Skip to main content

Table 1 Cost of septuple formula for elliptic curves over binary fields

From: Efficient scalar multiplication of ECC using SMBR and fast septuple formula for IoT

Sub-expression Intermediate value Cost
\(A\) \(x^{2} ,x^{3} ,x^{4}\) \(2\left[ s \right] + 1\left[ m \right]\)
\(B\)   \(1\left[ m \right]\)
\(C\) \(A^{2} ,A^{3} ,x^{4} B\) \(1\left[ s \right] + 2\left[ m \right]\)
\(D\) \(B^{2} ,A(B^{2} + C)\) \(1\left[ s \right] + 1\left[ m \right]\)
\(E\) \(A^{6} ,x^{4} B(A^{3} + B^{2} )\) \(1\left[ s \right] + 1\left[ m \right]\)
\(F\) \(C{}^{2},A^{2} D\) \(1\left[ s \right] + 2\left[ m \right]\)
\(\frac{1}{E}\)   \(1\left[ i \right]\)
\(\frac{xF}{{E^{2} }}\) \(\frac{1}{{E^{2} }},xF\) \(1\left[ s \right] + 2\left[ m \right]\)
\(u\) \(xD,xD\left( {\frac{xF}{{E^{2} }}} \right)\) \(2\left[ m \right]\)
\(v\) \(CF,\frac{CF}{E},(x^{2} + y)D,\left( {\frac{xF}{{E^{2} }}} \right)\left[ {\frac{CF}{E} + (x^{2} + y)D} \right]\) \(4\left[ m \right]\)
Total:\(1\left[ i \right] + 7\left[ s \right] + 16\left[ m \right]\)