Skip to main content

Table 1 Computation complexity comparison between various tracking algorithms

From: High-order approximation algorithm using Gram-Schmidt QR transformations coupled with an iterative correction process for tracking frequency drift in OFDM systems

  Real multiplication Real addition Real division Square roots
EM (M + 1)(8vN + 13N - 1) 2(M + 1)(2vN + N - v - 2) M + 1 0
JML-CFE 2N(13N + 2v + 8) 12N2 + 2vN - 3N - 2v - 6 1 0
The first-order algorithm M + 1 ( 8 N 2 + 13 N - 1 ) + 4 vN M + 1 ( 4 N 2 - 3 ) + 2 v N - 1 - 1 M + 1 0
The K th-order algorithm (K ≥ 2) M + 1 { ( 20 K + 8 ) N 2 + 5 K + 4 N + K [ L 3 K 2 - 1 - 1 ] } + 4 vN M + 1 { 2 ( 2 K + 1 ) N 2 - 2 K + 1 N + L K - 1 ( 3 K 2 + K / 2 - 1 ) } + M + 2 v N - 1 M + 1 [ LK 3 K - 1 / 2 + K ] (M + 1)LK