Skip to main content

Table 3 The results of PFA_SPF algorithm for sample network

From: An initial analysis of packet function-aware extension to Dijkstra algorithm for wireless networks

Node Interval D(x) Path
1 [ 0.0,1500.0) 1.26+0.004x 0, 1
2 [ 0.0,25.0) 3.99+0.015x 0, 23, 7, 2
  [ 25.0,161.5) 4.01+0.014x 0, 23, 5, 2
  [ 161.5,277.4) 4.64+0.011x 0, 19, 24, 5, 2
  [ 277.4,365.2) 5.50+0.007x 0, 19, 24, 5, 28, 2
  [ 365.2,1500.0) 6.34+0.005x 0, 11, 19, 24, 5, 28, 2
3 [ 0.0,161.5) 1.69+0.009x 0, 3
  [ 161.5,1500.0) 2.32+0.005x 0, 15, 3
4 [ 0.0,161.5) 4.21+0.018x 0, 24, 28, 4
  [ 161.5,277.4) 4.84+0.014x 0, 19, 24, 28, 4
  [ 277.4,365.2) 5.70+0.011x 0, 19, 24, 5, 28, 4
  [ 365.2,1500.0) 6.54+0.009x 0, 11, 19, 24, 5, 28, 4
5 [ 0.0,161.5) 2.75+0.010x 0, 23, 5
  [ 161.5,365.2) 3.38+0.006x 0, 19, 24, 5
  [ 365.2,1500.0) 4.22+0.004x 0, 11, 19, 24, 5
6 [ 0.0,62.9) 2.73+0.011x 0, 22, 6
  [ 62.9,1500.0) 3.12+0.004x 0, 22, 13, 6
7 [ 0.0,411.3) 2.73+0.011x 0, 23, 7
  [ 411.3,1500.0) 5.28+0.004x 0, 11, 19, 24, 5, 7
8 [ 0.0,161.5) 5.27+0.019x 0, 24, 28, 4, 8
  [ 161.5,277.4) 5.90+0.015x 0, 19, 24, 28, 4, 8
  [ 277.4,365.2) 6.76+0.012x 0, 19, 24, 5, 28, 4, 8
  [ 365.2,1500.0) 7.60+0.010x 0, 11, 19, 24, 5, 28, 4, 8
9 [ 0.0,58.6) 3.38+0.018x 0, 23, 9
  [ 58.6,411.3) 3.79+0.011x 0, 23, 7, 9
  [ 411.3,1500.0) 6.34+0.005x 0, 11, 19, 24, 5, 7, 9
10 [ 0.0,25.0) 2.30+0.006x 0, 19, 10
  [ 25.0,546.7) 2.32+0.005x 0, 11, 10
  [ 546.7,1500.0) 3.14+0.004x 0, 11, 19, 10
11 [ 0.0,1500.0) 1.06+0.000x 0, 11
12 [ 0.0,25.0) 3.56+0.011x 0, 19, 10, 12
  [ 25.0,365.2) 3.58+0.010x 0, 11, 10, 12
  [ 365.2,546.7) 4.42+0.007x 0, 11, 10, 17, 12
  [ 546.7,1500.0) 5.24+0.006x 0, 11, 19, 10, 17, 12
13 [ 0.0,1500.0) 2.08+0.003x 0, 22, 13
14 [ 0.0,161.5) 1.69+0.009x 0, 14
  [ 161.5,365.2) 2.32+0.005x 0, 19, 14
  [ 365.2,1500.0) 3.16+0.003x 0, 11, 19, 14
15 [ 0.0,1500.0) 1.26+0.004x 0, 15
16 [ 0.0,1500.0) 3.12+0.004x 0, 22, 13, 16
17 [ 0.0,25.0) 3.34+0.007x 0, 19, 10, 17
  [ 25.0,546.7) 3.36+0.007x 0, 11, 10, 17
  [ 546.7,1500.0) 4.18+0.005x 0, 11, 19, 10, 17
18 [ 0.0,1500.0) 2.30+0.006x 0, 15, 18
19 [ 0.0,365.2) 1.26+0.004x 0, 19
  [ 365.2,1500.0) 2.10+0.002x 0, 11, 19
20 [ 0.0,58.6) 2.95+0.014x 0, 1, 20
  [ 58.6,1500.0) 3.36+0.007x 0, 15, 18, 20
21 [ 0.0,1500.0) 2.52+0.009x 0, 1, 21
22 [ 0.0,1500.0) 1.04+0.001x 0, 22
23 [ 0.0,468.5) 1.69+0.009x 0, 23
  [ 468.5,1500.0) 4.22+0.004x 0, 11, 19, 24, 23
24 [ 0.0,161.5) 1.69+0.009x 0, 24
  [ 161.5,365.2) 2.32+0.005x 0, 19, 24
  [ 365.2,1500.0) 3.16+0.003x 0, 11, 19, 24
25 [ 0.0,1500.0) 2.08+0.003x 0, 22, 25
26 [ 0.0,545.7) 1.69+0.009x 0, 26
  [ 545.7,1500.0) 4.20+0.004x 0, 11, 19, 24, 26
27 [ 0.0,25.0) 3.99+0.015x 0, 19, 10, 27
  [ 25.0,62.9) 4.01+0.014x 0, 11, 10, 27
  [ 62.9,546.7) 4.40+0.008x 0, 11, 10, 17, 27
  [ 546.7,1500.0) 5.22+0.007x 0, 11, 19, 10, 17, 27
28 [ 0.0,161.5) 2.95+0.014x 0, 24, 28
  [ 161.5,277.4) 3.58+0.010x 0, 19, 24, 28
  [ 277.4,365.2) 4.44+0.007x 0, 19, 24, 5, 28
  [ 365.2,1500.0) 5.28+0.004x 0, 11, 19, 24, 5, 28
29 [ 0.0,161.5) 3.99+0.015x 0, 15, 18, 29
  [ 161.5,1500.0) 4.62+0.011x 0, 15, 18, 20, 29