Skip to main content

Table 3 Fox’s H-equivalents of typical and generalized statistical models for instantaneous received SNR \(\gamma _i, i \in \{B,E \}\), and \({\bar{\gamma }}_i\) is the average SNR

From: An overview of generic tools for information-theoretic secrecy performance analysis over wiretap fading channels

Model

\({\boldsymbol{{\mathcal {K}}}}\)

\(\boldsymbol{\lambda}\)

m n

\({\boldsymbol{\mathfrak {a}}}\)

\({\boldsymbol{\mathfrak {b}}}\)

p q

\({\boldsymbol{\mathscr {A}}}\)

\({\boldsymbol{\mathscr {B}}}\)

Rayleigh

\(\frac{1}{{\bar{\gamma }}_i}\)

\(\frac{1}{{\bar{\gamma }}_i}\)

1 0

–

0

0 1

–

1

Nakagami

\(\frac{m}{\Gamma (m){\bar{\gamma }}_i}\)

\(\frac{m}{{\bar{\gamma }}_i}\)

1 0

–

\(m -1\)

0 1

–

1

Weibull

\(\frac{\Gamma (1+\frac{2}{\alpha })}{{\bar{\gamma }}_i}\)

\(\frac{\Gamma (1+\frac{2}{\alpha })}{{\bar{\gamma }}_i}\)

1 0

–

\(1 - \frac{2}{\alpha }\)

0 1

–

\(\frac{2}{\alpha }\)

\(\alpha\)-\(\mu\)

\(\frac{\Gamma (\mu + \frac{2}{\alpha })}{\Gamma (\mu )^2{\bar{\gamma }}_i}\)

\(\frac{\Gamma (\mu +\frac{2}{\alpha })}{\Gamma (\mu ){\bar{\gamma }}_i}\)

1 0

–

\(\mu - \frac{2}{\alpha }\)

0 1

–

\(\frac{2}{\alpha }\)

Maxswell

\(\frac{3}{\sqrt{\pi }{\bar{\gamma }}_i}\)

\(\frac{3}{2{\bar{\gamma }}_i}\)

1 0

–

\(\frac{1}{2}\)

0 1

–

1

\(N*\)(\(\alpha\)-\(\mu )\)

\(\prod \limits _{i=1}^N\frac{\Gamma (\mu _i + \frac{2}{\alpha _i})}{\Gamma (\mu _i)^2{\bar{\gamma }}_i}\)

\(\prod \limits _{i=1}^N\frac{\Gamma (\mu _i + \frac{2}{\alpha _i})}{\Gamma (\mu _i){\bar{\gamma }}_i}\)

N 0

–

\((\mu _1 - \frac{2}{\alpha _1},\cdots ,\mu _N - \frac{2}{\alpha _N})\)

0 N

–

\((\frac{2}{\alpha _1},\cdots , \frac{2}{\alpha _N})\)

Fisher-Snedecor \({\mathcal {F}}\)

\(\frac{m}{m_s{\bar{\gamma }}_i \Gamma (m)\Gamma (m_s)}\)

\(\frac{m}{m_s{\bar{\gamma }}_i }\)

1 1

\(-m_{s}\)

1

1 1

\(m-1\)

1

Generalized-\({\mathcal {K}}\)

\(\frac{m_l m_{sl}}{\Gamma (m_l)\Gamma (m_{sl}){\bar{\gamma }}_i}\)

\(\frac{m_1m_2}{{\bar{\gamma }}_i}\)

2 0

–

\((m_l-1 ,m_{s1} - 1)\)

0 2

–

(1, 1)

EGK

\(\frac{\Gamma (m + \frac{1}{\xi }) \Gamma (m_s + \frac{1}{\xi _s})}{{\bar{\gamma }}_i\Gamma (m)^2\Gamma (m_s)^2}\)

\(\frac{\Gamma (m + \frac{1}{\xi }) \Gamma (m_s + \frac{1}{\xi _s})}{{\bar{\gamma }}_i\Gamma (m)\Gamma (m_s)}\)

2 0

–

\((m - \frac{1}{\xi }, m_{s} - \frac{1}{\xi _{s}})\)

0 2

–

\((\frac{1}{\xi }, \frac{1}{\xi _{s}})\)