# Table 2 Irreducible polynomials $$p\left (x^{\frac {a}{b}}\right)$$ against primitive polynomials p(xa)
deg p(x a) $$p\left (x^{\frac {a}{b}}\right)$$
2 (x a)2+(x a)+1 $$\left (x^{\frac {a}{3}}\right)^{6}+\left (x^{\frac {a}{3}}\right)^{3}+1$$
3 (x a)3+(x a)+1 $$\left (x^{\frac {a}{7}}\right)^{21}+\left (x^{\frac {a}{7}}\right)^{7}+1$$
4 (x a)4+(x a)+1 $$\left (x^{\frac {a}{3}}\right)^{12}+\left (x^{\frac {a}{3}}\right)^{3}+1,\left (x^{\frac {a}{5}}\right)^{20}+\left (x^{\frac {a}{5}}\right)^{5}+1$$
6 (x a)6+(x a)+1 $$\left (x^{\frac {a}{3}}\right)^{18}+\left (x^{\frac {a}{3}}\right)^{3}+1,\left (x^{\frac {a}{7}}\right)^{42}+\left (x^{\frac {a}{7}}\right)^{7}+1$$
8 (x a)8+(x a)4+(x a)3 $$\left (x^{\frac {a}{3}}\right)^{24}+\left (x^{\frac {a}{3}}\right)^{12}+\left (x^{\frac {a}{3}}\right)^{9}+\left (x^{\frac {a}{3} }\right)^{6}+1,$$
$$\left (x^{\frac {a}{5}}\right)^{40}+\left (x^{\frac {a}{5}}\right)^{20}+\left (x^{\frac {a}{5} }\right)^{15}+\left (x^{\frac {a}{5}}\right)^{10}+1$$
9 (x a)9+(x a)4+1 $$\left (x^{\frac {a}{7}}\right)^{63}+\left (x^{\frac {a}{7} }\right)^{28}+1$$
10 (x a)10+(x a)3+1 $$\left (x^{\frac {a}{3}}\right)^{30}+\left (x^{\frac {a}{3} }\right)^{9}+1$$