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We investigate the optimal design of uniform rectangular arrays (URAs) employed in multiple-input multiple-output communi-
cations, where a strong line-of-sight (LOS) component is present. A general geometrical model is introduced to model the LOS
component, which allows for any orientation of the transmit and receive arrays, and incorporates the uniform linear array as a
special case of the URA. A spherical wave propagation model is used. Based on this model, we derive the optimal array design
equations with respect to mutual information, resulting in orthogonal LOS subchannels. The equations reveal that it is the dis-
tance between the antennas projected onto the plane perpendicular to the transmission direction that is of importance with respect
to design. Further, we investigate the influence of nonoptimal design, and derive analytical expressions for the singular values of
the LOS matrix as a function of the quality of the array design. To evaluate a more realistic channel, the LOS channel matrix is
employed in a Ricean channel model. Performance results show that even with some deviation from the optimal design, we get
better performance than in the case of uncorrelated Rayleigh subchannels.
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1. INTRODUCTION

Multiple-input multiple-output (MIMO) technology is a
promising tool for enabling spectrally efficient future wire-
less applications. A lot of research effort has been put into the
MIMO field since the pioneering work of Foschini and Gans
[1] and Telatar [2], and the technology is already hitting the
market [3, 4]. Most of the work on wireless MIMO systems
seek to utilize the decorrelation between the subchannels in-
troduced by the multipath propagation in the wireless envi-
ronment [5]. Introducing a strong line-of-sight (LOS) com-
ponent for such systems is positive in the sense that it boosts
the signal-to-noise ratio (SNR). However, it will also have a
negative impact on MIMO performance as it increases the
correlation between the subchannels [6].

In [7], the possibility of enhancing performance by
proper antenna array design for MIMO channels with a
strong LOS component was investigated, and it was shown
that the performance can actually be made superior for pure
LOS subchannels compared to fully decorrelated Rayleigh
subchannels with equal SNR. The authors of the present

paper have previously studied the optimal design of uni-
form linear arrays (ULAs) with respect to mutual informa-
tion (MI) [8, 9], and have given a simple equation for the
optimal design. Furthermore, some work on the design of
uniform rectangular arrays (URAs) for MIMO systems is pre-
sented in [10], where the optimal design for the special case
of two broadside URAs is found, and the optimal through-
put performance was identified to be identical to the optimal
Hadamard bound. The design is based on taking the spheri-
cal nature of the electromagnetic wave propagation into ac-
count, which makes it possible to achieve a high rank LOS
channel matrix [11]. Examples of real world measurements
that support this theoretical work can be found in [12, 13].

In this paper, we extend our work from [8], and use the
same general procedure to investigate URA design. We intro-
duce a new general geometrical model that can describe any
orientation of the transmit (Tx), receive (Rx) URAs, and also
incorporate ULAs as a special case. Again, it should be noted
that a spherical wave propagationmodel is employed, in con-
trast to themore commonly applied approximate plane-wave
model. This model is used to derive new equations for the
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optimal design of the URAs with respect to MI. The results
are more general than those presented in an earlier work, and
the cases of two ULAs [8] and two broadside URAs [10] can
be identified as two special cases. The proposed principle is
best suited for fixed systems, for example, fixed wireless ac-
cess and radio relay systems, because the optimal design is
dependent on the Tx-Rx distance and on the orientation of
the two URAs. Furthermore, we include an analysis of the in-
fluence of nonoptimal design, and analytical expressions for
the singular values of the LOS matrix are derived as a func-
tion of the quality of the array design. The results are useful
for system designers both when designing new systems, as
well as when evaluating the performance of existing systems.

The rest of the paper is organized as follows. Section 2
describes the system model used. In Section 3, we present
the geometrical model from which the general results are de-
rived. The derivation of the optimal design equations is given
in Section 4, while the eigenvalues of the LOS channel matrix
are discussed in Section 5. Performance results are shown in
Section 6, while conclusions are drawn in Section 7.

2. SYSTEMMODEL

The wireless MIMO transmission system employs N Tx an-
tennas and M Rx antennas when transmitting information
over the channel. Assuming slowly varying and frequency-flat
fading channels, we model the MIMO transmission in com-
plex baseband as [5]

r = √η ·Hs + n, (1)

where r ∈ CM×1 is the received signal vector, s ∈ CN×1

is the transmitted signal vector, H ∈ CM×N is the normal-
ized channel matrix linking the Tx antennas with the Rx an-
tennas, η is the common power attenuation over the chan-
nel, and n ∈ CM×1 is the additive white Gaussian noise
(AWGN) vector. n contains i.i.d. circularly symmetric com-
plex Gaussian elements with zero mean and variance σ2n , that
is, n ∼ CN (0M×1, σ2n · IM),1 where IM is theM ×M identity
matrix.

As mentioned above, H is the normalized channel ma-
trix, which implies that each element in H has unit average
power; consequently, the average SNR is independent of H.
Furthermore, it is assumed that the total transmit power is
P, and all the subchannels experience the same path loss as
accounted for in η, resulting in the total average received
SNR at one Rx antenna being γ = ηP/σ2n . We apply s ∼

CN (0N×1, (P/N) · IN ), which means that the MI of a MIMO
transmission described by (1) becomes [2]2

I =
U∑

p=1
log2

(
1 +

γ

N
μp

)
bps/Hz, (2)

1 CN (x,Y) denotes a complex symmetric Gaussian distributed random
vector, with mean vector x and covariance matrix Y.

2 Applying equal power Gaussian distributed inputs in theMIMO system is
capacity achieving in the case of a Rayleigh channel, but not necessarily in
the Ricean channel case studied here [14]; consequently, we use the term
MI instead of capacity.

where U = min(M,N) and μp is the pth eigenvalue of W
defined as

W =
⎧
⎨

⎩

HHH , M ≤ N ,

HHH, M > N ,
(3)

where (·)H is the Hermitian transpose operator.3

One way to model the channel matrix is as a sum of two
components: a LOS component: and an non-LOS (NLOS)
component. The ratio between the power of the two com-
ponents gives the Ricean K-factor [15, page 52]. We express
the normalized channel matrix in terms of K as

H =
√

K

1 + K
·HLOS +

√
1

1 + K
·HNLOS, (4)

where HLOS and HNLOS are the channel matrices containing
the LOS and NLOS channel responses, respectively. In this
paper, HNLOS is modeled as an uncorrelated Rayleigh matrix,
that is, vec(HNLOS) ∼ CN (0MN×1, IMN ), where vec(·) is the
matrix vectorization (stacking the columns on top of each
other). In the next section, the entries of HLOS will be de-
scribed in detail, while in the consecutive sections, the con-
nection between the URA design and the properties of HLOS

will be addressed. The influence of the stochastic channel
component HNLOS on performance is investigated in the re-
sults section.

3. THE LOS CHANNEL: GEOMETRICALMODEL

When investigatingHLOS in this section, we only consider the
direct components between the Tx and Rx. The optimal de-
sign, to be presented in Section 4, is based on the fact that
the LOS components from each of the Tx antennas arrive at
the Rx array with a spherical wavefront. Consequently, the
common approximate plane wave model, where the Tx and
Rx arrays are assumed to be points in space, is not applicable
[11]; thus an important part of the contribution of this paper
is to characterize the received LOS components.

The principle used to modelHLOS is ray-tracing [7]. Ray-
tracing is based on finding the path lengths from each of the
Tx antennas to each of the Rx antennas, and employing these
path lengths to find the corresponding received phases. We
will see later how these path lengths characterize HLOS, and
thus its rank and the MI.

To make the derivation in Section 4 more general, we do
not distinguish between the Tx and the Rx, but rather the
side with the most antennas and the side with the fewest an-
tennas (the detailed motivation behind this decision is given
in the first paragraph of Section 4). We introduce the nota-
tion V = max(M,N), consequently we refer to the side with
V antennas as the Vx, and the side with U antennas as the
Ux.

We restrict the antenna elements, both at the Ux and at
the Vx, to be placed in plane URAs. Thus the antennas are

3 μp also corresponds to the pth singular value of H squared.
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Figure 1: An example of a Ux URA with U = 6 antennas (U1 = 2
and U2 = 3).
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Figure 2: Geometrical illustration of the first principal direction of
the URA.

placed on lines going in two orthogonal principal directions,
forming a lattice structure. The two principal directions are
characterized with the vectors n1 and n2, while the uniform
separation in each direction is denoted by d(1) and d(2). The
numbers of antennas at the Ux in the first and second princi-
pal directions are denoted byU1 and U2, respectively, and we
have U = U1 · U2. The position of an antenna in the lattice
is characterized by its index in the first and second principal
direction, that is, (u1,u2), where u1 ∈ {0, . . . ,U1 − 1} and
u2 ∈ {0, . . . ,U2− 1}. As an example, we have illustrated a Ux
array with U1 = 2 and U2 = 3 in Figure 1. The same defini-
tions are used at the Vx side for V1, V2, v1, and v2.

The path length between Ux antenna (u1,u2) and Vx
antenna (v1, v2) is denoted by l(v1,v2)(u1,u2) (see Figure 4).
Since the elements of HLOS are assumed normalized as men-
tioned earlier, the only parameters of interest are the received
phases. The elements of HLOS then become

(HLOS)m,n = e( j2π/λ)l(v1,v2)(u1,u2) , (5)

where (·)m,n denotes the element in row m and column n,
and λ is the wavelength. The mapping between m, n, and
(v1, v2), (u1,u2) depends on the dimension of theMIMO sys-
tem, for example, in the case M > N , we get m = v1 · V2 +
v2 + 1 and n = u1 · U2 + u2 + 1. The rest of this section
is dedicated to finding an expression for the different path
lengths. The procedure employed is based on pure geometri-
cal considerations.

α

n2

n1
x′

y′

Figure 3: Geometrical illustration of the second principal direction
of the URA.

We start by describing the geometry of a single URA; af-
terwards, two such URAs are utilized to describe the com-
munication link. We define the local origo to be at the lower
corner of the URA, and the first principal direction as shown
in Figure 2, where we have employed spherical coordinates
to describe the direction with the angles θ ∈ [0,π/2] and
φ ∈ [0, 2π]. The unit vector for the first principal direc-
tion n1, with respect to the Cartesian coordinate system in
Figure 2, is given by [16, page 252]

n1 = sin θ cosφ nx + sin θ sinφ ny + cos θ nz, (6)

where nx, ny , and nz denote the unit vectors in their respec-
tive directions.

The second principal direction has to be orthogonal to
the first; thus we know that n2 is in the plane, which is or-
thogonal to n1. The two axes in this orthogonal plane are re-
ferred to as x′ and y′. The plane is illustrated in Figure 3,
where n1 is coming perpendicularly out of the plane, and we
have introduced the third angle α to describe the angle be-
tween the x′-axis and the second principal direction. To fix
this plane described by the x′- and y′-axis to the Cartesian
coordinate system in Figure 2, we choose the x′-axis to be
orthogonal to the z-axis, that is, placing the x′-axis in the
xy-plane. The x′ unit vector then becomes

nx′ = 1
∣
∣n1 × nz

∣
∣n1 × nz = sinφnx − cosφny. (7)

Since origo is defined to be at the lower corner of the URA,
we require α ∈ [π, 2π]. Further, we get the y′ unit vector

ny′ = 1
∣
∣n1 × nx′

∣
∣n1 × nx′

= cos θ cosφnx + cos θ sinφny − sin θnz.
(8)

Note that when θ = 0 and φ = π/2, then nx′ = nx and ny′ =
ny . Based on this description, we observe from Figure 3 that
the second principal direction has the unit vector

n2 = cosαnx′ + sinαny′ . (9)

These unit vectors, n1 and n2, can now be employed to
describe the position of any antenna in the URA. The posi-
tion difference, relative to the local origo in Figure 2, between
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Figure 4: The transmission system investigated.

two neighboring antennas placed in the first principal direc-
tion is

k(1) = d(1)n1

= d(1)
(
sin θ cosφnx + sin θ sinφny + cos θnz

)
,

(10)

where d(1) is the distance between two neighboring antennas
in the first principal direction. The corresponding position
difference in the second principal direction is

k(2) = d(2)n2 = d(2)
(
(cosα sinφ + sinα cos θ cosφ)nx

+ (sinα cos θ sinφ − cosα cosφ)ny

− sinα sin θnz
)
,

(11)

where d(2) is the distance between the antennas in the second
principal direction. d(1) and d(2) can of course take different
values, both at the Ux and at the Vx; thus we get two pairs of
such distances.

We now employ two URAs as just described to model the
communication link. When defining the reference coordi-
nate system for the communication link, we choose the lower
corner of the Ux URA to be the global origo, and the y-axis is
taken to be in the direction from the lower corner of the Ux
URA to the lower corner of the Vx URA. To determine the
z- and x-axes, we choose the first principal direction of the
Ux URA to be in the yz-plane, that is, φU = π/2. The system
is illustrated in Figure 4, where R is the distance between the
lower corner of the two URAs. To find the path lengths that
we are searching for, we define a vector from the global origo
to Ux antenna (u1,u2) as

a(u1,u2)U = u1 · k(1)U + u2 · k(2)U , (12)

and a vector from the global origo to Vx antenna (v1, v2) as

a(v1,v2)V = R · ny + v1 · k(1)V + v2 · k(2)V . (13)

All geometrical parameters in k(1) and k(2) (θ, φ, α, d(1), d(2))
in these two expressions have a subscript U or V to distin-
guish between the two sides in the communication link. We
can now find the distance between Ux antenna (u1,u2) and

Vx antenna (v1, v2) by taking the Euclidean norm of the vec-
tor difference:

l(v1,v2)(u1,u2) =
∥
∥∥a(v1,v2)V − a(u1,u2)U

∥
∥∥ (14)

= (l2x +
(
R + ly

)2
+ l2z

)1/2
(15)

≈ R + ly +
l2x + l2z
2R

. (16)

Here, lx, ly , and lz represent the distances between the two
antennas in these directions when disregarding the distance
between the URAs R. In the transition from (15) to (16), we
perform aMaclaurin series expansion to the first order of the
square root expression, that is,

√
1 + a ≈ 1 + a/2, which is

accurate when a� 1. We also removed the 2 · ly term in the
denominator. Both these approximations are good as long as
R� lx, ly , lz.

It is important to note that the geometrical model just
described is general, and allows any orientation of the two
URAs used in the communication link. Another interesting
observation is that the geometrical model incorporates the
case of ULAs, for example, by employing U2 = 1, the Ux ar-
ray becomes a ULA. This will be exploited in the analysis in
the next section. A last but very important observation is that
we have taken the spherical nature of the electromagnetic
wave propagation into account, by applying the actual dis-
tance between the Tx and Rx antennas when considering the
received phase. Consequently, we have not put any restric-
tions on the rank ofHLOS, that is, rank(HLOS) ∈ {1, 2, . . . ,U}
[11].

4. OPTIMAL URA/ULA DESIGN

In this section, we derive equations for the optimal
URA/ULA design with respect to MI when transmitting over
a pure LOS MIMO channel. From (2), we know that the im-
portant channel parameter with respect to MI is the {μp}.
Further, in [17, page 295], it is shown that the maximal MI
is achieved when the {μp} are all equal. This situation oc-
curs when all the vectors h(u1,u2) (i.e., columns (rows) ofHLOS

whenM > N (M ≤ N)), containing the channel response be-
tween one Ux antenna (u1,u2) and all the Vx antennas, that
is,

h(u1,u2)

= [e( j2π/λ)l(0,0)(u1,u2) , e( j2π/λ)l(0,1)(u1,u2) , . . . , e( j2π/λ)l((V1−1),(V2−1))(u1,u2)]T ,
(17)

are orthogonal to each other, resulting in μp = V , for p ∈
{1, . . . ,U}. Here, (·)T is the vector transpose operator. This
requirement is actually the motivation behind the choice to
distinguish between Ux and Vx instead of Tx and Rx. By bas-
ing the analysis on Ux and Vx, we get one general solution,
instead of getting one solution valid forM > N and another
forM ≤ N .

When the orthogonality requirement is fulfilled, all theU
subchannels are orthogonal to each other. When doing spa-
tial multiplexing on theseU orthogonal subchannels, the op-
timal detection scheme actually becomes the matched filter,
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that is, HH
LOS. The matched filter results in no interference

between the subchannels due to the orthogonality, and at the
same time maximizes the SNR on each of the subchannels
(maximum ratio combining).

A consequence of the orthogonality requirement is that
the inner product between any combination of two different
such vectors should be equal to zero. This can be expressed
as hH(u1b ,u2b )h(u1a ,u2a ) = 0, where the subscripts a and b are em-

ployed to distinguish between the two different Ux antennas.
The orthogonality requirement can then be written as

V1−1∑

v1=0

V2−1∑

v2=0
e
j2π/λ(l(v1,v2)(u1a ,u2a )−l(v1,v2)(u1b ,u2b )) = 0. (18)

By factorizing the path length difference in the parentheses
in this expression with respect to v1 and v2, it can be written
in the equivalent form

V1−1∑

v1=0
e j2π(β̂11+β̂12)v1 ·

V2−1∑

v2=0
e j2π(β̂21+β̂22)v2 = 0, (19)

where β̂i j = βi j(ujb − uja), and the different βi js are defined
as follows:4

β11 = d(1)V d(1)U V1

λR
cos θV cos θU , (20)

β12 = d(1)V d(2)U V1

λR

[
sin θV cosφV cosαU

− cos θV sinαU sin θU
]
,

(21)

β21 = −d(2)V d(1)U V2

λR
sinαV sin θV cos θU , (22)

β22 = d(2)V d(2)U V2

λR

[
cosαU cosαV sinφV

+ cosαU sinαV cos θV cosφV

+ sinαV sinαU sin θV sin θU
]
.

(23)

The orthogonality requirement in (19) can be simplified by
employing the expression for a geometric sum [16, page 192]
and the relation sin x = (e jx − e− jx)/2 j [16, page 128] to

sin
[
π
(
β̂11 + β̂12

)]

sin
[
(π/V1)

(
β̂11 + β̂12

)]

︸ ︷︷ ︸
=ζ1

· sin
[
π
(
β̂21 + β̂22

)]

sin
[
(π/V2)

(
β̂21 + β̂22

)]

︸ ︷︷ ︸
=ζ2

= 0.

(24)

Orthogonal subchannels, and thus maximum MI, are
achieved if (24) is fulfilled for all combinations of (u1a ,u2a)
and (u1b ,u2b), except when (u1a ,u2a) = (u1b ,u2b).

4 This can be verified by employing the approximate path length from (16)
in (18).

The results above clearly show how achieving orthogo-
nal subchannels is dependent on the geometrical parame-
ters, that is, the design of the antenna arrays. By investigat-
ing (20)–(23) closer, we observe the following inner product
relation:

βi j = Vi

λR
k̂
( j)T
U k̂(i)V ∀i, j ∈ {1, 2}, (25)

where k̂(i) = k(i)x nx +k
(i)
z nz, that is, the vectors defined in (10)

and (11) where the y-term is set equal to zero. Since solving
(24) is dependent on applying correct values of βi j , we see
from (25) that it is the extension of the arrays in the x- and
z-direction that are crucial with respect to the design of or-
thogonal subchannels. Moreover, the optimal design is inde-
pendent of the array extension in the y-direction (direction
of transmission). The relation in (25) will be exploited in the
analysis to follow to give an alternative projection view on
the results.

Both ζ1 and ζ2, which are defined in (24), are
sin(x)/ sin(x/Vi) expressions. For these to be zero, the sin(x)
in the nominator must be zero, while the sin(x/Vi) in the de-
nominator is non-zero, which among other things leads to
requirements on the dimensions of the URAs/ULAs, as will
be seen in the next subsections. Furthermore, ζ1 and ζ2 are
periodic functions, thus (24) has more than one solution. We
will focus on the solution corresponding to the smallest ar-
rays, both because we see this as the most interesting case
from an implementation point of view, and because it would
not be feasible to investigate all possible solutions of (24).
From (20)–(23), we see that the array size increases with in-
creasing βi j , therefore, in this paper, we will restrict the anal-
ysis to the case where the relevant |βi j| ≤ 1, which are found,
by investigating (24), to be the smallest values that produce
solutions. In the next four subsections, we will systematically
go through the possible different combinations of URAs and
ULAs in the communications link, and give solutions of (24)
if possible.

4.1. ULA at Ux and ULA at Vx

We start with the simplest case, that is, both Ux and Vx em-
ploying ULAs. This is equivalent to the scenario we studied

in [8]. In this case, we have U2 = 1 giving β̂12 = β̂22 = 0, and

V2 = 1 giving ζ2 = 1, therefore, we only need to consider β̂11.
Studying (24), we find that the only solution with our array
size restriction is |β11| = 1, that is,

d(1)V d(1)U = λR

V1 cos θV cos θU
, (26)

which is identical to the result derived in [8]. The solution is
given as a product dU dV , and in accordance with [8], we re-
fer to this product as the antenna separation product (ASP).
When the relation in (26) is achieved, we have the optimal
design in terms ofMI, corresponding to orthogonal LOS sub-
channels.
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Projection view

Motivated by the observation in (25), we reformulate (26) as

(d(1)V cos θV ) · (d(1)U cos θU) = λR/V1. Consequently, we ob-
serve that the the product of the antenna separations pro-
jected along the local z-axis at both sides of the link should
be equal to λR/V1. The z-direction is the only direction of
relevance due to the fact that it is only the array extension
in the xz-plane that is of interest (cf. (25)), and the fact that
the first (and only) principal direction at the Ux is in the yz-
plane (i.e., φU = π/2).

4.2. URA at Ux and ULA at Vx

Since Vx is a ULA, we have V2 = 1 giving ζ2 = 1, thus to
get the optimal design, we need ζ1 = 0. It turns out that with
the aforementioned array size restriction (|βi j| ≤ 1), it is not
possible to find a solution to this problem, for example, by
employing |β11| = |β12| = 1, we observe that ζ1 = 0 for
most combinations of Ux antennas, except when u1a + u2a =
u1b + u2b , which gives ζ1 = V1. By examining this case a bit
closer, we find that the antenna elements in the URA that are
correlated, that is, giving ζ1 = V1, are the diagonal elements
of the URA. Consequently, the optimal design is not possible
in this case.

Projection view

By employing the projection view, we can reveal the rea-
son why the diagonal elements become correlated, and thus
why a solution is not possible. Actually, it turns out that the
diagonal of the URA projected on to the xz-plane is per-
pendicular to the ULA projected on to the xz-plane when
|β11| = |β12| = 1. This can be verified by applying (25) to
show the following relation:

(
k̂(1)U − k̂(2)U

)T
︸ ︷︷ ︸
diagonal of URA

·k̂(1)V = 0. (27)

Moreover, the diagonal of the URA can be viewed as a ULA,
and when two ULAs are perpendicular aligned in space, the
ASP goes towards infinity (this can be verified by employing
θV → π/2 in (26)). This indicates that it is not possible to do
the optimal design when this perpendicularity is present.

4.3. ULA at Ux and URA at Vx

As mentioned earlier, a ULA at Ux gives U2 = 1, resulting in

(u2b − u2a) = 0, and thus β̂12 = β̂22 = 0. Investigating the
remaining expression in (24), we see that the optimal design
is achieved when |β11| = 1 if V1 ≥ U , giving ζ1 = 0, or
|β21| = 1 if V2 ≥ U , giving ζ2 = 0, that is,

d(1)V d(1)U = λR

V1 cos θV cos θU
if V1 ≥ U , or (28)

d(2)V d(1)U = λR

V2 sin θV
∣
∣ sinαV

∣
∣ cos θU

if V2 ≥ U. (29)

Furthermore, the optimal design is also achieved if both the
above ASP equations are fulfilled simultaneously, and either
q/V1 /∈ Z or q/V2 /∈ Z, for all q < U . This guarantees either
ζ1 = 0 or ζ2 = 0 for all combinations of u1a and u1b .

Projection view

A similar reformulation as performed in Section 4.1 can be
done for this scenario. We see that both ASP equations, (28)
and (29), contain the term cos θU , which projects the antenna
distance at the Ux side on the z-axis. The other trigonometric
functions project the Vx antenna separation on to the z-axis,
either based on the first principal direction (28) or based on
the second principal direction (29).

4.4. URA at Ux and URA at Vx

In this last case, when both Ux and Vx are URAs, we have
U1,U2,V1,V2 > 1. By investigating (20)–(24), we observe
that in order to be able to solve (24), at least one βi j must
be zero. This indicates that the optimal design in this case
is only possible for some array orientations, that is, values
of θ, φ, and α, giving one βi j = 0. To solve (24) when one
βi j = 0, we observe the following requirement on the βi j s:
|β11| = |β22| = 1 and V1 ≥ U1, V2 ≥ U2 or |β12| = |β21| = 1
and V1 ≥ U2, V2 ≥ U1.

This is best illustrated through an example. For instance,
we can look at the case where αV = 0, which results in β21 =
0. From (24), we observe that when β21 = 0 and |β22| =
1, we always have ζ2 = 0 if V2 ≥ U2, except when (u2b −
u2a) = 0. Thus to get orthogonality in this case as well, we
need |β11| = 1 and V1 ≥ U1. Therefore, the optimal design
for this example becomes

d(1)V d(1)U = λR

V1 cos θV cos θU
, V1 ≥ U1, (30)

d(2)V d(2)U = λR

V2
∣∣ cosαU sinφV

∣∣ , V2 ≥ U2. (31)

The special case of two broadside URAs is revealed by fur-
ther setting αU = 0, θU = 0, θV = 0, and φV = π/2 in (30)
and (31). The optimal ASPs are then given by

d(1)V d(1)U = λR

V1
, V1 ≥ U1; d(2)V d(2)U = λR

V2
, V2 ≥ U2.

(32)

This corresponds exactly to the result given in [10], which
shows the generality of the equations derived in this work
and how they contain previous work as special cases.

Projection view

We now look at the example where αV = 0 with a projec-
tion view. We observe that in (30), both antenna separations
in the first principal directions are projected along the z-axis
at Ux and Vx, and the product of these two distances should
be equal to λR/V1. In (31), the antenna separations along the
second principal direction are projected on the x-axis at Ux
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and Vx, and the product should be equal to λR/V2. These
results clearly show that it is the extension of the arrays in
the plane perpendicular to the transmission direction that
is crucial. Moreover, the correct extension in the xz-plane is
dependent on the wavelength, transmission distance, and di-
mension of the Vx.

4.5. Practical considerations

We observe that the optimal design equations from previ-
ous subsections are all on the same form, that is, dV dU =
λR/ViX , where X is given by the orientation of the arrays. A
first comment is that utilizing the design equations to achieve
high performance MIMO links is best suited for fixed sys-
tems (such as wireless LANs with LOS conditions,5 broad-
band wireless access, radio relay systems, etc.) since the op-
timal design is dependent on both the orientation and the
Tx-Rx distance. Another important aspect is the size of the
arrays. To keep the array size reasonable,6 the product λR
should not be too large, that is, the scheme is best suited for
high frequency and/or short range communications. Note
that these properties agree well with systems that have a fairly
high probability of having a strong LOS channel component
present. The orientation also affects the array size, for exam-
ple, if X → 0, the optimal antenna separation goes towards
infinity. As discussed in the previous sections, it is the array
extension in the xz-plane that is important with respect to
performance, consequently, placing the arrays in this plane
minimizes the size required.

Furthermore, we observe that in most cases, even if one
array is fully specified, the optimal design is still possible. For
instance, from (30) and (31), we see that if d(1) and d(2) are
given for one URA, we can still do the optimal design by
choosing appropriate values for d(1) and d(2) for the other
URA. This is an important property for centralized systems
utilizing base stations (BSs), which allows for the optimal de-
sign for the different communication links by adapting the
subscriber units’ arrays to the BS array.

5. EIGENVALUES OFW

As in the previous two sections, we focus on the pure LOS
channel matrix in this analysis. From Section 4, we know that
in the case of optimal array design, we get μp = V for all p,
that is, all the eigenvalues of W are equal to V . An interest-
ing question now is: What happens to the μp s if the design
deviates from the optimal as given in Section 4? In our analy-
sis of nonoptimal design, we make use of {βi j}. From above,
we know that the optimal design, requiring the smallest an-
tenna arrays, was found by setting the relevant |βi j| equal to
zero or unity, depending on the transmission scenario. Since
{βi j} are functions of the geometrical parameters, studying

5 This is of course not the case for all wireless LANs.
6 What is considered as reasonable, of course, depends on the application,
and may, for example, vary for WLAN, broadband wireless access, and
radio relay systems.

the deviation from the optimal design is equivalent to study-
ing the behavior of {μp}Up=1, when the relevant βi js deviate
from the optimal ones. First, we give a simplified expression
for the eigenvalues of W as functions of βi j . Then, we look
at an interesting special case where we give explicit analytical
expressions for {μp}Up=1 and describe a method for character-
izing nonoptimal designs.

We employ the path length found in (16) in the HLOS

model. As in [8], we utilize the fact that the eigenvalues of the
previously defined Hermitian matrixW are the same as for a
real symmetric matrix Ŵ defined by W = BHŴB, where B
is a unitary matrix.7 For the URA case studied in this paper,
it is straightforward to show that the elements of Ŵ are (cf.
(24))

(Ŵ)k,l = sin
[
π
(
β̂11 + β̂12

)]

sin
[
(π/V1)

(
β̂11 + β̂12

)] · sin
[
π
(
β̂21 + β̂22

)]

sin
[
(π/V2)

(
β̂21 + β̂22

)] ,

(33)

where k = u1aU2+u2a+1 and l = u1bU2+u2b +1.We can now
find the eigenvalues {μp}Up=1 ofW by solving det(Ŵ−IUμ) =
0, where det(·) is the matrix determinant operator. Analyt-
ical expressions for the eigenvalues can be calculated for all
combinations of ULA and URA communication links by us-
ing a similar procedure to that in Section 4. The eigenvalue
expressions become, however, more and more involved for
increasing values of U .

5.1. Example: β11 = β22 = 0 or β12 = β21 = 0

As an example, we look at the special case that occurs when
β11 = β22 = 0 or β12 = β21 = 0. This is true for some ge-
ometrical parameter combinations, when employing URAs
both at Ux and Vx, for example, the case of two broadside
URAs. In this situation, we see that the matrix Ŵ from (33)
can be written as a Kronecker product of two square matrices
[10], that is,

Ŵ = Ŵ1 ⊗ Ŵ2, (34)

where

(
Ŵi
)
k,l =

sin
(
πβi j(k − l)

)

sin
(
π(βi j /Vi)(k − l)

) . (35)

Here, k, l ∈ {1, 2, . . . ,Uj} and the subscript j ∈ {1, 2} is de-
pendent on βi j . If Ŵ1 has the eigenvalues {μ(1)p1 }Uj

p1=1, and Ŵ2

has the eigenvalues {μ(2)p2 }Uj

p2=1, we know from matrix theory

that the matrix Ŵ has the eigenvalues

μp = μ(1)p1 · μ(2)p2 , ∀p1, p2. (36)

7 This implies that det(W−λI) = 0⇒ det(BHŴB−λBH IB) = 0⇒ det(Ŵ−
λI) = 0.
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Expressions for μ(i)pi were given in [8] for Uj = 2 and Uj = 3.
For example, for Uj = 2 we get the eigenvalues

μ(i)1 = Vi +
sin
(
βi jπ

)

sin
(
βi j(π/Vi)

) , μ(i)2 = Vi −
sin
(
βi jπ

)

sin
(
βi j(π/Vi)

) .

(37)

In this case, we only have two nonzero βi js, which we
from now on, denote β1 and β2, that fully characterize the
URA design. The optimal design is obtained when both |βi|
are equal to unity, while the actual antenna separation is too
small (large) when |βi| > 1 (|βi| < 1). This will be applied in
the results section to analyze the design.

There can be several reasons for |βi| to deviate from
unity (0 dB). For example, the optimal ASP may be too large
for practical systems so that a compromise is needed, or
the geometrical parameters may be difficult to determine
with sufficient accuracy. A third reason for nonoptimal ar-
ray design may be the wavelength dependence. A communi-
cation system always occupies a nonzero bandwidth, while
the antenna distance can only be optimal for one single
frequency. As an example, consider the 10.5GHz-licensed
band (10.000–10.680GHz [18]). If we design a system for
the center frequency, the deviation for the lower frequency
yields λlow/λdesign = fdesign/ flow = 10.340/10.000 = 1.034 =
0.145 dB. Consequently, this bandwidth dependency only
contribute to a 0.145 dB deviation in the |βi| in this case, and
in Section 6, we will see that this has almost no impact on the
performance of the MIMO system.

6. RESULTS

In this section, we will consider the example of a 4×4MIMO
system with URAs both at Ux and Vx, that is, U1 = U2 =
V1 = V2 = 2. Further, we set θV = θU = 0, which gives
β12 = β21 = 0; thus we can make use of the results from the
last subsection, where the nonoptimal design is characterized
by β1 and β2.

Analytical expressions for {μp}4p=1 in the pure LOS case
are found by employing (37) in (36). The square roots of
the eigenvalues (i.e., singular values of HLOS) are plotted as
a function of |β1| = |β2| in Figure 5. The lines represent
the analytical expressions, while the circles are determined
by using a numerical procedure to find the singular values
when the exact path length from (15) is employed in HLOS.
The parameters used in the exact path length case are as fol-

lows: φV = π/2, αU = π, αV = π, R = 500m, d(1)U = 1m,

d(2)U = 1m, λ = 0.03m, while d(1)V and d(2)V are chosen to get
the correct values of |β1| and |β2|.

The figure shows that there is a perfect agreement be-
tween the analytical singular values based on approximate
path lengths from (16), and the singular values found based
on exact path lengths from (15). We see how the singular
values spread out as the design deviates further and further
from the optimal (decreasing |βi|), and for small |βi|, we get
rank(HLOS) = 1, which we refer to as a total design mis-
match. In the figure, the solid line in the middle represents
two singular values, as they become identical in the present
case (|β1| = |β2|). This is easily verified by observing the
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Figure 5: The singular values of HLOS for the 4 × 4 MIMO system
as a function of |β1| = |β2|, both exactly found by a numerical pro-
cedure and the analytical from Section 5.

symmetry in the analytical expressions for the eigenvalues.
For |βi| > 1, we experience some kind of periodic behavior;
this is due to the fact that (24) has more than one solution.
However, in this paper, we introduced a size requirement
on the arrays, thus we concentrate on the solutions where
|β| ≤ 1.

When K �= ∞ in (4), the MI from (2) becomes a ran-
dom variable. We characterize the random MI by the MI cu-
mulative distribution function (CDF), which is defined as the
probability that the MI falls below a given threshold, that is,
F(Ith) = Pr[I < Ith] [5]. All CDF curves plotted in the next
figures are based on 50 000 channel realizations.

We start by illustrating the combined influence of |βi|
and the Ricean K-factor. In Figure 6, we show F(Ith) for the
optimal design case (|β1| = |β2| = 0 dB), and for the total
design mismatch (|β1| = |β2| = −30 dB).

The figure shows that the design of the URAs becomes
more and more important as the K-factor increases. This is
because it increases the influence of HLOS on H (cf. (4)). We
also observe that the MI increases for the optimal design case
when the K-factor increases, while the MI decreases for in-
creasing K-factors in the total design mismatch case. This
illustrates the fact that the pure LOS case outperforms the
uncorrelated Rayleigh case when we do optimal array design
(i.e., orthogonal LOS subchannels).

In Figure 7, we illustrate how F(Ith) changes when we
have different combinations of the two |βi|. We see how the
MI decreases when |βi| decreases. In this case, the Ricean K-
factor is 5 dB, and from Figure 6, we know that the MI would
be even more sensitive to |βi| for larger K-factors. From the
figure, we observe that even with some deviation from the
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Figure 6: TheMI CDF for the 4×4MIMO system when γ = 10 dB.
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Figure 7: The MI CDF for the 4×4 MIMO system when γ = 10 dB
and K = 5 dB (except for the Rayleigh channel where K = −∞ dB).

optimal design, we get higher MI compared to the case of
uncorrelated Rayleigh subchannels.

7. CONCLUSIONS

Based on the new general geometrical model introduced for
the uniform rectangular array (URA), which also incorpo-
rates the uniform linear array (ULA), we have investigated
the optimal design for line-of-sight (LOS) channels with re-
spect to mutual information for all possible combinations of
URA and ULA at transmitter and receiver. The optimal de-

sign based on correct separation between the antennas (dU
and dV ) is possible in several interesting cases. Important
parameters with respect to the optimal design are the wave-
length, the transmission distance, and the array dimensions
in the plane perpendicular to the transmission direction.

Furthermore, we have characterized and investigated the
consequence of nonoptimal design, and in the general case,
we gave simplified expressions for the pure LOS eigenvalues
as a function of the design parameters. In addition, we de-
rived explicit analytical expressions for the eigenvalues for
some interesting cases.
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