Skip to main content

Table 1 Proposed algorithm

From: DOA estimation using multiple measurement vector model with sparse solutions in linear array scenarios

Input : YM × L, Φ M × N, K
initialize : Ω ← ϕD = [I K , 0 K × (L − K)] '
[u, L, V] = svd(Y)
Y red  = YVD
U = orth(Y red )
\( \Omega =\left\{\mathrm{j}\ \Big|\ c= argma{x}_j\left(\frac{{\left\Vert {\varPhi}_j^H U\right\Vert}_2}{{\left\Vert {\varPhi}_j\right\Vert}_2}\right)\right\},\kern1.25em \mathrm{select}\ K\ \mathrm{column}\ \mathrm{indices}\ (j)\ \mathrm{that}\ \mathrm{maximize}\ c \)
\( X={\Phi}_{\Omega}^{\dagger } Y \)
output : X, Ω