Skip to main content

Table 1 Probability density functions for the fading models considered in this paper

From: Approximations of the packet error rate under quasi-static fading in direct and relayed links

  p.d.f. of γ =| h [ m ]| 2 Parameters
Rayleigh model \(\displaystyle \frac {1}{\bar {\gamma }} \exp \left (- \frac {\gamma }{\bar {\gamma }} \right) \) \(\bar {\gamma }\)
Rice model \(\displaystyle \frac {(1+K)e^{-K}}{\bar {\gamma }}\exp \left (-\frac {\gamma (1+K)}{\bar {\gamma }}\right)I_{0}\left (2 \sqrt {K(K+1)\frac {\gamma }{\bar {\gamma }}} \right)\) \(K,\bar {\gamma }\)
Nakagami model \(\displaystyle \frac {m^{m} \gamma ^{m - 1}}{\left (\bar {\gamma } \right)^{m} \Gamma (m)} \exp \left (-\cfrac {m \gamma }{\bar {\gamma }} \right) \) \(m, \bar {\gamma }\)
  1. I 0 (·) is the Bessel function of type 1 and order 0, Γ(·) is the Gamma function.