Skip to main content

Table 1 Message passing in BP-based channel decoding and state estimation system

From: Performance analysis on joint channel decoding and state estimation in cyber-physical systems

Step

Distribution

Gaussian distribution

Details

x(t−1)→x(t)

π x(t−1),x(t)(x(t−1))

\(\mathcal {N}\left (\mathbf {x}_{t-1}, \mathbf {x}_{\pi _{x},t-1}, \mathbf {P}_{\pi _{x},t-1}\right) \)

*

x(t)→y(t)

Ï€ x(t)(x(t))

\(\mathcal {N} \left (\mathbf {x}_{t}, \mathbf {x}_{l, t}, \mathbf {P}_{l, t}\right)\)

\(\begin {array}{l}\mathbf {x}_{l, t}= \mathbf {Ax}_{\pi _{x}, t-1}+\mathbf {Bu}_{t-1}; \\ \mathbf {P}_{l, t} = \mathbf {A} \mathbf {P}_{\pi _{x},t-1} \mathbf {A}^{T} +\mathbf {\Sigma }_{n}\end {array}\)

–

Ï€ x(t),y(t)(x(t))

\(\mathcal {N}\left (\mathbf {x}_{t}, \mathbf {x}_{\pi _{y},t}, \mathbf {P}_{\pi _{y}, t}\right) \)

\(\mathbf {x}_{\pi _{y},t}= \mathbf {x}_{l, t}; \mathbf {P}_{\pi _{y}, t}= \mathbf {P}_{l, t} \)

y(t)→b(t)

Ï€ y(t)(y(t))

\(\mathcal {N}\left (\mathbf {y}_{t}, \mathbf {y}_{l,t}, \mathbf {S}_{l, t}\right)\)

\( \mathbf {y}_{l,t}= \mathbf {C} \mathbf {x}_{\pi _{y},t} ;\mathbf {S}_{l, t} =\mathbf {C} \mathbf {P}_{\pi _{y}, t} \mathbf {C}^{T} +\mathbf {\Sigma }_{w}\)

–

Ï€ y(t),b(t)(y(t))

\(\mathcal {N}(\mathbf {y}_{t}, \mathbf {y}_{\pi, t}, \mathbf {S}_{\pi, t})\)

y π,t =y l,t ;S π,t =S l,t

b(t)→y(t)

λ b(t),y(t)(y(t))

\(\mathcal {N}(\mathbf {y}_{t}, \mathbf {y}_{\lambda, t}, \mathbf {S}_{\lambda, t})\)

The y λ,t and S λ,t is provided in Section 4.

y(t)→x(t)

λ y(t),x(t)(x(t))

\(\mathcal {N}(\mathbf {x}_{t}, \mathbf {x}_{\lambda _{y},t}, \mathbf {P}_{\lambda _{y},t})\)

\(\mathbf {x}_{\lambda _{y},t}= \mathbf {C}^{-1}\times \mathbf {y}_{\lambda, t};{\newline } \mathbf {P}_{\lambda _{y},t} = \mathbf {C}^{-1} (\mathbf {S}_{\lambda, t}+\mathbf {\Sigma }_{w})(\mathbf {C}^{-1})^{T}\)

x(t)→x(t+1)

Ï€ x(t),x(t+1)(x(t))

\(\mathcal {N}(\mathbf {x}_{t}, \mathbf {x}_{\pi _{x},t}, \mathbf {P}_{\pi _{x},t}) \)

\( \mathbf {P}_{\pi _{x},t}=(\mathbf {P}_{l, t}^{-1}+ \mathbf {P}_{\lambda _{y},t}^{-1})^{-1}; \mathbf {x}_{\pi _{x},t} = \mathbf {P}_{\pi _{x},t}(\mathbf {P}_{l, t}^{-1}\mathbf {x}_{l,t} + \mathbf {P}_{\lambda _{y},t}^{-1}\mathbf {x}_{\lambda _{y},t})\)