also, user i has average power
constraint Pi.

Assumption of discrete channel states Before we
describe our game model, we first clarify our assumptions
of discrete channel states. The assumption that the chan-
nel states take values from discrete sets is based on two
observations: (1) In practice, the channel gains are esti-
mated by transmitting known pilots from the transmitter
to receiver (a base station in case of uplink scenario), and
then the receiver feeds back the estimated value of chan-
nel gains up to some precision level. Hence, if n bits are
used to represent the value of channel gains (as in dig-
ital communication, the information is represented by a
finite number of bits), the total possible number of chan-
nel states is 2n [8]. (2) The continuous state of a channel
(e.g. Rayleigh distribution) can be quantized to obtain any
level of accuracy by a finite set. Also, algorithms in game
theory require a finite set. This finite CSI is a commonly
made assumption in literature [8, 20, 21].
User i transmits at a fixed rate ri (to be generalized later)

via a usual point to point channel encoder. If the receiver
successfully decodes a message, it sends an ACK to that
particular user. Otherwise, it sends a NACK. We assume

that the NACK and ACK are transmitted at low rates so
that these can be received with negligible error at the
intended transmitter. The goal of each user is to maximize
its probability of successful transmission.
Each user i is assumed to know its own channel gain

Hi(t) at time t. Since the receiver can estimate the channel
gain of all the users (either by receiving known pilots or by
using initial data received), the receiver can use successive
cancellation decoding strategy to decode all the users.
Let π(i) be the user which has the ith highest chan-

nel gain (in case of a tie, we arbitrarily order them). The
decoder first decodes the user π(1) with the best channel
gain first, taking the transmissions from the other users as
noise. Then it removes it from the received signal Y (t) and
then decodes the next best user, taking the other users as
noise and so on. Let

Cb
(

Pπ(i),P−π(i),Hπ(i)
)

� 1
2
log

(

1 + Hπ(i)Pπ(i)(Hπ(i))

1 +∑K
j=i+1Hπ(j)Pπ(j)(Hπ(j))

)

. (3)

Then the receiver will send an ACK to the transmitting
user π(i) if

rπ(i) ≤ Cb
(

Pπ(i),Hπ(i)
)

. (4)

The above constraint follows from the successive can-
cellation decoding scheme chosen. Each user i takes
action (allocating power) P(j)

i when its channel gain is H(j)
i

to transmit at its rate. We define feasible action space for
user i as

Pi =
⎧

⎨

⎩

Pi =
(

P(1)
i , . . . ,P(M)

i

)

: P(k)
i ∈

{

p(1)
i , . . . , p(M)

i

}

,

We define |Pi| � Mi (where |A| denotes the cardinality
of set A) and index the elements of set Pi as {1, . . . ,Mi}.
Let ai denotes a feasible power policy of user i, i.e. ai takes
a value from Pi, and ai(h) is the power level used by user i
when its channel gain is h ∈ H under policy ai. The action
space of K-users is denoted as

P =
K
∏

i=1
Pi, (5)

and the action space of users, other than user i, is

P−i =
K
∏

j=1,j �=i
Pj, (6)

where
∏K

i=1 Ai = A1 × A2 . . . × AK . The action profile of
all the users is denoted as a = (a1, . . . , aK ). A probability
distribution ψ(i) on Pi is called a strategy of user i. When
a certain action is chosen with probability one, it is called a
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pure strategy. The objective of each transmitter is to max-
imize its probability of successful transmission. Since the
actions chosen by one user may influence the outcome for
the other users in terms of probability of successful trans-
mission, this can be formulated as a stochastic game. Let,
for user i, the channel gain in time slot t be Hi(t) and the
action profile chosen is a(t)

i . Also, let a(t) =
(

a(t)
1 , . . . , a(t)

K

)

and H(t) = (H1(t), . . . ,HK (t)). We define the reward of
user i,

ω
(t)
i

(

a(t),H(t)
)

=
{

1, if user i receives an ACK,
0, otherwise. (7)

We are interested in the time average of the reward
process, for a = (

a(1), a(2), . . .
)

,

νi (a) � lim sup
T→∞

1
T

T
∑

t=1
ω

(t)
i

(

a(t),H(t)
)

. (8)

We will restrict ourselves to Markov stationary policies,
i.e. action of user i at time t depends only on its cur-
rent state Hi(t). Then {ωi(a(t),H(t))} are iid across time t.
Hence, by strong law of large numbers, the average reward
νi(a) = E

[

ω
(t)
i
(

a(t),H(t)
)

]

is the same as the probabil-
ity of successful transmission. In terms of a mixed strategy
ψ = (ψi,ψ−i), the average reward is

νi (ψi,ψ−i) =
∑

a∈P

⎡

⎣

K
∏

j=1
ψj
(

aj
)

⎤

⎦ νi (ai, a−i) . (9)

Hence, this stochastic game can be modelled as a one-
shot game in which player i maximizes its utility (9). In
the rest of the paper, we develop algorithms to compute
equilibrium points for this game.

2.1 Multiplicative weight algorithm for learning CCE
In this section, we use MW algorithm [22] to compute
coarse correlated equilibrium (CCE). The cost of each
user can be defined as Ci((ai, a−i) � −νi(ai, a−i). A coarse
correlated equilibrium is defined as follows:

Definition 2.1 A joint distribution ψ on P is called a
CCE if

Ea∼ψ [Ci(a)] ≤ Ea∼ψ

[

Ci
(

âi, a−i
)]

, (10)

for all âi and for all users i, when the expectation on the
RHS is with respect to the joint distribution with ai = âi. A
joint distribution ψ on P is called an ε-CCE if

Ea∼ψ [Ci(a)] ≤ Ea∼ψ

[

Ci
(

âi, a−i
)]+ ε, (11)

for all âi and for all users i.

A coarse correlated equilibrium exists for any finite
game unlike a Nash equilibrium. ACCE is a generalization
of a mixed strategy. A Nash equilibrium and every mixed

strategy Nash equilibrium is also a CCE. We now define
external regret that plays a key role in the MW algorithm.

Definition 2.2 Arora et al. [22] The external regret of
user i given the action sequence a(1)

i , a(2)
i , . . . , a(T)

i with
respect to an action ai is

R(ai) �

1
T

T
∑

t=1
Ea−i∼ψ−i

[

C
(t)
i

(

a(t)
i , a−i

)

− C
(t)
i (ai, a−i)

]

.

(12)

The MW algorithm is a no-regret algorithm, meaning
that the users update their strategies based on the received
cost such that the external regret converges to zero
([22, 23]). TheMW algorithm is presented in Algorithm 1.

2.1.1 Explanation of Algorithm 1
We provide a brief explanation of Algorithm 1. In each
iteration t, ai is the action chosen by user i with prob-

ability 
t
i(ai) = w(t)

i (ai)
∑

ai w
(t)
i (ai)

, and then it pays an average

cost c(t)i (ai). Based on the cost incurred, the users update
their weight as w(t+1)

i (ai) = w(t)
i (ai)[ 1 − ε′]c

(t)
i (ai). Num-

ber of iterations needed to get an ε-approximate point is
T > 2(ln(n)/ε2)−1, as given by Theorem 2.1 below.

Algorithm 1Multiplicative Weights Algorithm

1: For each i, ai, initialize weights, w(1)
i = 1, ∀ ai, i

2: Fix ε′ > 0, ε > 0 (to compute ε-CCE), initialize t = 1
3: do
4: Choose number of iterations T > 2

ln n
ε2

−1, where
n is the maximum number of action of a user which
depends on average power constraint.

5: For each i, choose ai ∼ 

(t)
i , where



(t)
i (ai) = w(t)

i (ai)
∑

ai w
(t)
i (ai)

6: Compute average cost of user i upto time t,
c(t)i (ai) = − 1

t
∑t

k=1 ω
(k)
i

(

a(k)
i

)

1{a(k)
i =ai

} ∀ ai
7: Update the weight

w(t+1)
i (ai) = w(t)

i (ai)
[

1 − ε′]c(t)i (ai)

8: t ← t + 1
9: while t ≤ T

Theorem 2.1 (Remark 2.3 of chapter 17 from [24])
After T iterations, where T > 2

ln n
ε2

−1, of no-regret dynam-
ics (MW algorithm), every player of a cost minimization
game has regret (12) at most ε for each of its strategies.
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Let ψ(t) = ∏K
i=1 


(t)
i denote the outcome distribution at

time t and ψ = 1
T
∑T

t=1 ψ(t), the time averaged history
of these distributions. Then ψ is an ε-coarse correlated
equilibrium.

2.2 Pareto optimal points
In a wireless environment, it is realistic to assume that the
ACK/NACK bits sent to a particular user can be success-
fully decoded by all the other users also (because these are
sent at a low rate using robust codes). In that case, all users
can learn about the utility of each other at time t. We show
in this section that this information can be used to get a
socially optimal Pareto point which generally provides a
better performance than a CCE.

Definition 2.3 An action profile a ∈ P is a Pareto point
if there does not exist another profile ã such that νi(ã) ≥
νi(a),∀ i ∈ K and νj(ã) > νi(a) for some j �= i.

Define

�(a) =
K
∑

i=1
γiνi(a), (13)

for fixed γi ≥ 0, i = 1, . . . ,K . Then a solution to the
optimization problem

max
a

�(a), subject to a ∈ P ,

is a Pareto point [25].
In Algorithm 2 below, we provide a distributed algo-

rithm in which the users update their strategies in a
sequential fashion so as to improve �(a). This distributed
algorithm is the variation of a heuristic stochastic local
search algorithm. In this algorithm, each user chooses a
random action and uses it for a fixed number of time slots
(say T). Then each user finds weighted sum of the utili-
ties (since each user receives ACK/NACK of other users,
it can calculate this quantity). After T slots, a user exper-
iments randomly with probability say, ρ, and then with
some probability updates the action profile according to
its channel state. Now, one user uses this action for next T
slots and the other users use the previous action. Based on
the weighted sum of utilities, the particular user defines
a benchmark. The details of algorithm in the scenario of
interference channel can be found in [18].

2.3 Nash bargaining solution
The Pareto points obtained in Section 4 are socially
optimal but may not be fair to all users: some users may
get much more rates than others. To obtain fair Pareto
points, we use the concept of Nash Bargaining Solution
(NBS) [26].
In NBS, we need to specify a disagreement strategy �

and the corresponding outcome δ = (δ1, . . . , δK ) that

Algorithm 2 Distributed Algorithm to obtain Pareto
Points
1: User i: choose ai ∈ Pi uniformly.
2: Use ai for T time slots.
3: procedureWEIGHT UPDATE
4: Update weight of each user i
5: �̂(a) ← ∑K

i=1 γi
(

1
T
∑T

t=1 ω
(t)
i (ai,Hi(t),Gi(t))

)

6: After T slots: w.p ρi user i experiments
7: procedure ACTION UPDATE
8: w.p ε choose a′

i �= ai, a′
i ∈ Pi

9: w.p. 1 − ε

10: choose a′
i �= ai s.t. hi with high αi gets

higher power level
11: If αi same for all hi, then higher value of chan-

nel state gets higher power level.
12: end procedure
13: Call new action âi
14: User i: use âi for T time slots.
15: âj = aj if user j is not experimenting.
16: User i: find �̂(âi, a−i)
17:
18: if �̂(âi, â−i) > �̂(ai, â−i) then ai ← âi
19: Pbenchmark = �̂(âi, â−i)
20: else
21: Randomly select another action
22: end if
23: end procedure

specifies the utility of each user that it receives by playing
the disagreement strategy whenever there is no improve-
ment over this utility in playing the bargaining outcome.
Thus, each user i is guaranteed with δi if it is feasible. We
define the set of all possible utilities as

V = {(ν1(a), . . . , νK (a)) : a ∈ P} . (14)

This bargaining problem is denoted by (V , δ).
The aim of the bargaining problem is to find a bar-

gaining solution which is Pareto optimal and satisfies
the axioms of symmetry, invariance and independence of
irrelevant alternatives [27].

Theorem 2.2 Nash[26] There exists a unique bargain-
ing solution (provided the feasible region is non-empty) and
it is given by the solution of the optimization problem:

max
K
∏

i=1
(νi − δi)

subject to νi ≥ δi, i = 1, . . . ,K , (ν1, . . . , νK ) ∈ V .�
(15)

A crucial part of a Nash bargaining problem is to choose
the disagreement outcome. It is common to consider an
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equilibrium point as a disagreement outcome. In our
problem, we can consider the utility vector at a correlated
equilibrium as the disagreement outcome. We can also
choose δi = 0 for each i. If we choose the disagreement
outcome to be a correlated equilibrium, each user needs
to evaluate a correlated equilibrium first before running
the algorithm to find a solution of (15), which requires
more computations. Rather, we obtain the disagreement
outcome for our problem by the following procedure

� Each user chooses an action that gives higher power
level to the channel state that has higher probability
of occurrence. In other words, among the set of
feasible actions, choose a subset of pure strategies
that gives the highest power level to the channel state
with highest probability of occurrence. We shrink the
subset by considering the actions that give higher
power level to the second frequently occurring
channel state, and we repeat this process until we get
a single strategy.

� If all the channel states occur with equal probability,
we follow the above procedure by considering the
value of the channel gain instead of the probabilities
of occurrence of the channel gains.

Let ai denote the pure strategy chosen by the ith user,
and let Tδ be the number of time slots over which this
strategy is used. Then the disagreement value for user i is

δi = 1
Tδ

Tδ
∑

t=1
ω

(t)
i (ai,Hi(t)) . (16)

We modify Algorithm 2 to obtain a distributed solution
of (15), with the objective function defined as

�(a) =
K
∏

i=1
(νi(a) − δi) . (17)

Hence, the algorithm for NBS is the following Algo-
rithm 3.
From [26], if the set of utilities V is convex, then a Nash

bargaining solution is also proportionally fair. In our prob-
lem, V is convex, and hence, the solution is proportionally
fair also.

2.3.1 Fairness comparison via Jain’s index
We use Jain’s index to quantify the fairness in the alloca-
tion of rates to multiple users [28]. Let r � (r1, . . . , rK )

be the rates allocated to the K-users in the F-MAC via
the algorithms described in Sections 2.1, 2.3 and 2.2. Jain’s
index is defined as [28]

J (r) =
[

∑K
i=1 ri

]2

K
∑K

i=1 r2i
(18)

Algorithm 3 Distributed Algorithm to obtain Nash Bar-
gaining Solution
1: User i: choose ai ∈ Pi uniformly.
2: Use ai for T time slots.
3: procedure DISAGREEMENT VALUE
4: User i computes disagreement value
5: δi = 1

Tδ

∑Tδ

t=1 ω
(t)
i (ai,Hi(t))

6: User i now updates weight as
7: �̂(a) ← ∏K

i=1 (νi(a) − δi)
8: After T slots: w.p ρi user i experiments
9: procedure ACTION UPDATE

10: w.p ε choose a′
i �= ai, a′

i ∈ Pi
11: w.p. 1 − ε

12: choose a′
i �= ai s.t. hi with high αi gets

higher power level
13: If αi same for all hi, then higher value of chan-

nel state gets higher power level.
14: end procedure
15: Call new action âi
16: User i: use âi for T time slots.
17: âj = aj if user j is not experimenting.
18: User i: find �̂(âi, a−i)
19:
20: if �̂(âi, â−i) > �̂(ai, â−i) then ai ← âi
21: Pbenchmark = �̂(âi, â−i)
22: else
23: Randomly select another action
24: end if
25: end procedure

It can be easily shown that 1/K ≤ J (r) ≤ 1. An allocation
policy is fair ifJ (r) is close to 1, and policy is called unfair
if it is close to 1/K .

3 FadingMAC: with security constraints
In this section, we consider a time-slotted fading MAC-
WT channel with K-users who have messages to transmit
confidentially to a legitimate receiver (Bob), while a pas-
sive eavesdropper (Eve) is listening to the conversation
and trying to decode. The notation corresponding to Bob
is same as in the previous sections. Here, we define the
notation for the channel to Eve. Let {˜Gi(t)} be the chan-
nel gain process from user i to Eve (Table 1). At time t, Eve
receives

˜Z(t) =
K
∑

i=1

˜Gi(t)˜Xi(t) + η̃e(t), (19)

where η̃e(t) is white Gaussian noise, with distribution
N (0, σ 2

e ) and independent of {̃ηb(t)} and the channel gain
processes and {˜Xi(t)}.
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Table 1 Nomenclature

Symbol Definition

K Number of transmitting users

˜Hi(t) Channel gain to Bob

˜Gi(t) Channel gain to Eve

M Possible values of channel gain

Pi Action space

Pi Power constraint for user i

π(i) ith element of permutation

of index set

α
(j)
i pmf of Hi(t)

n Maximum no. of action of a user

ω
(t)
i

(

a(t)
i ,Hi(t)

)

Instantaneous reward for user i

for given action a(t)
i

ri Rate of user i

β
(j)
i pmf of Eve’s channel state, Gi(t)


i(t) Empirical distribution

over action space for user i

ai action choosen by user i

δi Disagreement value for user i

ηb(t) AWGN at Bob

ηe(t) AWGN at Eve

J (r) Jain’s index

C(ai , a−i) Cost of each user

c(ai)(t) Average cost of user i up to time t

ε Regret for cost minimization game

ε′ Weight update factor

1{A} Indicator function

V Utility set for Nash bargaining

� Disagreement strategy for

Nash bargaining solution

δi Disagreement value for user i

We transform this relation in the same way as was done
in transforming (1) to (2). We get

Z(t) =
K
∑

i=1

̂Gi(t)Xi(t) + ηe(t), (20)

where X(t) = ˜X(t)/σe, ̂G(t) = ˜G(t)/σe and ηe(t) =
η̃e(t)/σe.
We define Gi(t) �

∣

∣̂Gi(t)
∣

∣

2. The channel gains of Eves’
channels are assumed discrete valued, in the set Gi �
{

g(1)
i , . . . , g(M)

i

}

. Also, {Gi(t), t ≥ 0} are iid independent of
each other and also of the sequences {Hi(t)}, with distri-
bution

{

β
(1)
i , . . . ,β(M)

i

}

respectively. User i transmits at a
fixed rate ri via wiretap coding. If the receiver successfully

decodes (see details below in this subsection), it sends an
ACK to that particular user. Otherwise, it sends a NACK.
We assume that the NACK and ACK are transmitted at
low rates so that these can be received with negligible
error at the intended transmitter. The goal of each user is
to maximize the probability of successful transmission.
Each user i is assumed to know its own channel gains

Hi(t) and Gi(t) at time t. Since the receiver can estimate
the channel gain of all the users (either by receiving known
pilots or by using initial data received), the receiver can
use successive decoding strategy to decode all the users.
We define

Ce
(

Pπ(i),P−π(i),Hπ(i),Gπ(i)
)

� 1
2
log

(

1 + Gπ(i)Pπ(i)
(

Hπ(i),Gπ(i)
)

1 +∑K
j �=i Gπ(j)Pπ(j)

(

Hπ(j),Gπ(j)
)

)

(21)

Then the receiver will send an ACK to the transmitting
user π(i) if

rπ(i) ≤ (

Cb(Pπ(i),Hπ(i),Gπ(i)) − Ce(Pπ(i),Hπ(i),Gπ(i))
)+ ,
(22)

otherwise a NACK, where (a)+ = max(0, a). The above
constraint follows from the achievable secrecy-rate region
of a Gaussian MAC-WT as discussed in [13]. Each user i
takes action (allocating power) P(j)

i when its channel gains
are H(j)

i and G(j)
i to transmit at its rate.

Now, we can use all the algorithms of Sections 2.1, 2.2
and 2.3 to obtain a CCE, PP and NBS.

3.1 FadingMAC-WTwith individualmain channel CSI only
We consider now the case where the users as well as the
receiver do not know Eve’s channel gain, but only its dis-
tribution. Also, the transmitters do not know even the
distribution of Eve’s channel gains. In this scenario, the
natural metric for the receiver to decide whether to send
an ACK or a NACK will be outage based. First, we define
the secrecy outage, when H1, . . . ,HK are given, as

PSO(π(i)) �

Pr
{

rπ(i) > log
(

1 + Hπ(i)Pπ(i)
(

Hπ(i)
)

1 +∑K
j=i+1Hπ(j)Pπ(j)

(

Hπ(i)
)

)

− log
(

1 + Gπ(i)Pπ(i)
(

Hπ(i)
)

1 +∑K
j �=i Gπ(j)Pπ(j)

(

Hπ(j)
)

)}

, (23)

where probability is over the channel gains Gπ(i). The
receiver sends an ACK if PSo < ε, else the receiver sends a
NACK. Hence, we define utility of user i as
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ωi
(

a(t)
i , hi(t)

)

= 1{PSO(i)<ε}, (24)

where 1{C} is an indicator function. With these util-
ity functions, we can use the algorithms provided in
Sections 2.1, 2.2 and 2.3.

3.2 Avoiding security breach
In the previous sections, we assumed that when the legit-
imate receiver cannot securely decode the message, it
sends a NACK. This is useful for the transmitters to learn
the equilibrium point. But the messages transmitted dur-
ing those slots may be decoded by Eve (with probability
> ε in Section 3.1). Now, we modify the system a little
so as to use the above coding scheme but mitigate this
secrecy loss also.
We assume that each slot is comprised of two subslots.

The channel gain does not change during the whole slot.
In the first part of the slot, we transmit a dummy (ran-
dom) message. If Bob sends an ACK to user i, then the
actual confidential message can be transmitted by user i
in the second subslot at the same power. If Bob sends a
NACK, then user i should not use the second subslot. We
can make the second subslot much larger than the first
subslot so that the rate loss due to the dummy messages is
minimal.

4 Transmission at multiple rates
Till now, we have considered the case where the users are
transmitting at fixed rates. Now, we consider the more
realistic scenario where the users can transmit at differ-
ent rates, depending on their channel gains. We assume
that user i can choose any rate from the rate set Ri =
{

r(1)i , . . . , r(MR)
i

}

. We now define a new strategy set such
that choosing the rate of transmission becomes part of

the action taken along with the power chosen. Hence, we
define the modified strategy set for F-MAC as

Ai �

⎧

⎨

⎩

(

ri,P(1)
i , . . . ,P(M)

i

)

:

ri ∈ Ri,P(k)
i ∈

{

p(1)
i , . . . , p(M)

i

}

,
M
∑

j=1
α

(j)
i P(j)

i ≤ Pi

⎫

⎬

⎭

(25)

and for F-MAC-WT as

Ai �

⎧

⎨

⎩

(

ri,P(1)
i , . . . ,P(M)

i

)

:

ri∈Ri,P(k)
i ∈

{

p(1)
i ,. . . , p(M)

i

}

,
M
∑

j=1
α

(j)
i β

(j)
i P(j)

i ≤ Pi

⎫

⎬

⎭

.

(26)

We can now use all the existing algorithms to compute
CCE, PP and NBS.

5 Numerical results
In this section, we provide several examples using the
algorithms developed in this paper. We divide our exam-
ples into two parts: (1) F-MAC (without security con-
straint) and (2) F-MAC-WT.
We first discuss the quantization of channel gains from

various continuous fading distributions.

5.1 General distribution
Suppose that we want to quantize the channel state to
n states, such that the quantized channel state value
takes values from a known probability mass function

Fig. 1 Sum-rate comparison: CCE vs NBS vs PP (F-MAC, fixed rate case)



Shah et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:116 Page 9 of 14

Fig. 2 Fairness comparison for FMAC fixed rate

Fig. 3 Sum-rate comparison for FMAC: multiple transmission rates

Fig. 4 Fairness comparison for F-MAC: multiple transmission rates
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Fig. 5 F-MAC: sum-rate comparison for our scheme vs existing schemes

Fig. 6 Sum rate with security constraints: comparison of CCE, PP and NBS at fixed transmission rate (with CSI of Eve)

Fig. 7 Fairness of CCE, PP and NBS at fixed transmission rate (with CSI of Eve)
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Fig. 8 Comparison of CCE, PP and NBS for F-MAC-WT, with no CSI of Eve (fixed transmission rate)

{α1,α2, . . . ,αn}. Let ̂H1, . . . ,̂Hn denote the quantized val-
ues of channel state H. We can compute these from the
following equations:

∫
̂Hi

̂Hi−1
fH(h)dh = αi, for i = 2, 3, . . . , n − 1 (27)

Now, the required values for channel gain coefficients
are

Hi =
∫
̂Hi

̂Hi−1
|h| fH(h)dh, i = 2, 3, . . . , n − 1, (28)

Hn =
∫ ∞

̂Hn−1
|h| fH(h)dh. (29)

By taking n large enough, we can have the solution
obtained by quantization, accurate to any degree. For
Rayleigh distribution,

fH(h) = h
μ
e−h2/2μ, h ≥ 0 (30)

where μ is the mean of the fading process. For lognormal
shadowing,

fH(h) = 1
hσ

√
2π

e−
ln(x)−μ

2σ2 (31)

with mean eμ and variance eμ+σ 2/2.

5.1.1 F-MAC (without security constraint)
We first consider a fading MAC where we take H =
{0.1, 0.5, 0.9} chosen with uniform distribution over the
set, for all users, and we assume that a user can choose any
power from the power set {1, 5, . . . , 100}. In this scenario,
we first consider the case when users are transmitting at
fixed rate, 1 bit/sec. In this scenario, we compare the sum
rate obtained by our three algorithms, i.e. Algorithm 1 for
CCE, Algorithm 2 for PP and Algorithm 3 for NBS (see
Fig. 1). We note that NBS and PP are better than CCE in
terms of sum rate. Also, regarding the fairness among the
users, we see from Fig. 2 that NBS is fairer than PP, since

Fig. 9 Comparing fairness of CCE, PP and NBS for F-MAC-WT, with no CSI of Eve (fixed transmission rate)
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Fig. 10 FMAC-WT: sum rate comparison of CCE, PP and NBS for multiple rate case (with CSI of Eve)

the Jain’s index of the rate pair for NBS is close to 1 and
that of PP is away from 1. From this, we conclude that NBS
is the best scheme to use, as it achieves a much higher sum
rate than CCE and each user individually gets better rates
than via CCE and PP.
Next, we consider a more practical case where

users can choose transmission rates from the set
{0.4, 0.8, 1, 1.5, 2, 2.3}. Here also, we compare the sum
rate obtained via CCE, PP and NBS. To get the result for
CCE, all users use Algorithm 1. For finding Pareto points,
all users use Algorithm 2, with the weights γi = 1. For
obtaining Nash Bargaining solution, all users use Algo-
rithm 3. As expected, we observe that PP and NBS give
much better rates than CCE (Fig. 3). From Fig. 4, we also
observe that here also, NBS is fairer among the three
algorithms.
Finally, to compare the performance with the existing

schemes, we take an example where we assume H =
{0.1, 0.9} and the power set is {1, 5, . . . , 100}. Also, as in

the previous example, the users can choose transmission
rates from the set {0.4, 0.8, 1, 1.5, 2, 2.3}. We com-
pare our algorithms (viz. CCE, PP and NBS) with the case
where global knowledge of CSI is assumed. We also com-
pare our schemes with that of [8], where each user knows
its own channel and distribution of other users’ channel
gains. The authors in [8] posed the problem of power
allocation as a Bayesian game and obtained a Bayesian
equilibrium. We observe that our PP and NBS give sum
rates close to this scheme (Fig. 5).
We also observe the following behaviours of the three

schemes (Figs. 2 and 4). At any given SNR, the three
schemes allocate resources (power, rate) to each user.
In CCE, each user optimizes its own objective function
(here probability of successful transmission), without wor-
rying about the other users. Hence, Jain’s index will be
sometimes fair and sometimes unfair. Thus, there will be
fluctuations. In Pareto policy, the sum throughput of all
the users is optimized. But the allocation of resources to

Fig. 11 F-MAC-WT: fairness comparison of CCE, PP and NBS for multiple rate case (with CSI of Eve)
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Fig. 12 F-MAC-WT: Comparison with existing schemes

individual users can often be unfair. This is a known weak-
ness of Pareto points. Hence, Jain’s index is above 0.5.
Nash Bargaining is designed to be a fairer scheme. Hence,
Jain’s index for it is close to 1. At any given SNR, we expect
it to provide a fairer solution than the CCE and a Pareto
point.

5.1.2 F-MAC-WT (with security constraint)
Next, we consider a 2-user fadingMAC-WTwith full CSI.
We letH = {0.1, 0.5, 0.9} and G = {0.05, 0.4, 0.8} for both
the users. We assume that the probability with which any
state can occur is equal, i.e. α

(j)
i = β

(j)
i = 1/3 for i =

1, 2 and j = 1, 2, 3. A user can choose any power from
the power set {1, 5, . . . , 100}. We first consider a fixed rate
scenario. Each user knows its channel gain to Bob and Eve.
We again use Algorithm 1 for obtaining CCE, Algorithm
2 for PP and Algorithm 3 for NBS. We observe that the PP
and the NBS obtain much higher sum rate than the CCE
(Fig. 6). Also, we observe that the NBS is fairer than the PP
(Fig. 7), by observing that Jains’ index is close to 1 in NBS
and away from a in case of PP.
Next, we consider the case where the users do not

have CSI of Eve available but only the distribution is
known, which is more realistic as Eve is passive. Here also,
with modified utility, we compute CCE, PP and NBS via
Algorithms 1, 2 and 3, respectively. As in previous cases,
the same trend is observed, i.e. NBS and PP give better
rates than CCE and NBS is fairer than PP (Figs. 8 and 9).
Next, we consider the case when users have CSI of Eve

available to them and can transmit atmultiple rates choos-
ing from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. From Fig. 10, we note
that PP and NBS give better secrecy sum rates, and from
Fig. 11, we observe fairness of NBS.
We take one more example with H = {0.1, .9} and

G = {0.05, 0.8}. We compare the NBS and the PP with the
case when CSI of the transmitters is known globally but

only the distribution of Eve’s channel gains are known at
all transmitters. This case is studied in [17] for continuous
channel states and a centralized solution which maxi-
mizes the sum rate is found. We also find the Bayesian
equilibrium (BE) for the case when each user knows the
distribution of all the channel gains to Eve, as done in [8]
for F-MACwithout security constraints. Here, we observe
that the NBS and the PP outperform BE at high SNR
(Fig. 12). At low SNR, the sum rate for the NBS and the PP
are quite close to that of BE. We also observe here that the
CCE performs the worst.

6 Conclusions
In this paper, a K-user fading multiple access channel with
and without security constraints is studied. First, we con-
sider a F-MAC without the security constraints. Under
the assumption of individual CSI of users, we propose the
problem of power allocation as a stochastic game when
the receiver sends an ACK or a NACK depending on
whether it was able to decode themessage or not.We have
used multiplicative weight no-regret algorithm to obtain
a coarse correlated equilibrium (CCE). Then we consider
the case when the users can decode ACK/NACK of each
other. In this scenario, we provide an algorithm to maxi-
mize the weighted sum utility of all the users and obtain
a Pareto optimal point. PP is socially optimal but may
be unfair to individual users. Next, we consider the case
where the users can cooperate with each other so as to
disagree with the policy which will be unfair to individual
user. We then obtain a Nash bargaining solution, which
in addition to being Pareto optimal is also fair to each
user. We use Jain’s index to quantify the fairness between
different algorithms.
Next, we study a K-user fading multiple access wiretap

channel with CSI of Eve available to the users. We use the
previous algorithms to obtain a CCE, PP and NBS. Next,
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we consider the case where each user does not know the
CSI of Eve but only its distribution. In that case, we use
secrecy outage as the criterion for the receiver to send an
ACK or a NACK. Here also, we use the previous algo-
rithms to obtain a CCE, PP or NBS. Finally, we show that
our algorithms can be extended to the case where a user
can transmit at different rates. At the end, we provide a
few examples to compute different solutions and compare
them under different CSI scenarios.
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