Skip to main content

Advertisement

Distributed Temporal Multiple Description Coding for Robust Video Transmission

Article metrics

  • 1193 Accesses

  • 12 Citations

Abstract

The problem of multimedia communications over best-effort networks is addressed here with multiple description coding (MDC) in a distributed framework. In this paper, we first compare four video MDC schemes based on different time splitting patterns and temporal two- or three-band motion-compensated temporal filtering (MCTF). Then, the latter schemes are extended with systematic lossy description coding where the original sequence is separated into two subsequences, one being coded as in the latter schemes, and the other being coded with a Wyner-Ziv (WZ) encoder. This amounts to having a systematic lossy Wyner-Ziv coding of every other frame of each description. This error control approach can be used as an alternative to automatic repeat request (ARQ) or forward error correction (FEC), that is, the additional bitstream can be systematically sent to the decoder or can be requested, as in ARQ. When used as an FEC mechanism, the amount of redundancy is mostly controlled by the quantization of the Wyner-Ziv data. In this context, this approach leads to satisfactory rate-distortion performance at the side decoders, however it suffers from high redundancy which penalizes the central description. To cope with this problem, the approach is then extended to the use of MCTF for the Wyner-Ziv frames, in which case only the low-frequency subbands are WZ-coded and sent in the descriptions.

Publisher note

To access the full article, please see PDF

Author information

Correspondence to Olivier Crave.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Keywords

  • Forward Error Correction
  • Video Transmission
  • Multimedia Communication
  • Time Split
  • Multiple Description Code