# Table 2 Procedure of solving the problem (Equations 12 to 14) by the proposed Algorithm 2

Steps

Description

1)

Initialize the algorithm with $$\left \{\textbf {F}_{l}^{(0)}\right \}$$ and $$\left \{\textbf {B}_{k}^{(0)}\right \}$$ satisfying Equations 9 and 10; Set n=0.

2)

Obtain $$\left \{\textbf {W}^{(n+1)}_{k}\right \}$$ based on Equation 16 with fixed $$\left \{\textbf {F}_{l}^{(n)}\right \}$$ and $$\left \{\textbf {B}_{k}^{(n)}\right \}$$.

3)

For l=1,,L, update $$\textbf {F}_{l}^{(n+1)}$$ through solving the problem (Equation 38) with given $$\left \{\textbf {B}_{k}^{(n)}\right \}$$, $$\left \{\textbf {W}_{k}^{(n+1)}\right \}$$, and $$\textbf {F}_{j}^{(n)}$$, j=1,,L, jl.

4)

For k=1,,K, update $$\textbf {B}_{k}^{(n+1)}$$ by solving the problem (Equations 39 to 41) with fixed $$\left \{\textbf {F}_{l}^{(n+1)}\right \}$$, $$\left \{\textbf {W}_{k}^{(n+1)}\right \}$$, and $$\textbf {B}_{j}^{(n)}$$, j=1,,K, jk.

5)

If SMSE(n)−SMSE(n+1)ε, then end. Otherwise, let n:=n+1 and go to step 2. 