Skip to main content

Table 2 Energy efficient subnet resource allocation algorithm

From: Research on energy-efficient routing algorithm based on SWIPT in multi-hop clustered WSN for 5G system

EESRA: Energy efficient subnet resource allocation algorithm
Input:
      \(I_{\max }\): the upper limit of the iterations number; \(\Delta\):infinitesimal threshold;
      q: intermediate energy efficiency; j: iteration counter;
Output:
      \(\varvec{\mathcal { P }}^{*}, \varvec{\rho }^{*}, \varvec{\mathcal {S}}^{*}\): the solution of resource allocation policy for \(CoLink_{ij}\)
      \(q^{*}, U_{(i j)}^{*}, U_{T P(i j)}^{*}\): optimal energy efficiency, throughput and power consumption
      for \(CoLink_{ij}\),
1:    \(q \leftarrow 0, j \leftarrow 0\)
2:    while \(j \le I_{\max }\) do
3:       Solve the problem (17) with given q to obtain the resource allocation policy
         \(\left\{ \varvec{\mathcal { P }}^{\prime }, \varvec{\rho }^{\prime }, \varvec{\mathcal {S}}^{\prime }\right\}\) and \(F\left( \varvec{\mathcal { P }}^{\prime }, \varvec{\rho }^{\prime }, \varvec{\mathcal {S}}^{\prime }\right)\)
4:       if \(F\left( \varvec{\mathcal { P }}^{\prime }, \varvec{\rho }^{\prime }, \varvec{\mathcal {S}}^{\prime }\right) < \Delta\) then
5:          return \(\left\{ \varvec{\mathcal { P }}^{*}, \varvec{\rho }^{*}, \varvec{\mathcal {S}}^{*}\right\} = \left\{ \varvec{\mathcal { P }}^{\prime }, \varvec{\rho }^{\prime }, \varvec{\mathcal {S}}^{\prime }\right\}\) and \(q^{*}=\frac{U_{(ij)}^{*}}{U_{T P(ij)}^{*}},\)
            \(U_{(ij)}^{*}=U_{(ij)}\left( \varvec{\mathcal { P }}^{\prime }, \varvec{\rho }^{\prime }, \varvec{\mathcal {S}}^{\prime }\right)\), \(U_{T P(i j)}^{*}=U_{T P(i j)}\left( \varvec{\mathcal { P }}^{\prime }, \varvec{\rho }^{\prime }, \varvec{\mathcal {S}}^{\prime }\right)\)
6:       else
7:          \(q=\frac{U_{(i j)}\left( \varvec{\mathcal { P }}^{\prime }, \varvec{\rho }^{\prime }, \varvec{\mathcal {S}}^{\prime }\right) }{U_{T P(i j)}\left( \varvec{\mathcal { P }}^{\prime }, \varvec{\rho }^{\prime }, \varvec{\mathcal {S}}^{\prime }\right) }\) and \(j=j+1\)
8:       end if
9:    end while