Skip to main content

Table 3 GLPSM coding coefficients for NT = 8

From: Multiple transmit antennas for low PAPR spatial modulation in SC-FDMA: single vs. multiple streams

  t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8
p = 0 \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}} \)
p = 1 \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{4}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{2}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{4}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{5\uppi}{4}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{2}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{7\uppi}{4}} \)
p = 2 \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{2}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{2}} \) \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{2}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{2}} \)
p = 3 \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{4}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{2}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{4}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{7\uppi}{4}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{2}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{5\uppi}{4}} \)
p = 4 \( \sqrt{\frac{1}{8}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}} \) \( -\sqrt{\frac{1}{8}} \)
p = 5 \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{5\uppi}{4}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{2}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{7\uppi}{4}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{4}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{2}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{4}} \)
p = 6 \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{2}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{2}} \) \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{2}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{2}} \)
p = 7 \( \sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{7\uppi}{4}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{2}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{5\uppi}{4}} \) \( -\sqrt{\frac{1}{8}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{3\uppi}{4}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{2}} \) \( \sqrt{\frac{1}{8}}{e}^{j\frac{\uppi}{4}} \)