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1. INTRODUCTION

The relay Van der Meulen in [1], describes a single-user
communication channel where a relay helps a sender-receiver
pair in their communication. In [2], Cover and El Gamal
proved a converse result for the relay channel, the so-
called max-flow min-cut upper bound. Additionally, they
established two coding approaches and three achievability
results for the discrete-memoryless relay channel. They
also presented the capacity of degraded, reversely degraded
relay channel, and the relay channel with full feedback. In
[3], partial decoding scheme or generalized block Markov
encoding was defined as a special case of the proposed
coding scheme by Cover and El Gamal [2, Theorem 7]. In
this encoding scheme, the relay does not completely decode
the transmitted message by the sender. Instead, the relay
only decodes part of the message transmitted by the sender.
Partial decoding scheme was used to establish the capacity
of two classes of relay channels called semideterministic relay
channel [3, 4] and orthogonal relay channel [5].

The last few decades have seen tremendous growth in
communication networks. The most popular examples are

cellular voice, data networks, and satellite communication
systems. These and other similar applications have moti-
vated researches to extend Shannon’s information theory to
networks. In the case of relay networks, deterministic relay
networks with no interference, first introduced by Aref [4],
are named Aref networks in [6]. Aref determined the unicast
capacity of such networks. The multicast capacity of Aref
networks is also characterized in [6]. There also has been
much interest in channels with orthogonal components,
since in a practical wireless communication system, a
node cannot transmit and receive at the same time or
over the same frequency band. In [5], the capacity of a
class of discrete-memoryless relay channels with orthogonal
channels from the sender to the relay receiver and from the
sender and relay to the sink is shown to be equal to the max-
flow min-cut upper bound.

There also have been a lot of works that apply the
proposed encoding schemes by Cover and El Gamal to the
multiple relay networks [7–14]. In [7], authors generalize
compress-and-forward strategy and also give an achiev-
able rate when the relays use either decode-and-forward
or compress-and-forward. Additionally, they add partial
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Figure 1: General discrete memoryless relay network [4, Figure
2.1].

decoding to the later method when there are two relays. In
their scheme, the first relay uses decode-and-forward, and
the second relay uses compress-and-forward. Second, relay
further partially decodes the signal from first relay before
compressing its observation. They made the second relay
output statistically independent of the first relay and the
transmitter outputs. In [8], Gupta and Kumar applied irreg-
ular encoding/successive decoding to multirelay networks in
a manner similar to [4]. In [9, 10], Xie and Kumar developed
regular encoding-/sliding-window decoding for multiple
relays, and showed that their scheme achieves better rates
than those of [4, 8]. Regular encoding/backward decoding
was similarly generalized [11]. The achievable rates of the
two regular encoding strategies turn out to be the same.
However, the delay of sliding-window decoding is much less
than that of backward decoding. Regular encoding-/sliding-
window decoding is therefore currently the preferred variant
of multihopping in the sense that it achieves the best rates in
the simplest way. In [12, 13], parity-forwarding protocol is
introduced and a structured generalization of decode-and-
forward strategies for multiple-relay networks with feed-
forward structure based on such protocol is proposed. In
their method, each relay chooses a selective set of previous
nodes in the network and decodes all messages of those
nodes. Parity forwarding was shown to improve previous
decode-and-forward strategies, and it achieves the capacity
of new forms of degraded multirelay networks.

In [14], a generalization of partial decoding scheme was
applied to multiple-relay networks and a new achievable
rate was proposed. In this method, all relays in the network
successively decode only part of the messages of the previous
node before they arrive at the destination, In this way, using
auxiliary random variables that indicate the message parts
results the flexibility in defining some special classes of relay
networks that the proposed rate obtain their exact capacities.
For example, the capacity of feed-forward semideterministic
and orthogonal relay networks that are obtained by the
proposed method. To our knowledge, up to now, except the
work done in [14], no other work was done for applying the
partial decoding to the relay networks in which more than
one relay partially decodes the message transmitted by the
sender. In this paper, we generalize the results of [14] for N-
relay networks and prove some theorems.

The paper is organized as follows. Section 2 introduces
modeling assumptions and notations. In Section 3, some

theorems and corollaries about generalized block Markov
encoding scheme or partial decoding method are reviewed.
In Section 4, we introduce sequential partial decoding and
drive a new achievable rate for relay networks based on
this scheme. In Section 5, a class of semideterministic relay
network is introduced and it is shown that the capacity of this
network is obtained by the proposed method. In Section 6,
we first give a review of orthogonal relay channel defined in
[5], then we introduce orthogonal relay networks and obtain
its capacity. Finally, some concluding remarks are provided
in Section 7.

2. DEFINITIONS AND PRELIMINARIES

The discrete memoryless relay network shown in Figure 1
[4, Figure 2.1] is a model for the communication between
a source X0 and a sink Y0 via N intermediate nodes called
relays. The relays receive signals from the source and other
nodes and then transmit their information to help the sink
to resolve its uncertainty about the message. To specify
the network, we define 2N + 2 finite sets: X0 × X1 ×
· · · × XN × Y0 × Y1 × · · · × YN and a probability
transition matrix p(y0, y1, . . . , yN | x0, x1, . . . , xN ) defined for
all (y0, y1, . . . , yN , x0, x1, . . . , xN ) ∈ Y0×Y1×· · ·×YN×X0×
X1×· · ·×XN . In this model, X0 is the input to the network,
Y0 is the ultimate output, Yi is the ith relay output, and Xi is
the ith relay input.

An (M,n) code for the network consists of a set of
integers W = {1, 2, . . . ,M}, an encoding function xn0 :
W→Xn

0 , a set of relay function { fi j} such that

xi j = fi j
(
yi1, yi2, . . . , yi, j−1

)
, 1 ≤ i ≤ N , 1 ≤ j ≤ n, (1)

that is, xi j � jth component of xni � (xi1, . . . , xin), and a
decoding function g : Yn

0→W . For generality, all functions
are allowed to be stochastic functions.

Let y
j−1
i = (yi1, yi2, . . . , yi, j−1). The input xi j is allowed

to depend only on the past received signals at the ith
node, that is, (yi1, . . . , yi, j−1). The network is memoryless
in the sense that (y0i, y1i, . . . , yNi) depends on the past
(xi0, xi1, . . . , xiN ) only through the present transmitted symbols
(x0i, x1i, . . . , xNi). Therefore, the joint probability mass func-
tion on W ×X0 ×X1 × · · ·×XN ×Y0 ×Y1 × · · ·×YN is
given by

p
(
w, xn0 , xn1 , . . . , xnN , yn0 , yn1 , . . . , ynN

)

= p(w)
N∏

i=1

p
(
x0i | w

)
p
(
x1i | yi−1

1

) · · · p(xNi | yi−1
N

)

× p
(
y0i, . . . , yNi | x0i, . . . , xNi

)
,

(2)

where p(w) is the probability distribution on the message
w ∈ W . If the message w ∈ W is sent, let λ(w) �
Pr{g(Yn

0 ) /=W |W = w} denote the conditional probability
of error. Define the average probability of error of the code,
assuming a uniform distribution over the set of all messages
w ∈ W , as P

n
e = (1/M)

∑
w λ(w). Let λn � maxw∈W λ(w)

be the maximal probability of error for the (M,n) code. The
rate R of an (M,n) code is defined to be R = (1/n) logM
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bits/transmission. The rate R is said to be achievable by the
network if, for any ε > 0, and for all n sufficiently large,
there exists an (M,n) code with M ≥ 2nR such that P

n
e < ε.

The capacity C of the network is the supremum of the set of
achievable rates.

3. GENERALIZED BLOCKMARKOV ENCODING

In [3], generalized block Markov encoding is defined as a
special case of [2, Theorem 7]. In this encoding scheme, the
relay does not completely decode the transmitted message
by the sender. Instead the relay only decodes part of the
message transmitted by the sender. A block Markov encoding
timeframe is again used in this scheme such that the relay
decodes part of the message transmitted in the previous
block and cooperates with the sender to transmit the decoded
part of the message to the sink in current block. The
following theorem expresses the obtained rate via generalized
block Markov encoding.

Theorem 1 (see [3]). For any relay network (X0 ×X1, p(y0,
y1 | x0, x1), Y0 ×Y1), the capacity C is lower-bounded by

C≥ max
p(x0,x1)

min
{
I
(
X0X1;Y0

)
, I
(
U ;Y1 |X1

)
+I
(
X0;Y0 |X1U

)}
,

(3)

where the maximum is taken over all joint probability mass
functions of the form

p
(
u, x0, x1, y0, y1

) = p
(
u, x0, x1

)·p(y0, y1 | x0, x1
)

(4)

such that U→(X0,X1)→(Y0,Y1) form a Markov chain.

If we choose the random variable U = X0, it satisfies the
Markovity criterion and the result of block Markov coding
directly follows as

C ≥ max
p(x0,x1)

min
{
I
(
X0X1;Y0

)
, I
(
X0;Y1 | X1

)}
. (5)

The above expression introduces the capacity of degraded
relay channel as shown in [2]. Moreover, by substituting U =
Y1 in (3), the capacity of semideterministic relay channel in
which y1 is a deterministic function of x0 and x1.

Corollary 1. If y1 is a deterministic function of x0 and x1, then

C≥ max
p(x0,x1)

min
{
I
(
X0X1;Y0

)
,H
(
Y1 |X1

)
+I
(
X0;Y0 |X1Y1

)}
.

(6)

In the next section, we apply the concept of Theorem 1 to
the relay networks with N relays and prove the main theorem
of this paper.

4. SEQUENTIAL PARTIAL DECODING

In this section, we introduce sequential partial decoding
method and drive a new achievable rate for N-relay net-
works. In sequential partial decoding, the message of the
sender is divided into N parts. The first part is directly

decoded by the sink, while the other parts are decoded by
the first relay. With the same way, at each relay, one part of
the message is directly decoded by the sink, while the other
parts are decoded by the next relay. In the next blocks, the
sender and the relays cooperate with each other to remove
the uncertainty of the sink about the individual parts of the
messages.

Sequential partial decoding scheme is useful in the cases
that the relays are located in feed-forward structure from the
sender to the sink with at most distance with each other in
such a way that each node is able to decode some parts of
the message of the previous node, while the sink is sensitive
enough to be able to directly decode the remaining parts of
the messages of the sender and the relays. The rate obtained
by this method is expressed in the following theorem.

Theorem 2. For any relay network (X0 ×X1 × · · · ×XN ,
p(y0, y1, . . . , yN | x0, x1, . . . , xN ), Y0 × Y1 × · · · × YN ), the
capacity C is lower-bounded by

C ≥ sup min
{
I
(
X0,X1, . . . ,XN ;Y0

)
,

min
1≤i≤N

{
I
(
Ui;Yi | Xi

{
XlUl

}N
l=i+1

)

+ I
({
Xl
}i−1
l=0;Y0 |

{
XlUl

}N
l=i
)}}

,

(7)

where the supremum is over all joint probability mass functions
p(u1, . . . ,uN , x0, x1, . . . , xN ) on

U1 × · · · ×UN ×X0 × · · · ×XN (8)

such that
(
U1, . . . ,UN

) −→ (
X0, . . . ,XN

) −→ (
Y0, . . . ,YN

)
(9)

form a Markov chain.

Proof. In this encoding scheme, the source message is split
into (N + 1) parts, wN0,wN−1,0, . . . ,w00. The first relay
decodes messages wN0, . . . ,w10; the second relay decodes
wN0, . . . ,w20; and so on the Nth relay decodes only wN0.
Each relay retransmits its decoded messages to the sink using
the same codebook as the source, that is, regular encoding
is used. Backward decoding is used at all nodes to decode
messages, starting from the last block and going backward to
the first block.

We consider B blocks of transmission, each of n symbols.
A sequence of B −N messages,

w00,i ×w10,i × · · · ×wN0,i ∈
[
1, 2

nR0
]× [1, 2

nR1
]

×· · · × [1, 2
nRN
]
, i = 1, 2, . . . ,B −N ,

(10)

will be sent over the channel in nB transmissions. In each n-
block b = 1, 2, . . . ,B, we will use the same set of codewords.
We consider only the probability of error in each block as
the total average probability of error can be upper-bounded
by the sum of the decoding error probabilities at each step,
under the assumption that no error propagation from the
previous steps has occurred [15].
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Random coding

The random codewords to be used in each block are gen-
erated as follows.

(1) Choose 2nRN i.i.d. xnN each with probability p(xnN ) =∏n
i=1p(xNi). Label these as xnN (wNN ), wNN ∈ [1, 2nRN ].

(2) For every xnN (wNN ), generate 2nRN i.i.d. unN with prob-
ability

p
(
unN | xnN

(
wNN

)) =
N∏

i=1

p
(
uN ,i | xN ,i

(
wNN

))
. (11)

Label these unN (wNN ,wN ,N−1), wN ,N−1 ∈ [1, 2nRN ].
(3) For each (unN (wNN ,wN ,N−1), xnN (wNN )), generate

2nRN−1 i.i.d. xnN−1 each with probability

p
(
xnN−1 | unN

(
wNN ,wN ,N−1

)
, xnN

(
wNN

))

=
N∏

i=1

p
(
xN−1,i | uN ,i

(
wNN ,wN ,N−1

)
, xN ,i(wNN

))
.

(12)

Label these xnN−1(wNN ,wN ,N−1,wN−1,N−1), wN−1,N−1 ∈
[1, 2nRN−1 ].

For every l ∈ {N − 1, . . . , 1}, with the same manner as
previous, we generate unl and xnl−1 in the steps a = 2N − 2(l−
1) and b = 2N − 2(l − 1) + 1, respectively, as follows.

(a) For each

unj
({
wkm

}
m∈{N ,..., j},k∈{N ,...,m},

{
wk, j−1

}
k∈{N ,..., j}

)
,

l + 1 ≤ j ≤ N ,

xnj
({
wkm

}
m∈{N ,..., j},k∈{N ,...,m}

)
, l ≤ j ≤ N ,

(13)

generate 2nRl i.i.d. unl with probability

p
(
unl |

{
unj
({
wkm

}
k∈{N ,...,m},m∈{N ,..., j},

{
wk, j−1

}
k∈{N ,..., j}

)}N

j=l+1
,

{
xnj
({
wkm

}
k∈{N ,...,m},m∈{N ,..., j−1}

)}N

j=l

)

=
n∏

i=1

p
(
ul,i |

{
uj,i

({
wkm

}
m∈{N ,..., j},k∈{N ,...,m},

{
wk, j−1

}
k∈{N ,..., j}

)}N

j=l+1
,

{
xj,i
({
wkm

}
m∈{N ,..., j},k∈{N ,...,m}

)}N

j=l

)
.

(14)

Label these unl (
{
wkm

}
m∈{N ,...,l},k∈{N ,...,m}, {wk,l−1}k∈{N ,...,l}),

{wk,l−1 ∈ [1, 2nRk ]}k∈{N ,...,l}.
(b) For each

xnj
({
wkm

}
m∈{N ,..., j},k∈{N ,...,m}

)
, l ≤ j ≤ N ,

unj
({
wkm

}
m∈{N ,..., j},k∈{N ,...,m},

{
wk, j−1

}
k∈{N ,..., j}

)
, l≤ j≤N ,

(15)

generate 2nRl−1 i.i.d. xnl−1 with probability

p
(
xnl−1 |

{
unj
({
wkm

}
m∈{N ,..., j},k∈{N ,...,m},

{
wk, j−1

}
k∈{N ,..., j}

)
,

xnj
({
wkm

}
m∈{N ,..., j},k∈{N ,...,m}

)}N

j=l

)

=
n∏

i=1

p
(
xl−1,i |

{
uj,i

({
wkm

}
m∈{N ,..., j−1},k∈{N ,...,m},

{
wk, j−1

}
k∈{N ,..., j}

)
,

xj,i
({
wkm

}
m∈{N ,..., j},k∈{N ,...,m}

)}N

j=l

)
.

(16)

Label these xnl−1(
{
wkm

}
m∈{N ,...,l−1},k∈{N ,...,m}), wl−1,l−1 ∈ [1,

2nRl−1 ].
In the above random coding strategy, m and k denote

the relay number and the message part number, respectively.
The mth relay decodes {wkm}k∈{N ,...,m} and the (m − 1)th
relay decodes {wk,m−1}k∈{N ,...,m−1}, where at the mth relay
for each message part k ∈ {N , . . . ,m}, the index wkm

represents the index wk,m−1 of the previous block. In this
coding construction, N(N + 1) indices are used in total.

As an example, for two-relay network, the transmitter
and the relay encoders send the following codewords:

xn0
(
1, 1, 1,w20,h,w10,h,w00,h

)
,

xn1 (1, 1, 1),

xn2 (1);

(17)

in block h = 1, the following codewords:

xn0
(
1,w20,h−1,w10,h−1,w20,h,w10,h,w00,h

)
,

xn1
(
1, ŵ20,h−1, ŵ10,h−1

)
,

xn2 (1);

(18)

in each block h = 2, the following codewords:

xn0
(
w20,h−2,w20,h−1,w10,h−1,w20,h,w10,h,w00,h

)
,

xn1
(
ŵ20,h−2, ŵ20,h−1, ŵ10,h−1

)
,

xn2
(
ŵ20,h−2

)
;

(19)

in each block h = 3, . . . ,B − 2, the following codewords

xn0
(
w20,B−3,w20,B−2,w10,B−2, 1, 1, 1

)
,

xn1
(
ŵ20,B−3, ŵ20,B−2, ŵ10,B−2

)
,

xn2
(
ŵ20,B−3

)
;

(20)

in block h = B − 1, and the following codewords:

xn0
(
w20,B−2, 1, 1, 1, 1, 1

)
,

xn1
(
ŵ20,B−2, 1, 1

)
,

xn2
(
ŵ20,B−2

)
;

(21)

in block h = B. Figure 2 shows the individual parts of the
messages that should be decoded by the relays and the sink.
It can be inferred from Figure 2 that w11,h = w10,h−1, w22,h =
w21,h−1, w21,h = w20,h−1 or w22,h = w20,h−2.
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Y1 : X1
un2 (w22,w21)

xn1 (w22,w21,w11)

Y2 : X2

X0

un1 (w22,w21,w11,w20,w10)

xn0 (w22,w21,w11,w20,w10,w00)
Y0

xn2 (w22)

Figure 2: Schematic diagram of sequential partial decoding for
two-relay network.

Decoding

Assume that at the end of block (h − 1), the ith relay knows
{wki,i+1,wki,i+2, . . . ,wki,h−1}k∈{N ,...,i} or equivalently {wk0,1,
wk0,2, . . . ,wk0,h−i−1}k∈{N ,...,i}. At the end of block h, decoding
is performed in the following manner.

Decoding at the relays

By knowing {wk0,1,wk0,2, . . . ,wk0,h−i−1}k∈{N ,...,i}, the ith relay
determines {wki,h = wk0,h−i}k∈{N ,...,i} such that

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uni
({
ŵkm,h

}
m∈{N ,...,i},k∈{N ,...,m},

{
ŵk,i−1,h

}
k∈{N ,...,i}

)
,

yni (h)
{
unl
({
ŵkm,h

}
m∈{N ,..., j},k∈{N ,...,m},

{
ŵk, j−1,h

}
k∈{N ,..., j}

)}N

l=i+1
,

{
xnl
({
ŵkm,h

}
m∈{N ,..., j},k∈{N ,...,m}

)}N

l=i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ An
ε ,

(22)

{ŵki,h = wki,h}k∈{N ,...,i}, or similarly {ŵk0,h−i = wk0,h−i}k∈{N ,...,i}
with high probability if

N∑

k=i
Rk < I

(
Ui;Yi |

{
Ul
}N
l=i+1

{
Xl
}N
l=i
)

(23)

and n is sufficiently large.

Decoding at the sink

Decoding at the sink is performed in backward manner in
N+1 steps until all {wk0,h−N}k∈{N ,...,1},h∈{B,...,N+1} are decoded
by the sink.

(1) Decoding {wN0}

In block B, the sink determines the unique ŵNN ,B = ŵN0,B−N
such that

(
unN
(
ŵNN ,B, 1

)
, xnN

(
ŵNN ,B

)
, yn0 (B)

) ∈ An
ε (24)

or equivalently,
(
unN
(
ŵN0,B−N , 1

)
, xnN

(
ŵN0,B−N

)
, yn0 (B)

) ∈ An
ε , (25)

ŵN0,B−N = wN0,B−N with high probability if

RN < I
(
XNUN ;Y0

)
(26)

and n is sufficiently large. By knowing ŵN0,B−N , in block B−1,
the sink determines the unique ŵNN ,B−1 = ŵN0,B−N−1 such
that

(
unN
(
ŵN0,B−N−1, ŵN0,B−N

)
, xnN

(
ŵN0,B−N−1

)
, yn0 (B − 1)

) ∈ An
ε ,

(27)

ŵN0,B−N−1 = wN0,B−N−1 with high probability if (26) is
satisfied and n is sufficiently large. This way continues until
first block such that all {wN0,h−N}h∈{B,...,N+1} are decoded by
the sink.

(2) Decoding {wN−1,0}

By knowing {wN0,h−N}h∈{B,...,N+1}, in block B − 1, the sink
determines the unique ŵN−1,N−1,B−1 = ŵN−1,0,B−N such that

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

unN−1

(
ŵNN ,B−1, ŵN ,N−1,B−1, ŵN−1,N−1,B−1, 1, 1

)
,

xnN−1

(
ŵNN ,B−1, ŵN ,N−1,B−1, ŵN−1,N−1,B−1

)
,

unN
(
ŵNN ,B−1, ŵN ,N−1,B−1

)
,

xnN
(
ŵNN ,B−1

)
, yn0 (B − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ An
ε

(28)

or equivalently,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

unN−1

(
ŵN0,B−N−1, ŵN0,B−N , ŵN−1,0,B−N , 1, 1

)
,

xnN−1

(
ŵN0,B−N−1, ŵN0,B−N , ŵN−1,0,B−N

)
,

unN
(
ŵN0,B−N−1, ŵN0,B−N

)
,

xnN
(
ŵN0,B−N−1

)
, yn0 (B − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ An
ε ,

(29)

ŵN−1,0,B−N = wN−1,0,B−N with high probability if

RN−1 < I
(
XN−1UN−1;Y0 | XNUN

)
(30)

and n is sufficiently large. By knowing ŵN−1,0,B−N , in block
B − 2, the sink determines the unique ŵN−1,N−1,B−2 =
ŵN0,B−N−1 such that

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

unN−1

(
ŵN0,B−N−2, ŵN0,B−N−1, ŵN−1,0,B−N−1,

ŵN0,B−N , ŵN−1,0,B−N
)
,

xnN−1

(
ŵN0,B−N−2, ŵN0,B−N−1, ŵN−1,0,B−N−1

)
,

unN
(
ŵN0,B−N−2, ŵN0,B−N−1

)
,

xnN
(
ŵN0,B−N−2

)
, yn0 (B − 2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ An
ε ,

(31)

ŵN−1,0,B−N−1 = wN−1,0,B−N−1 with high probability if (30) is
satisfied and n is sufficiently large. This way continues until
first block such that all {wN−1,0,h−N}h∈{B,...,N+1} are decoded
by the sink.
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(3) Decoding {wi0}
By knowing {wk0,h−N}h∈{B,...,N+1},k∈{N ,...,i+1}, in block B+i−N ,
the sink determines the unique ŵii,B−N+i = ŵi0,B−N such that
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

{
unl
({
ŵkm,B−N+i

}
k∈{N ,...,m},m∈{N ,...,l},

{ŵk,l−1,B−N+i}k∈{N ,...,l}
)
,

xnl
({
ŵkm,B−N+i

}
k∈{N ,...,m},m∈{N ,...,l−1}

)}N
l=i,

yn(B −N + i),

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ An
ε

(32)

or equivalently,
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

{
unl
({
ŵk0,B−N+i−m

}
k∈{N ,...,m},m∈{N ,...,l},

{
ŵk0,B−N+i−l+1

}
k∈{N ,...,l}

)
,

xnl
({
ŵk0,B−N+i−m

}
k∈{N ,...,m},m∈{N ,...,l−1}

)}N

l=i,

yn(B −N + i),

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ An
ε ,

(33)

ŵi0,B−N = wi0,B−N with high probability if

Ri < I
(
XiUi;Y0 |

{
XlUl

}N
l=i+1

)
(34)

and n is sufficiently large.
This way continues until first block such that all

{wi0,h−N}h∈{B,...,N+1} are decoded by the sink.
By knowing U0 = 0, (34) reduces to the following con-

straint for i = 0;

R0 < I
(
X0;Y0 |

{
XlUl

}N
l=1

)
. (35)

Now, For each 1 ≤ i ≤ N , we have

Rti =
N∑

k=0

Rk

= R0 +
i−1∑

k=1

Rk +
N∑

k=i
Rk

(a)
< I
(
X0;Y0 |

{
XlUl

}N
l=1

)
+

i−1∑

k=1

Rk+I
(
Ui;Yi | Xi

{
XlUl

}N
l=i+1

)

(b)
< I
(
X0;Y0 |

{
XlUl

}N
l=1

)
+

i−1∑

k=1

I
(
XkUk;Y0 |

{
XlUl

}N
l=k+1

)

+ I
(
Ui;Yi | Xi

{
XlUl

}N
l=i+1

)

(c)= I
({
Xl
}i−1
l=0;Y0 |

{
XlUl

}N
l=i
)

+ I
(
Ui;Yi | Xi

{
XlUl

}N
l=i+1

)
,

(36)

where (a) follows from (23) and (35). (b) follows from (34).
(c) follows from chain rule for information and (9). For i =
0, by respect to the fact that UN+1 = 0, we have

Rt0 < I
(
X0,X1, . . . ,XN ;Y0

)
, (37)

equations (36) and (37) along with R = min0≤i≤NRti result
in (7).

This completes the proof.

Y1 : X1 Y2 : X2 YN : XN

N1 N2 N3 NN NN+1

X0 Y0· · ·

· · ·

⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

Figure 3: A degraded chain network with additive noises Nk , 1 ≤
k ≤ N , [13, Figure 5].

Remarks

(1) By putting Ul = Xl−1 for 1 ≤ l ≤ N in (7), that
means omitting partial decoding and assuming that each
relay decodes all messages of the previous relay, the following
rate is the result:

C ≥ sup
p(x0,x1,...,xN )

min
{
I
(
X0,X1, . . . ,XN ;Y0

)
,

min
1≤i≤N

{
I
(
Xi−1;Yi |

{
Xl
}N
l=i
)

+ I
({
Xl
}i−2
l=0;Y0 |

{
Xl
}N
l=i−1

)}}
.

(38)

In [13], the above rate is obtained as a special case of parity-
forwarding method in which each relay selects the message of
the previous relay, and it is stated that (38) is the capacity of
degraded chain network as shown in Figure 3. This point can
be regarded as a special example that two schemes coincide.

(2) By comparing (38) with the rate proposed by Xie and
Kumar in [10, Theorem 3-1], as

C ≥ sup
p(x0,x1,...,xN )

min
1≤i≤N

{
I
({
Xl
}i−1
l=0;Yi |

{
Xl
}N
l=i
)}

; (39)

it is seen that in the cases which the following relation

I
({
Xl
}i−2
l=0;Y0 |

{
Xl
}N
l=i−1

)
> I
({
Xl
}i−2
l=0;Yi |

{
Xl
}N
l=i−1

)

(40)

is true for 2 ≤ i ≤ N , (38) yields higher rates than (39).
(3) In our proposed rate (7), we offer more flexibility

than parity forwarding scheme [13], by introducing auxiliary
random variables that indicate partial parts of the messages.
By this priority, we can achieve the capacity of some other
forms of relay networks such as semideterministic and
orthogonal relay networks as shown in the next section.
However, our scheme is limited by the assumption that each
relay only decodes part of the message transmitted by the
previous relay.

5. A CLASS OF SEMIDETERMINISTIC
RELAY NETWORKS

seminet A class of semideterministic multirelay networks
In this section, we introduce a class of semideterministic
relay network and show that the capacity of such network is
obtained by using the proposed method, that is, it coincides
with the max-flow min-cut upper bound. Consider the
semideterministic relay networks with N relays as shown in
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Y1 : X1 · · · Yi : Xi · · · YN : XN

X0 Y0

Figure 4: A class of semideterministic multirelay networks.

Figure 4 in which yk = hk(xk−1, . . . , xN ) for k = 1, . . . ,N ,
are deterministic functions. In this figure, deterministic and
nondeterministic links are shown by solid and dash lines,
respectively. It can be easily proved that the capacity of this
network is obtained by the proposed method and it coincides
with max-flow min-cut upper bound. It is expressed in the
following theorem.

Theorem 3. For a class of semideterministic relay network
(X0×X1×· · ·×XN , p(y0, y1, . . . , yN | x0, x1, . . . , xN ), Y0×
Y1×· · ·×YN ) having yk = hk(xk−1, . . . , xN ) for k = 1, . . . ,N ,
the capacity C is given by

C ≥ sup
p(x0,x1,...,xN )

min
{
I
(
X0,X1, . . . ,XN ;Y0

)
,

min
1≤i≤N

H
(
Y0Yi |

{
Xk
}N
k=i
)

−H
(
Y0 |

{
Xk
}N
k=0

)}
.

(41)

Proof. The achievability is proved by replacing Uk = Yk for
k = 1, . . . ,N , in (7). The converse follows immediately from
the max-flow min-cut theorem for general multiple-node
networks stated in [16, Theorem 15.10.1], where the node
set is chosen to be {0}, {0, 1}, . . . , {0, 1, . . . ,N} sequentially,
and with the following equation:

I
(
X0, . . . ,Xi−1;Yi, . . . ,YN ,Y0 | Xi, . . . ,XN

)

= H
(
Yi, . . . ,YN ,Y0 | Xi, . . . ,XN

)

−H
(
Yi, . . . ,YN ,Y0 | X0, . . . ,XN

)

= H
(
Yi,Y0 | Xi, . . . ,XN

)−H
(
Y0 | X0, . . . ,XN

)
.

(42)

6. A CLASS OF ORTHOGONAL RELAY NETWORKS

In this section, we introduce a class of orthogonal relay
networks that is a generalization of orthogonal relay channel
[5]. First, we define orthogonal relay channel.

A relay channel with orthogonal components is a relay
channel where the channel from the transmitter to the relay
is orthogonal to the channel from the sender and relay to the
sink. In other words, transmission on direct channel from
the sender to the sink does not affect the reception at the
relay and also transmission at the channel from the sender to
the relay does not affect the received signal at the sink. This
channel is defined in as follows [5].

Definition 1. A discrete-memoryless relay channel is said to
have orthogonal components if the sender alphabet X0 =
XD ×XR and the channel can be expressed as

p
(
y0, y1 | x0, x1

) = p
(
y0 | xD, x1

)
p
(
y1 | xR, x1

)
(43)

Y1 : X1

XR

XD

X0 Y0

Figure 5: A class of orthogonal relay channel.

for all

(
xD, xR, x1, y0, y1

) ∈XD ×XR ×X1 ×Y0 ×Y1. (44)

The class A relay channel is illustrated in Figure 5, where the
channels in the same frequency band are shown by the lines
with the same type. The capacity is given by the following
theorem.

Theorem 4 (see [5, Theorem]). The capacity of the relay
channel with orthogonal components is given by

C = max min
{
I
(
XD,X1;Y0

)
, I
(
XR;Y1 |X1

)
+I
(
XD;Y0 |X1

)}
,

(45)

where the maximum is taken over all joint probability mass
functions of the form

p
(
x1, xD, xR

) = p
(
x1
)
p
(
xD | x1

)
p
(
xR | x1

)
. (46)

Generalized block Markov coding is used for the proof of
achievability part by assuming joint probability mass function
of the form (46). The converse part of the theorem is proved for
all joint probability mass function p(x1, xD, xR) only based on
the orthogonality assumption (48) or equivalently the following
Markov chains:

XD −→
(
X1,XR

) −→ Y1,
(
XR,Y1

) −→ (
X1,XD

) −→ Y.
(47)

Now, we introduce a class of relay networks with
orthogonal components where the channels reach at each
node uses the same frequency band while the channels
diverge from each node uses different frequency bands. By
this assumption, the network with N relays (intermediate
nodes) uses (N + 1) frequency bands. The network is defined
as follows.

Definition 2. A discrete-memoryless relay networks with N
relays is said to have orthogonal components if the sender
and the relays alphabet Xk =XkR×XkD, for k = 0, . . . ,N−1,
and the channel can be expressed as

p
(
y0, . . . , yN | x0, . . . , xN

)

= p
(
y0 |

{
xkD
}N−1
k=0 , xN

) N∏

i=1

p
(
yi |

{
xkD
}N−1
k=i ,

{
xkR
}N−1
k=i−1, xN

)

(48)



8 EURASIP Journal on Wireless Communications and Networking

Y1 : X1 Y2 : X2

X1R

X1D
X0R

X0D

X0
Y0

Figure 6: A class of orthogonal relay networks.

or equivalently,

({
Yk
}N
k=1,

{
XkR

}N−1
k=0

)
−→

({
XkD

}N−1
k=0 ,XN

)
−→ Y0,

(49)
({
Yk
}i−1
k=1,
{
XkD

}i−1
k=0,

{
XkR

}i−2
k=0

)
−→

({
XkD

}N−1
k=i ,

{
XkR

}N−1
k=i−1,XN

)

−→ Yi, 1 ≤ i ≤ N. (50)

Orthogonal relay networks with N = 2 are illustrated in
Figure 6, where the channels in the same frequency band
are shown by the same line type. The channel from the
sender to the first relay is shown by a dash-dot line. The
channel between two relays is shown by a dash line. The
channels converging at the sink are shown by dot lines. The
capacity for the networks of Figure 6 is given by the following
theorem.

Theorem 5. For the network depicted in Figure 6, the capacity
is given by

C=sup min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I
(
X0D,X1D, . . . ,XN−1,D,XN ;Y0

)
,

min
1≤i≤N

{
I
(
Xi−1,R;Yi |

{
XlDXlR

}N−1
l=i XN

)

+I
({
XlD
}i−1
l=0;Y0 |

{
XlD
}N−1
l=i XN

)}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(51)

Proof. The achievability is proved By replacing Xk = (XkD,
XkR), for k = 1, . . . ,N − 1 and Uk = Xk−1,R for k = 1, . . . ,N ,
in (7) and assuming joint probability mass function of the
form

N−1∏

i=0

{
p
(
xiD |

{
xlD
}N−1
l=i+1, xN

)
p
(
xiR |

{
xlDxlR

}N−1
l=i+1, xN

)}
p
(
xN
)

(52)

as follows:

I
(
X0, . . . ,XN ;Y0

)

= I
({
XlDXlR

}N−1
l=0 XN ;Y0

)

= I
({
XlD
}N−1
l=0 ,XN ;Y0

)
+I
({
XlR
}N−1
l=0 ;Y0 |

{
XlD
}N−1
l=0 ,XN

)

(a)= I
({
XlD
}N−1
l=0 ,XN ;Y0

)
;

(53)

I
(
Ui;Yi | Xi

{
XlUl

}N
l=i+1

)
+ I
({
Xl
}i−1
l=0;Y0 |

{
XlUl

}N
l=i
)

= I
(
Xi−1,R;Yi |

{
XlDXlR

}N−1
l=i XN

)

+ I
({
XlDXlR

}i−1
l=0;Y0 | Xi−1,R

{
XlDXlR

}N−1
l=i XN

)

= I
(
Xi−1,R;Yi |

{
XlDXlR

}N−1
l=i XN

)

+ I
({
XlD
}i−1
l=0

{
XlR
}i−2
l=0;Y0 | Xi−1,R

{
XlDXlR

}N−1
l=i XN

)

= I
(
Xi−1,R;Yi |

{
XlDXlR

}N−1
l=i XN

)

+ I
({
XlD
}i−1
l=0;Y0 | Xi−1,R

{
XlDXlR

}N−1
l=i XN

)

+ I
({
XlR
}i−2
l=0;Y0 | Xi−1,R

{
XlD
}N−1
l=0

{
XlR
}N−1
l=i XN

)

(b)= I
(
Xi−1,R;Yi |

{
XlDXlR

}N−1
l=i XN

)

+ I
({
XlD
}i−1
l=0;Y0 | Xi−1,R

{
XlDXlR

}N−1
l=i XN

)

(c)= I
(
Xi−1,R;Yi |

{
XlDXlR

}N−1
l=i XN

)

+ I
({
XlD
}i−1
l=0;Y0 |

{
XlD
}N−1
l=i XN

)
,

(54)

where (a) and (b) follow from (49). (c) follows from the fact
that according to (52), we have

{
XlR
}N−1
l=i−1 −→

({
XlD
}N−1
l=i XN

)
−→ {

XlD
}i−1
l=0, (55)

this along with (50) results in

{
XlR
}N−1
l=i−1 −→

({
XlD
}N−1
l=i XN

)
−→ Y0. (56)

The converse follows immediately from the max-flow
min-cut theorem for general multiple-node networks stated
in [16, Theorem 15.10.1], where the node set is chosen
to be {0}, {0, 1}, . . . , {0, 1, . . . ,N} sequentially, and with the
following equations:

I
(
X0, . . . ,Xi−1,Yi, . . . ,YN ,Y0 | Xi, . . . ,XN

)

= I
({
Xk
}i−1
k=0;Yi, . . . ,YN ,Y0 |

{
Xk
}N−1
k=i ,XN

)

= I
({
XkDXkR

}i−1
k=0;Yi, . . . ,YN ,Y0 |

{
XkDXkR

}N−1
k=i ,XN

)

= I
({
XkDXkR

}i−1
k=0;Yi |

{
XkDXkR

}N−1
k=i ,XN

)

+
N∑

l=i+1

I
({
XkDXkR

}i−1
k=0;Yl |

{
XkDXkR

}N−1
k=i ,XN ,

{
Yk
}l−1
k=i
)

+ I
({
XkDXkR

}i−1
k=0;Y0 |

{
XkDXkR

}N−1
k=i ,XN ,

{
Yk
}N
k=i
)



L. Ghabeli and M. R. Aref 9

(a)= I
({
XkDXkR

}i−1
k=0;Yi |

{
XkDXkR

}N−1
k=i ,XN

)

+ I
({
XkDXkR

}i−1
k=0;Y0 |

{
XkDXkR

}N−1
k=i ,XN ,

{
Yk
}N
k=i
)

= H
(
Yi |

{
XkDXkR

}N−1
k=i ,XN

)
−H

(
Yi |

{
XkDXkR

}N−1
k=0 ,XN

)

+ I
({
XkDXkR

}i−1
k=0;Y0 |

{
XkDXkR

}N−1
k=i ,XN ,

{
Yk
}N
k=i
)

(b)= H
(
Yi |

{
XkDXkR

}N−1
k=i ,XN

)

−H
(
Yi | Xi−1,R

{
XkDXkR

}N−1
k=i ,XN

)

+ I
({
XkDXkR

}i−1
k=0;Y0 |

{
XkDXkR

}N−1
k=i ,XN ,

{
Yk
}N
k=i
)

= I
(
Xi−1,R;Yi |

{
XkDXkR

}N−1
k=i ,XN

)

+ I
({
XkDXkR

}i−1
k=0;Y0 |

{
XkDXkR

}N−1
k=i ,XN ,

{
Yk
}N
k=i
)

= I
(
Xi−1,R;Yi |

{
XkDXkR

}N−1
k=i ,XN

)

+ H
(
Y0 |

{
XkDXkR

}N−1
k=i ,XN ,

{
Yl
}N
l=i
)

−H
(
Y0 |

{
XkDXkR

}N−1
k=0 ,XN ,

{
Yl
}N
l=i
)

(c)= I
(
Xi−1,R;Yi |

{
XkDXkR

}N−1
k=i ,XN

)

+ H
(
Y0 |

{
XkDXkR

}N−1
k=i ,XN ,

{
Yl
}N
l=i
)

−H
(
Y0 |

{
XkD

}N−1
k=0 ,XN

)

(d)
< I
(
Xi−1,R;Yi |

{
XkDXkR

}N−1
k=i ,XN

)

+ H
(
Y0 |

{
XkD

}N−1
k=i ,XN

)
−H

(
Y0 |

{
XkD

}N−1
k=0 ,XN

)

= I
(
Xi−1,R;Yi |

{
XkDXkR

}N−1
k=i ,XN

)

+ I
({
XkD

}i−1
k=0;Y0 |

{
XkD

}N
k=i,XN

)
,

(57)

where (a) and (b) follow from (50). (c) follows from (49). (d)
follows from the fact that conditioning reduces entropy. For
the set {0, 1, . . . ,N}, according to (53), the first term of (51)
are obtained.

We have shown that

C=sup min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I
(
X0D,X1D, . . . ,XN−1,D,XN ;Y0

)
,

min
1≤i≤N

{
I
(
Xi−1,R;Yi |

{
XlDXlR

}N−1
l=i XN

)

+ I
({
XlD
}i−1
l=0;Y0 |

{
XlD
}N−1
l=i XN

)}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(58)

The maximization in (51) is over the choice of joint
probability mass function {p(xN )

∏N−1
i=0 p(xiD, xiR)}. Without

loss of generality, we can restrict the joint probability mass
functions to be of the form (52).

This completes the proof of the theorem.

7. CONCLUSION

This paper presents a new achievable rate based on a partial
decoding scheme for the multilevel relay network. A novel
application of regular encoding and backward decoding is
presented to implement the proposed rate. In the proposed
scheme, the relays are arranged in feed-forward structure
from the source to the destination. Each relay in the network
decodes only part of the transmitted message by the previous
relay. The priorities and differences between the proposed
method with similar previously known methods such as gen-
eral parity forwarding scheme and the proposed rate by Xie
and Kumar are specified. For the classes of semideterministic
and orthogonal relay networks, the proposed achievable rate
is shown to be the exact capacity. One of the applications
of the defined networks is in wireless networks which have
nondeterministic or orthogonal channels.
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