1.
|
Initialization: S = ∅, K = ∅, L = ∅ |
2.
|
Clustering Procedure:
|
3.
|
For each resource pattern with only one RB rb ∈ {1,2,…,K
rb
}
|
4.
|
Find the CUE sub-cluster and DUE sub-cluster \( \left\{\overline{k},\overline{l}\right\}= \arg \underset{\left\{k,l\right\}}{ \max }{t}_{k,l,rb} \)
|
5.
|
\( K=K{\displaystyle \cup}\kern0.5em \overline{k} \)
|
6.
|
\( L=L\;{\displaystyle \cup}\kern0.5em \overline{l} \)
|
7.
|
End
|
8.
|
Searching Space Reduction Procedure:
|
9.
|
For each \( \widehat{k}\in K;\widehat{l}\in L \) sets
|
10.
|
\( {s}_0=\left\{i\Big|\left(\widehat{k}-1\right)*{N}_{all,d}{N}_{all,rb}+\left(\widehat{l}-1\right)*{N}_{all,rb}+1\le i\le \left(\widehat{k}-1\right)*{N}_{all,d}{N}_{all,rb}+\widehat{l}*{N}_{all,rb}\right\} \)
|
12.
|
S = S ∪ s
0
|
13.
|
End
|
14.
|
Joint Solution Procedure:
|
15.
|
Obtain the reduced-dimension optimization problem
|
16.
|
\( {x}_s=\underset{{\mathbf{x}}_S}{ \min}\left\{-{\mathbf{t}}_{\boldsymbol{S}}^{\boldsymbol{T}}{\mathbf{x}}_S\right\} \), s.t. \( {\mathbf{R}}_{:,S}{\mathbf{x}}_S={\mathbf{1}}_{\left({N}_c{N}_d{N}_{rb}+{K}_c+{K}_d\right)\times 1} \)
|
17.
|
Find its solution based on the BBS algorithm
|
18.
|
Return \( {x}_s \)
|
19.
|
End
|