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1. INTRODUCTION

Wireless networks consist of a number of nodes which com-
municate with each other using high-frequency radio waves.
Some of these networks have a wired backbone or infrastruc-
ture with only the last hop being wireless. Cellular phones
and wireless networks using 802.11 (WI-FI) are examples of
this. Ad hoc networks are another type of wireless networks.
They are formed by a collection of nodes without the aid of
any fixed infrastructure. Since there are no base stations to
route data through, the data needs to be routed to the desti-
nation by using the nodes in a multihop fashion.

The problem of throughput capacity of ad hoc wire-
less networks has received a lot of attention starting with
the article [1] in which it was shown that the throughput
of random networks with uniform spatial node distribution
and random source-destination pairs location scales asymp-
totically as Θ(1/

√
n logn). This original result was later ex-

tended in many directions. Thus, in [2] it was shown that
the node mobility can be used to remove this adverse scal-
ing behavior at the expense of the end-to-end delay. The
tradeoff between capacity and delay was studied in some
detail in [3–7]. The original bounds on the throughput
were also tightened using percolation theory in [8]. The
problem of the throughput was also studied under some-
what different assumptions (one source-destination pair)
in [9] and the throughput was found to scale as Θ(logn)
even if arbitrary complex network coding is allowed. Finally,

very encouraging results were obtained in [10, 11] where
it was shown that for a network employing an “idealized”
ultra-wideband hardware (see, e.g., [12, 13] for a descrip-
tion of some aspects of the UWB technology) (with infi-
nite bandwidth), the throughput in fact grows with the total
node number as Θ(n(α−1)/2), where α is the path loss expo-
nent.

The main goal of this paper is to demonstrate that the
decreasing behavior of the throughput first found in [1]
and the increasing behavior in the UWB networks analyzed
in [10, 11] are essentially two different “branches” of the
throughput that can coexist in the same network. To this
end, we analyze the uniform per node throughput of large
ad hoc networks with uniform spatial node distribution that
are confined to a square region of fixed area A. The available
bandwidth is assumed to have a fixed (but arbitrary) value
W . We find that the behavior of the throughput (up to nu-
merical constants that are left undetermined by the analy-
sis) can have two different regimes. The “switching” between
the two regimes happens at around the “critical” value of
the spatial node density that is determined by the ratio of
the total noise power to the transmit power. For node den-
sities below critical, the throughput is found to increase as
Θ(n(α−1)/2) (where α is the path loss exponent), and for node
densities above critical, the throughput decreases roughly as
Θ(1/

√
n). The first regime corresponds to the behavior re-

ported in [10, 11] for ultra-wideband systems. The second
regime is the behavior found in [1]. The physical reasons
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for the two regimes can be qualitatively described as fol-
lows.

(i) For spatial node densities below critical, noise domi-
nates interference, and two effects are simultaneously
at work. The first effect is the increase of the through-
put with node density due to the increase of received
power to noise ratio. The second effect is the decrease
of the throughput due to the increase of the number
of relays between sources and destinations. The overall
result is the increase mentioned above.

(ii) For spatial node densities above critical, the interfer-
ence begins dominating the noise, and the first ef-
fect goes away since now as the node density increases
(and, hence, the typical internode distance decreases),
the interference grows at the same rate as the received
power. Thus, the second effect (originally reported in
[1]) becomes the only one leading to the decrease of
throughput for larger networks.

We consider n wireless nodes uniformly distributed over
a square area of area A. So the density of the nodes has the
value ρ = n/A. More precisely, in the following we assume
that the node density is fixed, that is, the area A is filled
with nodes according to a two-dimensional Poisson process
with density ρ. This means that n = Aρ is the expected to-
tal number of nodes, with the actual node number possi-
bly being different. Since for large n the difference is rela-
tively negligible and does not affect any of the results, we
ignore it in the following. To avoid unnecessary complica-
tions with the boundary, we assume that periodic boundary
conditions are imposed, that is, the square is really a torus.
We assume that each node i has a randomly chosen destina-
tion d(i) whose identity does not change. Each node i has an
unlimited amount of data to send to d(i). Each node is con-
strained to a maximum transmit power of P. The available
bandwidth is equal to W . The time is assumed to be divided
into slots of unit length.

Let Mj(t) be the number of bits received by the node j in
time slot t. A uniform throughput of T is said to be feasible
if

lim inf
T→∞

1
T

T∑

t=1

Md(i)(t) ≥ T (1)

for all i ∈ N .
If, in a given time slot t, the node i is transmitting to an-

other node j (which does not have to be d(i) if relaying of
data is used), then the rate of transmission (and the number
of bits transmitted from i to j during the slot) is given by

Rt,i j =W log
(
1 + SINRt,i j

)
, (2)

where

SINRt,i j =
Pi /
∣∣xi − x j

∣∣α

N0W + It,i j
= Pi /

∣∣xi − x j

∣∣α

N0W +
∑

k �=iPk/
∣∣xk − x j

∣∣α ,

(3)

with α being a constant usually between 2 and 4 that de-
scribes signal attenuation with distance, N0 being the noise
spectral density.

We will use the notation

F ≡ P

N0W
, (4)

where convenient.
We will make use of the useful auxiliary quantity, called

information transport capacity. Let us enumerate all infor-
mation bits originated during the period of time T , by de-
noting them vi, i = 1, 2, . . . ,N . Let si be the distance travelled
by the bit vi from source to destination. We say that the in-
formation transport capacity of CT is feasible if

lim inf
T→∞

1
T

N∑

i=1

si ≥ CT. (5)

Let γ be a purely numerical constant. We introduce the
“critical” node density

ρcr = γ
(
N0W

P

)2/α

(6)

and let ncr = ρcrA. Using this notation, we can state the main
result of the paper as follows.

Main result

There exist purely numerical constants b1, b2, b′1, and b′2 in-
dependent of all network parameters such that the uniform
per node throughput of an ad hoc network confined to an
square region of (dimensionless) area A satisfies the inequal-
ities (these bounds can actually be tightened by getting rid of
powers of log n in the lower bounds; see Section 5 for more
details)

b1
P

N0Aα/2

n(α−1)/2

log (α+1)/2 ≤ T ≤ b2
P

N0Aα/2
n(α−1)/2 if n < ncr,

b′1
W√

n log α+1
≤ T ≤ b′2

W√
n

if n > ncr.

(7)

The dependence of the uniform throughput on the total
node number n is schematically depicted in Figure 1. We see
that there exists an “optimal” node number ncr = ρcrA such
that the throughput reaches its highest value for n close to
ncr. The physical reason for such behavior of the throughput
can be described as follows. For low enough node density, the
typical received signal power (and interference) is dominated
by the noise power, and, as a result, interference can be ne-
glected. Thus, in this regime, the throughput increases with
the node density (and hence with the total node number as
the area of the region is fixed). When the node density be-
comes high enough the increase of the throughput with den-
sity stops. The reason is that the interference begins dominat-
ing the noise power and it increases roughly proportionally
to the signal power resulting in constant SINR and hence,
independence of the throughput of the node density. There-
fore, the effect found in [1] (1/

√
n dependence due to the

increase of the number of relays between sources and desti-
nations) takes over and we obtain the corresponding decrease
of the throughput.
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Figure 1: Schematic dependence of the throughput on the number
of nodes in case of constant network area and starting node density
below critical.

Note that since the node density is bounded from above
because of a finite physical size of nodes, the critical node
density ρcr may not be reached at all if the total noise power
N0W is much larger than the transmit power P. In such a
case one may never see the downward part of the throughput
curve, and the highest uniform throughput will be reached
for the largest possible total node number. This can be the
case for some ultra-wideband systems.

The rest of the paper is organized as follows. In Section 2,
we find upper bounds on the information transport capacity.
In Section 3, we use these bounds to obtain upper bounds
on throughput. In Section 4, we study achievability of these
bounds. In Section 5, we explain how the bounds can be
tightened using the percolation theory approach, and, finally,
Section 6 presents conclusions.

2. UPPER BOUNDS ON TRANSPORT CAPACITY

In this section, we find several upper bounds on the informa-
tion transport capacity which will be used to obtain upper
bounds on the uniform throughput.

2.1. Upper bound induced by interference

The following theorem was proved in [14], and we state it
without proof.

Theorem 1. The total transport capacity of the network is up-
per bounded as

CT ≤ c1(α)W
√
An. (8)

2.2. Density independent upper bound
induced by noise

Now, let us find a different (node density dependent) upper
bound on transport capacity. We begin with a simple auxil-
iary result.

Lemma 1. Maximum of the function

f (r) = r log

(
1 +

F

rα

)
(9)

over nonnegative values of r is achieved at

r∗ =
(

F

exp
(
W
(− α/eα

)
+ α
)
)1/α

(10)

and is equal to

f
(
r∗
) =

(
FB(α)

α− B(α)

)1/α

log
(

α

B(α)

)
, (11)

where B(α) ≡ −W(−αe−α).

Proof. It is easy to see that f (r) ≥ 0 for r ≥ 0. In addition,
limr→0 f (r) = limr→∞ f (r) = 0 and f (r) has a single local
maximum which is also global. This maximum can be found
solving the equation f ′(r) = 0 which leads to the statement
of the lemma.

We can now state the upper bound itself.

Theorem 2. The total transport capacity of the network is up-
per bounded as

CT ≤ c2

(
P

N0W

)1/α√
ρW

√
An. (12)

Proof. Consider a given time slot. A contribution CT ,i j to the
total transport capacity of a transmission from node i to node
j can be upper bounded as follows:

CT ,i j ≤ ri jW log
(

1 +
P/rαi j

N0W + I j

)

≤ ri jW log
(

1 +
P/rαi j
N0W

)

≤ max
r

rW log
(

1 +
P/rα

N0W

)
.

(13)

Applying Lemma 1 to the last line in the above equation, we
obtain

CT ,i j ≤W
((

P/N0W
)
B(α)

α− B(α)

)1/α

log
(

α

B(α)

)

=Wc2(α)
(

P

N0W

)1/α

,

(14)

where c2(α) ≡ (B(α)/(α− B(α)))1/α log (α/B(α)).
Since no more than n simultaneous successful transmis-

sions can take place in a time slot, multiplying (14) by n, we
obtain

CT ≤Wc2(α)
(

P

N0W

)1/α

n

=Wc2(α)
(

P

N0W

)1/α√
ρ
√
An,

(15)

where we have used the identity n2 = ρAn.
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The upper bound on transport capacity obtained in
Theorem 2 does not take into account the actual internode
distance since it optimizes over it. It is easy to see that if the
node density is such that the typical internode distance is
significantly larger than the optimal distance (10), a tighter
bound can be obtained. We investigate this topic next.

2.3. Node density induced upper bound on
transport capacity

To derive this upper bound, we need a few preliminary re-
sults that we formulate as lemmas. We assume that α < 3, for
convenience. If α ≥ 3 a slightly different proof technique can
be used to arrive at the same results. For node i, let the node î
be its nearest neighbor. The next lemma gives the probability
density function p(r) for the nearest neighbor distance riî.

Lemma 2. The pdf for the nearest neighbor distance riî is given
by

p(r) = 2πρre−πρr
2
. (16)

Proof. Select an arbitrary node i. Draw a circle C of radius r
around i. We can write

Pr
{
riî > r

} = Pr{there is no node in C}
= e−πr

2ρ.
(17)

Therefore, the cdf of the nearest neighbor distance is

P(r) = Pr
{
riî < r

} = 1− e−πr
2ρ. (18)

Taking a derivative of it, we arrive at the statement of the
lemma.

Now, let b be a positive number, and let I(b) be the fol-
lowing integral:

I(b) ≡
∫∞

0
y2e−by

2
log
(

1 +
1
yα

)
dy. (19)

We can establish the following upper bound on I(b).

Lemma 3. The following inequality holds:

I(b) ≤ c1(α)b(α−3)/2. (20)

Proof. Using the inequality log (1 + x) ≤ x valid for all non-
negative values of x, we obtain

I(b) ≤
∫∞

0
y2−αe−by

2
dy = c1(α)b(α−3)/2, (21)

where c1(α) is independent of b.

We can now use Lemma 3 to put an upper bound on the
expected value of the information transport “quantum” CT ,iî
in case every node transmits to its nearest neighbor.

Lemma 4. The following inequality holds:

E
(
CT ,iî

) ≤Wc2(α)Fρ(α−1)/2. (22)

Proof. Using Lemma 2, we obtain that

E
(
CT ,iî

) ≤W
∫∞

0
r log

(
1 +

F

rα

)
·2πrρe−πρr2

dr

= 2πρW
∫∞

0
r2e−πρr

2
log
(

1 +
F

rα

)
dr.

(23)

Introducing a new variable y ≡ r/F1/α in the above expres-
sion, we obtain

E
(
CT ,iî

) ≤ 2πρF3/αW
∫∞

0
y2e−πρF

2/α y2
log
(

1 +
1
yα

)
dy. (24)

Denoting b ≡ πρC2/α, we can apply Lemma 3 and obtain that

E
(
CT ,iî

) ≤ 2πρF3/αW·c1(α)
(
ρF2/α)(α−3)/2

=Wc2(α)Fρ(α−1)/2.
(25)

Now, let M be the n × n covariance matrix of the quan-
tities CT ,iî for i = 1, 2, . . . ,n. Due to uniformity of the nodes
distribution, all diagonal elements of M are equal and all off-
diagonal elements of M are also equal. The following lemma
shows that the latter (off-diagonal) are much smaller than
the former (diagonal), or, in other words, the quantities CT ,iî
are almost independent.

Lemma 5. The following inequality holds:

Cov
(
CT ,iî,CT , j ĵ

) ≤ 3
n− 1

Var
(
CT ,iî

)
. (26)

Proof. Let us introduce the following notation. Ai, j is the
event that the node closest to node i is node j. Aij,s is the
event that the nodes i and j share the closest node, that is,
the same node is both the closest to i and closest to j. Also
denote by Aind the event that CT ,iî is independent of CT , j ĵ .

Note that the quantities CT ,iî and CT , j ĵ may be mutually
dependent only if either j is the node closest to i, i is the node
closest to j, or the nodes i and j share the closest node. In
other words, using the notation introduced above, we have

Aind = Ai, j ∪ Aj,i ∪ Aij,s. (27)

Therefore,

Pr
(
Aind

) ≤ Pr
(
Ai, j
)

+ Pr
(
Aj,i
)

+ Pr
(
Aij,s

)
. (28)

We also have, due to uniformity of nodes distribution,

Pr
(
Ai, j
) = Pr

(
Aj,i
) = 1

n− 1
. (29)

The event Aij,s can be written as Aij,s =
⋃

k �=i, j(Ai,k ∩ Aj,k).
Therefore,

Pr
(
Aij,s

) ≤
∑

k �=i, j
Pr
(
Ai,k ∩ Aj,k

) = (n− 2)
(

1
n− 1

)2

, (30)

where in the last step we have used the independence of the
events Ai,k and Aj,k. Substituting (29) and (30) into (28) we
obtain

Pr
(
Aind

) ≤ 2
n− 1

+
n− 2

(n− 1)2 <
3

n− 1
. (31)
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Using the total probability formula, we can calculate the co-
variance Cov(riî,CT , j ĵ) as

Cov
(
riî,CT , j ĵ

) = Cov
(
CT ,iî,CT , j ĵ | Aind

)
Pr
(
Aind

)

+ Cov
(
CT ,iî,CT , j ĵ | Aind

)
Pr
(
Aind

)

≤ 0·Pr
(
Aind

)
+ Var

(
CT ,iî

)
Pr
(
Aind

)

≤ Var
(
CT ,iî

)· 3
n− 1

,

(32)

where we have used (31) in the last step. The proof is com-
plete.

LetC
′
T be sample mean of the “quantum” of the transport

capacity CT ,iî:

C
′
T =

1
|N |

|N |∑

i=1

CT ,iî, (33)

where N is the set of nodes transmitting in the chosen time
slot.

The following lemma shows that, for large n, the value
of C

′
T can be upper bounded in much the same way as the

expected value E(CT ,iî).

Lemma 6. The relation

C
′
T ≤Wc3(α)Fρ(α−1)/2 (34)

holds with high probability.

Proof. We have the following bound on the variance:

Var

( n∑

i=1

CT ,iî

)
= nVar

(
CT ,iî

)
+ n(n− 1)Cov

(
CT ,iî,CT , j ĵ

)

(35)

for arbitrary i and j. Using Lemma 5, we obtain

Var

( n∑

i=1

CT ,iî

)
≤ 4nVar

(
CT ,iî

)
, (36)

and, therefore,

Var
(
C
′
T

)
≤ 4n

n2
Var
(
CT ,iî

)
. (37)

Taking the square root we obtain

Std
(
C
′
T

)
≤ 2√

n
Std
(
CT ,iî

)
. (38)

An application of Chebyshev’s inequality gives

Pr
(
C
′
T ≥ E

(
C
′
T

)
+ t Std

(
C
′
T

))
≤ 1

t2
. (39)

Setting t = n1/4 and recalling that E(C
′
T) = E(C′T) we obtain

that

Pr
(
C
′
T ≥ E

(
CT ,iî

)
+ O

(
n−1/4)Std

(
CT ,iî

)) ≤ 1√
n

, (40)

which, taken together with the result of Lemma 4, implies
that

Pr
(
C
′
T ≥Wc21(α)Fρ(α−1)/2 + O

(
n−1/4)Std

(
CT ,iî

)) ≤ 1√
n
.

(41)

Since Std(CT ,iî ) is independent (for a given ρ) of n, this com-
pletes the proof of the lemma.

Now, let n< be the number of nearest neighbor distances
riî that do not exceed r∗:

n< =
∣∣{riî | riî ≤ r∗

}∣∣. (42)

Lemma 7. The inequality

n< ≤ ĉ(α)nρF2/α (43)

holds with high probability.

Proof. The probability that the nearest neighbor distance riî
is less than r∗ can be found as

Pr
(
riî < r∗

) = P
(
r∗
) = 1− exp

(− πρr∗2)

= 1− exp
(− ĉ1(α)ρF2/α) ≤ ĉ1(α)ρF2/α.

(44)

Therefore, the expected value of n< can be found as

E
(
n<
) = nPr

(
riî < r∗

) ≤ nĉ1(α)ρF2/α. (45)

Now, vi let be an indicator variable such that

vi =
{

1 if riî < r∗,

0 otherwise.
(46)

Then n< = ∑ n
i=1vi, and, therefore, for the variance of n<

(making use of Lemma 5) we have

Var
(
n<
) ≤ 4nVar

(
vi
) ≤ 4n = ĉ2n, (47)

where ĉ2 = 4 is a constant independent of n.
We can now use Chebyshev’s inequality to obtain

Pr
(
n< ≥ E

(
n<
)

+ t Std
(
n<
)) ≤ 1

t2
, (48)

which implies

Pr
(
n< ≥ ĉ1(α)nρF2/α + tĉ2

√
n
) ≤ 1

t2
. (49)

Choosing t = n1/4, we finally obtain

Pr
(
n< ≥ ĉ(α)nρF2/α) ≤ 1√

n
, (50)

which proves the lemma.

We are now prepared to derive an upper bound that is
tighter than the previous one for small node densities.
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Theorem 3. The total transport capacity of the network is up-
per bounded as

CT ≤ c3(α)W
(

P

N0W

)
ρα/2

√
An (51)

with high probability.

Proof. Since the “quantum” CT ,i j of the transport capacity is
maximized for ri j = r∗ where r∗ is given in (10), the follow-
ing bound on CT ,i j holds for all i:

CT ,i j ≤

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Wr∗ log
(

1 +
F

r∗α

)
if riî ≤ r∗,

Wriî log

(
1 +

F

rα
iî

)
if riî > r∗.

(52)

We can upper bound the total transport capacity as follows:

CT ≤ n<·Wr∗ log
(

1 +
F

r∗α

)
+ n·C′T . (53)

Using Lemmas 1, 6, and 7, we see that it follows from (53)
that, with high probability,

CT ≤Wĉ(α)nρF2/α·c̃(α)F1/α + Wnc3(α)Fρ(α−1)/2. (54)

Finally, we obtain

CT ≤Wc3(α)Fρ(α−1)/2
(

1 + c3(α)
(
F1/α√ρ

)3−α)
n. (55)

Using the identity n = √ρAn in the above equation and re-
calling the definition of F, we arrive at the statement of the
theorem.

3. UPPER BOUNDON THROUGHPUT

In this section, we use the upper bounds on information
transport capacity found in the previous section, to find up-
per bounds on throughput.

Let g(n, ρ) be an arbitrary function of n and ρ, and let b1

and b2 be constants (quantities independent of n and ρ). We
have the following lemma relating upper bounds on trans-
port capacity and throughput.

Lemma 8. Suppose that the total transport capacity is upper
bounded as

CT ≤ b1g(n, ρ) (56)

with high probability. Then the throughput can be upper
bounded as

T ≤ b2g(ρ,n)√
An

(57)

with high probability.

Proof. Suppose that for any constant b2, the throughput ex-
ceeds the quantity b2g(ρ,n)/

√
An with high probability. We

will show that this implies that for any constant c, the trans-
port capacity exceeds cg(n, ρ) also with high probability. The
lemma then would be proved by contradiction.

Let us denote by the distance between the node i and its
destination by di. Let d be the sample mean (1/n)

∑ n
i=1di.

Since the quantities di are mutually independent, we have for
the standard deviation of d:

Std(d) = 1√
n

Std
(
di
) = 1√

n
h2

√
A, (58)

where h2 does not depend on n. On the other hand, clearly,

E(d) = E
(
di
) = h1

√
A, (59)

where the number h1 depends only on the shape of the region
containing the network but not on the number of nodes in
it. An application of Chebyshev’s inequality then yields

Pr
(
d ≤ h1

√
A− t

1√
n
h2

√
A
)
≤ 1

t2
. (60)

Setting t = n1/4, we obtain that for large enough n,

Pr
(
d ≤ h3

√
A
) ≤ 1√

n
, (61)

where h3 is independent of n. This implies that
n∑

i=1

di ≥ nh3

√
A, (62)

with high probability.
Now assume that for any constant b2, the throughput sat-

isfies

T >
b2g(ρ,n)√

An
(63)

with high probability. Then, for the total transport capacity,
we have using (62) that

CT ≥ T
n∑

i=1

di ≥ b2h3g(ρ,n) (64)

with high probability, and the lemma is proved.

We can now combine the results of Theorems 1, 3, and
Lemma 8 to obtain upper bounds on throughput.

Theorem 4. Upper bounds on the uniform throughput T are
given by

T ≤ min

{
c̃1(α)

W√
n

, c̃2(α)
W (α−1)/αP1/α

N1/α
0

√
A

,

c̃3(α)
P

N0Aα/2
n(α−1)/2

}
.

(65)

Proof. To prove the theorem we only need to combine the re-
sults of Theorems 1, 2, 3 with that of Lemma 8 and substitute
ρ = n/A.

Note that all three bounds are become the same (up to a
numerical constant) for n = ncr = ρcrA, whereas for n < ncr,
the third bound (the node density induced one) becomes the
tightest one, and for n > ncr, the first bound (interference
induced) is the tightest bound.
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4. LOWER BOUNDS ON THROUGHPUT

In this section, we address the achievability of these upper
bounds found in the previous sections.

4.1. Tessellation

The tessellation of the square region that turns out to be con-
venient for our goals is the regular one: we divide it into
identical smaller squares with side a each. Anticipating the
transmission strategy to be employed below, we choose the
parameter a in such a way that every cell can always directly
communicate with 4 of its neighbors using the smallest com-
mon range of communication that in turn is chosen in a way
to ensure connectivity with high probability. Using results
from [15], for connectivity, we have to employ the range

rc(ρ) =
√

c′A log n

n
=
√√√ c′A log Aρ

Aρ
, (66)

where c′ > 1/π. We chose c′ = 10 for simplicity. Then, to
ensure that each cell can directly communicate with 4 neigh-
bors, one needs to set the cell size to be

a(ρ) = rc(ρ)√
5
. (67)

So the total number of cells in the system is equal to

ms = A

a2
= n

2 log n
. (68)

We will denote the cells in the system by Ci, i = 1, 2, . . . ,ms.

4.2. Transmission schedule

We define a transmission policy π(d). We organize trans-
mission in the following way. The entire system is tesselated
into square cells of area a(ρ)2. The routing of packets be-
tween cells proceeds as follows. To route a packet between
two cells, we employ at most two straight lines: one vertical
and one horizontal. (It is possible that only one straight line
is needed.) Each time a packet is transmitted from a cell to an
adjacent cell (see Figure 2). If a node is transmitting to an-
other node, and the receiving node is very close to another
transmitting node (such a situation is shown in Figure 3),
then the receiving node may experience very large interfer-
ence. To avoid this situation, we are enforcing a square region
around each transmitter where no other nodes may transmit.
This square has sides of length 2d+1 cells. Figure 2 shows the
case of d = 2.

4.3. Bound on interference

Lemma 9. Under the transmission strategy π(d),

I j ≤ hPi j (69)

with Pi j as the power received by node j from node i, I j as the
interference at node j, and h is a constant. In other words, the
total interference is bounded by a constant multiple of the re-
ceived power.

d = 2

Figure 2: Routes between cells are along at most two straight lines.

Figure 3: The node in the center cell may experience very large in-
terference in this situation.

Proof. It is easy to see that adding contributions from all pos-
sible interferers, the total interference at the location of node
j can be upper bounded as

I j ≤ P

(da)α
8 +

P

(da)α
16 + · · ·

= P

aα

∞∑

i=1

4(2i− 1)
(id)α

≤ 8P
aαdα

∞∑

i=1

1
iα−1

.

(70)

On the other hand, in policy π(d), the power received at node
j from node i can be lower bounded as

Pi j ≥ P
(√

5a
)α . (71)

Substituting (71) into (70), we obtain

I j ≤
8·5α/2Pi j

dα

∞∑

i=1

1
iα−1

. (72)
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Finally, since for α > 2,
∑∞

i=11/iα−1 < ∞, we can combine all
constants in (72) into one and write

I j ≤ h(α)Pi j , (73)

with h(α) being just a constant, which proves the lemma.

4.4. Number of nodes in a cell

To make the transmission schedule presented below feasible,
we need to ensure that every cell contains at least one node
with high probability. Given the square geometry we have
chosen, this is easy to do. Indeed, let us compute the prob-
ability that a given cell does not have any nodes in it. If a
single node is placed in the system, the probability that a cell
does not contain that node is the ratio of area outside the cell
over the total area. For n nodes, this ratio is raised to the n
power. Since the area of a cell is a(ρ)2,

P(no node in a cell) =
(

1− a(ρ)2

A

)n
=
(

1− 2 log n

n

)n

≤ e−2 logn = (n)−2.
(74)

Multiplying (74) by the number of cells (68), we obtain,
by the union bound, that the probability that there exists a
cell that does not contain a single node is upper bounded
by 1/(2n log n), which means that every cell has at least one
node with high probability.

4.5. Number of routes through a given cell

Let us consider a given cellCi and count the number of routes
passing through it. Let us denote this number by Ni.

Lemma 10. The inequality

max
i

Ni <
√

32n log n (75)

holds with high probability.

Proof. Obviously, the number of vertical components of the
routes passing throughCi does not exceed the number of cells
found in the vertical strip with the width of a (see Figure 2).
It is clear that the expected number of “vertical” routes Nv

i in
a cell satisfy the inequality

E
(
Nv

i

) ≤ ρa(ρ)
√
A = Aρ

√
2 log n

n

E
(
Nv

i

) ≤
√

2n log n.

(76)

Then, using the fact that the node locations are independent,
we can apply the Chernoff bound to obtain

P
(
Ni ≥ (1 + ε)E

(
Ni
)) ≤ e−ε

2E(Ni)/4. (77)

Now we can choose ε = 1 and rewrite (77) as

P
(
Nv

i ≥
√

8n log n
)
≤ e−

(√
2n log n

)
/4, (78)

and so, using the union bound, we obtain

P
(

max
i

Nv
i ≥

√
8n log n

)
≤ n

2 log n
e−
√

(n log n)/8. (79)

Exactly the same argument holds for the number Nh
i of hor-

izontal components of routes passing through Ci. We obtain

P
(

max
i

Nh
i ≥

√
8n log n

)
≤ n

2 log n
e−
√

(n log n)/8. (80)

Since the total number of routes passing through Ci is Ni =
Nv

i + Nh
i , we can combine (79) and (80), and use the union

bound to obtain

P
(

max
i

Ni ≥
√

32n log n
)
≤ n

log n
e−
√

(n log n)/8, (81)

which proves the lemma.

4.6. Interference limited network achievable
throughput

Now we are prepared to compute a lower bound on the
achievable per node throughput for systems where the inter-
ference is the limiting factor.

Theorem 5. For node densities ρ ≥ ρcr, the throughput

T = b̃1W√
n log α+1 n

(82)

is achievable with high probability.

Proof. We begin with finding a lower bound on the transmis-
sion rate in policy π(d). The transmission rate from node i to
node j has the value

Rt,i j =W log
(
1 + SINRt,i j

)
, (83)

with

SINRt,i j =
Pi j

N0W + I j
. (84)

For transmission policy π(d), the power received at node
j can be lower bounded as

Pi j ≥ P

rc(ρ)α
= Pρα/2

(10 logn)α/2
. (85)

For ρ ≥ ρcr, we have Pρα/2 > γ2/αN0W and it follows from
(85) that

Pi j ≥
γ2/αN0W

(10 log n)α/2
. (86)
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Substituting (86) and the result of Lemma 9 into (84), we ob-
tain that, for large enough n, for any time slot t,

SINRt,i j ≥ h4

(log n)α/2
, (87)

where h4 is a constant.
Now, substituting (87) into (83), we obtain that, for large

enough n,

Rt,i j ≥ h5W

(log n)α/2
, (88)

where h5 is another constant.
On the other hand, in policy π(d), each cell can transmit

at least once in every (d + 1)2 time slots, and, according to
Lemma 10, each cell Ci can serve each route passing through

it at least once in every
√

32n log n time slot in which it trans-
mits. This implies that the throughput of at least

T ≥ min Rt,i j

(d + 1)2
√

32n log n
(89)

can be achieved. Substituting (88) into (89) and combining
all constants into one, we obtain the statement of the theo-
rem.

4.7. Power limited network achievable throughput

Theorem 6. For node densities ρ < ρcr, the throughput

T = b̃3W√
n log α+1n

(
P

N0W

)
ρα/2

= b̃3
P

N0Aα/2
· n(α−1)/2

log (α+1)/2n

(90)

is achievable with high probability.

Proof. Again, as in Theorem 5, we begin with finding a lower
bound on the transmission rate in policy π(d). The trans-
mission rate from node i to node j and the signal to noise
and interference ratio have the same form (83) and (84) as in
Theorem 5. The lower bound (85) on the power received at
node j is implied by the policy π(d) and holds in this case as
well. We can now combine (84), (85), and Lemma 9 to obtain
the following lower bound on SINRt,i j :

SINRt,i j ≥
Pρα/2

N0W(10 log n)α/2 + hPρα/2
. (91)

Since ρ < ρcr which implies that Pρα/2 < γ2/αN0W , it follows
from (91) that

SINRt,i j ≥
Pρα/2

N0W
(
(10 log n)α/2 + γ2/α

) . (92)

Therefore, for large enough n, we can write

SINRt,i j ≥
h6Pρα/2

N0W(log n)α/2
, (93)

where h6 is a constant.
Substituting (93) into (83), we obtain that, for large

enough n,

Rt,i j ≥
h7W

(
P/N0W

)
ρα/2

(log n)α/2
, (94)

where h7 is another constant.
In policy π(d), each cell can transmit at least once in ev-

ery (d + 1)2 time slots. Also, according to Lemma 10, each
cell Ci can serve each route passing through it at least once in

every
√

32n log n time slots in which it transmits. This im-
plies, just like in Theorem 5, that the throughput of at least

T ≥ minRt,i j

(d + 1)2
√

32n log n
(95)

can be achieved. Substituting (94) into (95) and combining
all constants into one, we obtain the statement of the theo-
rem.

5. TIGHTENING THE BOUNDS

Although the main focus of this paper is to demonstrate
the possible switching behavior of achievable throughput at
the critical node density, it is possible to tighten the bounds
presented in the paper slightly using the percolation theory
methods employed in [8, 11]. Namely, in order to tighten the
lower bound of Theorems 5 and 6, it is sufficient to observe
that the use of percolation theory approach allows to con-
struct a transmission policy π′(d) with the following proper-
ties.

(i) The transmission range of r′c(ρ) = √
c′′A/n =

√
c′′/ρ

(for some constant c′′) for node-to-node transmis-
sions can be employed. (In policy π′(d) described in
[8, 11], there are phases which use longer hop lengths.
It is shown, however, that these phases are not bottle-
necks for the overall throughput.)

(ii) Each node serves as a relay for no more than c
√
n

source-destination pairs, where c is a constant inde-
pendent of n.

(iii) The presence of a “silence zone” in policy π′(d) (just
like in π(d)) makes Lemma 9 still valid.

Then it is easy to see that the lower bounds of Theorems
5 and 6 could be tightened as follows.

Changes in Theorem 5

In Theorem 5, the expression (85) would read (using prop-
erty 1)

Pi j ≥
Pρα/2

c′′α/2
, (96)
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and (for ρ ≥ ρcr) the expression (86) would get replaced with

Pi j ≥
γα/2N0W

c′′α/2
. (97)

This, in turn, would imply that, for any time slot t, SINRt,i j ≥
h4 andRt,i j ≥ h5W for some constants h4 and h5. Using prop-
erty 2 of the policy π′(d), we obtain the lower bound of the
achievable with high probability throughput

T ≥ b̃1W√
n

(98)

for some constant b̃1.

Changes in Theorem 6

In Theorem 6, the expression (91) would get replaced with

SINRt,i j ≥
Pρα/2

N0Wc′′α/2 + hPρα/2
, (99)

and, for ρ < ρcr, the bounds (93) and (94) would become

SINRt,i j ≥
h6Pρα/2

N0W
,

Rt,i j ≥ h7W
(

P

N0W

)
ρα/2,

(100)

respectively. Using property 2 of the policy π′(d), we see that
the throughput satisfying

T ≥ b̃3W√
n

(
P

N0W

)
ρα/2 = b̃3Pn(α−1)/2

N0Aα/2
(101)

for a constant b̃3 can be achieved with high probability.
We can summarize the above changes in the following

Theorem.

Theorem 7. If ρ < ρcr, the throughput of

T ≥ b̃3Pn(α−1)/2

N0Aα/2
(102)

is achievable with high probability
If ρ ≥ ρcr, the throughput of

T ≥ b̃1W√
n

(103)

is achievable with high probability.

6. CONCLUSION

This paper examined the uniform throughput of large ad hoc
networks confined to a region of fixed area. It was found that,
for a large enough total area, as the total number of nodes
increases, the achievable throughput can exhibit an up-and-
down behavior reaching a a maximum at a critical spatial

node density that is proportional to a power of the ratio of
the total noise power to the transmitted power (N0W/P)2/α.

While the spatial node density is below the critical value,
the achievable per node throughput increases as n(α−1)/2. In
this regime, the total noise power dominates the interference
power and the effect of the increasing SINR is able to over-
come the effect of increasing number of relays thus leading to
an overall increase of the achievable throughput. When the
spatial node density is above critical, the further increase of
the spatial node density (and hence the total node number)
does not lead to the further increase of the SINR (since now
interference dominates noise and grows at the same rate of
the received power). Therefore, the effect of increasing num-
ber of relays takes over and leads to a decrease of the through-
put as n−1/2.

Note that the critical node density ρcr can be very small
for non-ultra-wideband systems, and the increasing branch
of the throughput may not be seen in practice. On the other
hand, for ultra-wideband systems with the ratio N0W/P sig-
nificantly larger than 1, the maximum node density (limited
by the physical size of transceivers) may be reached before the
critical node density, thus rendering the decreasing branch
of the throughput practically unobservable. The former case
corresponds to the situation studied in [1] and the latter to
the “ideal” ultra-wideband setup explored in [10, 11]. The
result of this paper pertains to the general case which can
involve “switching” from the increasing to the decreasing
branch.
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