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This paper addresses the use of multirate filter banks in the context of error-correction coding. An in-depth study of these filter
banks is presented, motivated by earlier results and applications based on the filter bank representation of Reed-Solomon (RS)
codes, such as Soft-In Soft-Out RS-decoding or RS-OFDM. The specific structure of the filter banks (critical subsampling) is
an important aspect in these applications. The goal of the paper is twofold. First, the filter bank representation of RS codes is
now explained based on polynomial descriptions. This approach allows us to gain new insight in the correspondence between RS
codes and filter banks. More specifically, it allows us to show that the inherent periodically time-varying character of a critically
subsampled filter bank matches remarkably well with the cyclic properties of RS codes. Secondly, an extension of these techniques
toward the more general class of BCH codes is presented. It is demonstrated that a BCH code can be decomposed into a sum of
critically subsampled filter banks.
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1. INTRODUCTION

Multirate filter banks have long been known to be powerful
tools for image and audio processing [1], for example, in
video/audio compression [2, Chapter 14]. Recent work by,
for example, Scaglione et al. [3] demonstrates the usefulness
of filter banks in communication systems. Many modulation
schemes, including CDMA, OFDM (DMT), and TDMA, can
actually be viewed as filter banks that build input diversity
(add redundancy) at the transmitter. In this paper, filter
banks are used in yet another application, namely, as error-
correcting codes. In [4, 5], it is shown that oversampled
filter banks are robust to subband errors and erasures. More
specifically, in these papers, the resilience of filter banks
(frame expansions) to subband erasures is studied. This
resilience is a result of the redundancy introduced by the filter
bank representation. Therefore, oversampled filter banks can
readily be used as error-correcting codes (see [6–9]). In
[6, 7], the main idea is to construct a parity check polynomial
matrix corresponding to an oversampled filter bank.

There is, however, an important distinction between this
work and the literature mentioned so far; the filter banks
discussed in this paper operate in a finite field (Galois field)

and represent Reed-Solomon or BCH codes. Filter banks that
add redundancy with the explicit purpose of error correction
and that work in finite fields were also addressed by Fekri
et al. [10]. Recently, we developed a critically subsampled
filter bank representation of RS codes, which is the starting
point in building a novel SISO RS decoder [11, 12]. As a
second application, RS codes have been merged with OFDM
modulators, leading to a novel transmission scheme, called
RS-OFDM [13], in which part of the RS code contributes
to the OFDM modulator. Both applications rely extensively
on the critically subsampled filter bank representation of RS
codes. The goal of this paper is to present an in-depth study
of the link between filter banks and error-correcting codes,
opposed to the previous work where the focus was shifted
towards the applications. Moreover, in this paper, a novel
way to describe the correspondence between filter banks and
RS codes is developed using a polynomial description. This
approach has two important advantages. Firstly, it allows us
to give a compact description of both filter banks and RS
codes, and also to gain more insight in the link between
the cyclic character of an RS code and the periodically
time-varying character of a critically subsampled filter bank.
Secondly, it allows us to extend the filter bank decomposition
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from RS codes to the broader class of BCH codes. Hence,
applications like filter-bank-based soft decoding [11] can be
envisaged to work for BCH codes as well.

To fully understand the multirate signal processing
aspects of the filter banks used here, we start with a
discussion of short-time Fourier transform (STFT) filter
banks [14]. These filter banks are known to provide cheap
realizations of linear filtering operations. The filter banks
are then explicitly designed to ensure that a linear time-
invariant (LTI) system is realized. However, if the subsample
factor is increased, the filter bank behaves as a linear
periodically time-varying (LPTV) system, as explained in
[15]. While this is usually considered as an undesirable
artifact, it is this periodicity that is exploited in this paper.
Moreover, it is proven that when the subsample factor
is increased to the point where the filter bank becomes
critically subsampled, its impulse response at different
time instants has some property that resembles a cyclic
shift. Combined with the inherent cyclic character of RS
codes, this leads to a remarkable correspondence between
critically subsampled filter banks and RS codes. It is not
surprising that there exists a relationship with the quasicyclic
character of certain codes, for example, RS codes with
noncoprime length and dimension [16]. Remarkably, the
filter bank representation also exists for codes that are not
naturally quasicyclic by virtue of their dimension-to-length
ratio.

As a final remark, note that the use of an STFT filter
bank is not very surprising, seen the relation between RS
(BCH) codes and the DFT. Since the publication of the
seminal paper of Wolf [17], the relation between the DFT in
the complex field and RS (BCH) codes has been extensively
studied [18, 19]. In [20, 21], subspace-based methods are
applied to simplify decoding of real valued codes. Again,
these results are obtained in the complex field, rather than
in the Galois field used in this paper.

The paper is structured as follows. In Section 1, the
STFT filter bank is reviewed. Based on [14], the condition
for a time-invariant filter bank is recalled in Section 2.
In Section 3, our main theorem states how to construct a
critically subsampled filter bank implementing an RS code.
In Section 4, this result is then extended to BCH codes,
which can be broken into a sum of critically subsampled filter
banks.

Notation

Lower/upper case bold-face symbols represent
vectors/matrices, respectively. The ith element of a
vector a is denoted with a[i] and the i, jth element of
a matrix A is denoted with A[i, j]. The Z-transform of a

vector a = [ a[0] a[1] a[2] · · · ]
T

is represented by the
polynomial a(z−1) = a[0] + a[1]z−1 + · · · . R[ν, κ] and
B[ν, κ] denote an RS code and a BCH code, respectively,
of length ν and dimension κ. u(z−1) and y(z−1) denote
dataword and codeword, respectively. A finite field of order
q (Galois field) is denoted as Fq. An nth root of unity in a
finite field is denoted as αn. a | b denotes “a divides b.”

2. FILTER BANKS AND LINEAR
TIME-INVARIANT SYSTEMS

Multirate filter banks essentially work in a block oriented
fashion, that is, the data are divided in blocks of N (with
N the subsampling) and are processed accordingly. These
schemes became popular with the invention of the DFT and
its fast FFT implementation. Filter banks that calculate the
DFT of subsequent data blocks are referred to as STFT filter
banks. In this section, some basic facts of STFT filter banks
are recalled to provide a clear understanding of the rest of the
paper. Since error-correcting codes in the Galois field (GF)
are targeted, we will use this opportunity to present the GF
counterpart of STFT filter banks in the complex field. In this
context, αq−1 represents a primitive q − 1-st root of unity in
Fq. An M×M DFT matrix only exists in Fq if M divides q−1,
in which case an Mth root of unity αM exists, for example,

αM = α
(q−1)/M
q−1 . Often, a sum

∑L−1
l=0 is denoted as

∑
l if the

indices can be easily derived from the context.
Consider a general multirate system as shown in Figure 1,

operated in Fq with M bands and subsampled by N . In the
case of an STFT filter bank, the analysis bank consists of the
following filters:

am
(
z−1) = z−N+1a

(
αmMz

)
, (1)

where the prototype filter a(z−1) is defined as follows:

a
(
z−1) = 1 + z−1 + z−2 + · · · + z−N+1. (2)

Similarly, the synthesis bank filters are defined as

cm
(
z−1) = c

(
αmMz

)
, (3)

with

c
(
z−1) = 1 + z + z2 + · · · + zM−1. (4)

This scheme is well known for its fast convolution properties
and is referred to as the overlap-add scheme. Swapping
synthesis and analysis bank leads to the overlap-save counter-
part. As we will recall below, this filter bank can implement
an exact linear filtering when correctly designed. This
explanation closely follows the approach of [14].

Let us define the subband filters as follows:

dm
(
z−1) =

L−1∑

l=0

αml
M bl

(
z−1). (5)

The filters bl(z−1) are seen to play an important role later.
The latter relation can be inverted, leading to

bl
(
z−1) =

M−1∑

m=0

α−ml
M dm

(
z−1). (6)

Considering an input u(z−1) = z j with j ∈ {0, . . . ,N −
1}, the analysis bank mth band output is

xm(z−N ) = α
m(N−1− j)
M ∀m = 0, . . . ,M − 1. (7)
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Figure 1: Overlap-add filter bank with M bands and N-fold subsampling.

This signal is filtered with dm(z−N ) (because of the upsam-
pling with N) and fed into the synthesis bank yielding an mth
band output

ym
(
z−1) = xm

(
z−N

)
dm
(
z−N

)
cm
(
z−1)

=
M−1∑

m′=0

α
m(N−1− j)
M dm

(
z−N

)
α−mm′
M z−m

′

=
M−1∑

m′=0

L−1∑

l=0

α
m(N−1− j)
M αml

M bl
(
z−N

)
α−mm′
M z−m

′
.

(8)

The filter bank output y(z−1) is obtained as the sum over all
bands:

y
(
z−1) =

M−1∑

m=0

ym
(
z−1)

=
M−1∑

m=0

∑

m′,l

α
m(N−1− j)
M αml

M bl
(
z−N

)
α−mm′
M z−m

′

=
L−1∑

l=0

bl
(
z−N

)M−1∑

m′=0

M−1∑

m=0

α
m(N−1− j+l−m′)
M z−m

′
.

(9)

Looking closely to the double sum, it is seen that the only
non-zero terms are those with m′ = l +N − 1− j, due to the
orthogonality of the roots of unity. Indeed, ifm′ /= l+N−1− j,
the inner summation (over m) equals zero. Therefore,

y
(
z−1) = z−N+1+ j

L−1∑

l=0

z−lbl
(
z−N

)
(10)

= u
(
z−1)z−N+1

L−1∑

l=0

z−lbl
(
z−N

)
, (11)

which indeed represents a linear filtering operation. Note
that if L = N , bl(z−1) are the polyphase components of the
filter being implemented by the filter bank. The last equation
only holds when M is chosen large enough, that is, M ≥
N +L−1. Before discussing in the next section what happens
if this condition is not fulfilled, we will give an example of a
filter bank implementing an RS code.

Example 1. Throughout this paper, the R[15, 10] code in
F24 with roots {α3

15,α4
15,α5

15,α6
15,α7

15} is used to illustrate our
techniques. A (nonsystematic) codeword is obtained as the
multiplication of the dataword u(z−1) with the generator
polynomial g(z−1):

g
(
z−1) =

7∏

k=3

(
z−1 − αk15

)

= α10
15 + α9

15z
−1 + α11

15z
−2 + α6

15z
−3 + α9

15z
−4 + z−5.

(12)

With L = N = 2,

g
(
z−1) =

1∑

l=0

z−lbl
(
z−2) with

b0
(
z−1) = α10

15 + α11
15z

−1 + α9
15z

−2,

b1
(
z−1) = α9

15 + α6
15z

−1 + z−2.

(13)

Choosing M = 3 ≥ L + N − 1, the subband filters
dm(z−1) are calculated according to (5) leading to the filter
bank shown in Figure 2. Note that the first N − 1 all-zero
output samples should obviously be ignored (see also (10)).

3. CRITICALLY SUBSAMPLED FILTER
BANKS AND CYCLIC CODES

In this section, it is explained how the LTI system described
in Section 2 transforms into an LPTV system if the condition
M ≥ N + L − 1 is not met. This is the basic step in
understanding the link between some cyclic codes and their
filter bank representations. Assume the subsample factor N
is too large such that N = M − L + 1 + d, with d ≥ 0.
In this case, the only nonzero terms are those with m′ =
l+N−1− j mod M. Note the modulo operation that is added
such that 0 ≤ m′ ≤M − 1. Equation (10) becomes

y
(
z−1) =

L−1∑

l=0

z−(N−1− j+l) mod Mbl
(
z−N

)
. (14)

This means that for j = 0, . . . ,d−1, the last d− j coefficients
are folded back. Hence, this multirate system has different
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+
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Figure 2: Filter bank representation of R[15, 10], with M = 3, N = L = 2 (Example 1).

impulse responses on different time instants j that repeat
periodically, and so indeed realize an LPTV system. In a
coding context, this characteristic is often referred to as cyclic.
As will be shown, there is a strong link between critically
subsampled filter banks and cyclic codes such as RS and BCH
codes.

Example 2. Assume M = 3 and L = 2 as in the previous
example. If N is increased to 3 (critically subsampled), then
d = L−M + N − 1 = 1 and the following impulse responses
are obtained:

u
(
z−1
) = z2 −→ y

(
z−1
) = b0z−0 + b1z−1,

u
(
z−1
) = z1 −→ y

(
z−1
) = b0z−1 + b1z−2,

u
(
z−1
) = z0 −→ y

(
z−1
) = b0z−2 + b1z−0.

(15)

Note that b1 is folded back onto z−0.

For the applications mentioned in Section 1, it is crucial
that the filter banks are critically subsampled, that is, that
the number of bands M equals the downsampling factor N .
Hence, the condition M ≥ L + N − 1 is indeed violated.
Therefore, while critically subsampled filter banks are not of
much interest if a cheap implementation of a linear filter is
aimed for, it is shown in this paper that such filter banks are
exceptionally well suited to implement RS codes and some
other cyclic codes.

Theorem 1. Let R[ν, κ] be an RS code over Fq of length
ν = q− 1. Consider an STFT-based critically subsampled filter
bank withM bands (M divides ν), subsampled by N =M and
with analysis and synthesis bank (resp., am(z−1) and cm(z−1))
as defined in (1) and (3). If the roots αrq−1 of R[ν, κ] are
distributed over the subband filters, according to

dm
(
αrq−1

) = 0 ⇐⇒ r mod M = m, (16)

then this filter bank implements the RS codeR[ν, κ].

Proof. Since M divides ν, let us define the shortcut notation
ν′ = ν/M. With

bl
(
z−1) =

K−1∑

k=0

bl[k]z−k,

dm
(
z−1) =

K−1∑

k=0

dm[k]z−k,

(17)

the following relation holds (see (6)):

bl[k] =
M−1∑

m=0

α−ν′ml
q−1 dm[k]. (18)

The proof will consist in showing that the filter bank
output for every u(z−1) = z j , for all j ∈ {0, . . . ,N − 1} is
a codeword of the original RS code, up to an interleaving.
This done in two steps. In the first step, the filter bank output
for u(z−1) = zN−1 is considered:

y
(
z−1) =

L−1∑

l=0

z−lbl
(
z−N

)
. (19)

Interleaving this y(z−1) gives

yΠ
(
z−1) =

L−1∑

l=0

z−ν′lbl
(
z−1). (20)

Now, it is shown that yΠ(z−1) is a codeword of R[ν, κ] by
calculating its Mattson-Solomon polynomial Δ:

Δ
(
z−1) =

ν′−1∑

j=0

M−1∑

m=0

Δ[Mj + m]z−Mj−m with

Δ[Mj + m] =
L−1∑

l=0

ν′−1∑

k=0

α
(ν′l+k)(Mj+m)
q−1 bl[k]

=
∑

l,k

α
(ν′l+k)(Mj+m)
q−1

M−1∑

m′=0

α−ν′m′l
q−1 dm′[k]

=
∑

k

α
k(Mj+m)
q−1

∑

l,m

α
ν′l(Mj+m−m′)
q−1 dm′[k].

(21)

This can further be simplified by noting that the double sum
is nonzero only if m = m′, similar to (10):

Δ[Mj + m] =
ν′−1∑

k=0

α
k(Mj+m)
q−1 dm[k] = dm

(
α
M j+m
q−1

)
. (22)

If α
M j+m
q−1 is a root of R[ν, κ], then Δ[Mj + m] = 0 such that

yΠ(z−1) is a codeword of R[ν, κ].
The second step consists in showing that for all u(z−1) =

z j , j = 0 : N − 1, the output of the filter bank belongs
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to R[ν, κ]. In general, y(z−1) is given by (14). Interleaving
(same interleaver) results in

yΠ
(
z−1) =

L−1∑

l=0

z− mod (ν(N−1− j+l),ν′M)bl
(
z−1)

= z−ν′(N−1− j)
L−1∑

l=0

z−ν′lbl
(
z−1) mod 1 + z−ν.

(23)

This is a codeword too because it is the original codeword
(see (20)) cyclically shifted by ν′(N − 1 − j), which proves
the theorem. The only role of the interleaver is to transform
the cyclic character modulo 1− xM of the filter bank into the
cyclic character of the RS code modulo 1− xν.

Hence, the construction of a filter bank representation
for an RS code is very simple. The roots of the subband filters
dm(z−1) correspond to a well-defined subset of the roots of
the RS code. In this fashion, the roots of the RS code are
distributed among the subbands, each containing a smaller
so-called subband code.

Example 3. Continuing our example of the R[15, 10] code
with M = N = 3, the roots α3

15, α4
15, α5

15, α6
15, α7

15 are
distributed among the subband filters dm(z−1) as follows:

α3
15,α6

15 −→ d0
(
z−1) = α9

15 + α2
15z

−1 + z−2,

α4
15,α7

15 −→ d1
(
z−1) = α11

15 + α3
15z

−1 + z−2,

α5
15 −→ d2

(
z−1) = α5

15 + z−1.

(24)

Using (18), bl(z−1) is readily calculated:

b0
(
z−1) = α1

15 + α13
15z

−1,

b1
(
z−1) = 1 + α12

15z
−1 + α5

15z
−2,

b2
(
z−1) = α14

15 + α5
15z

−1 + α10
15z

−2.

(25)

The critically subsampled filterbank can be found in
Figure 3.

Note that the first subband filter is a non-primitive
B[5, 3] code in F24 with α3

15 a primitive 5th root of unity. It
is also cyclic and if ν ′ were not prime, the procedure can be
applied recursively. The other subband filters are not cyclic.
However, a filter bank can be found for them too, but this is
out of the scope of this paper. The next section will further
focus on BCH codes.

Secondly, note that this structure can be seen as a
generalization of the quasicyclic structure of an RS code as
found by Solomon and van Tilborg [16]. If M and κ are
coprime, this quasicyclic structure does not exist, however
the critically subsampled filter bank does exist. IfM divides κ,
the filter bank exactly implements the quasicyclic structure.
For example, if M = 5 is chosen (see Figure 4), it can
be verified that this filter bank explicitly implements the
quasicyclic structure of the RS code as described in [16].

4. FILTER BANK REPRESENTATIONS FOR BCH CODES

In the previous section, it is shown how the cyclic character
of the RS code modulo 1 − xν is transformed by the filter
bank into a cyclic character modulo 1− xM , with M | ν. This
condition is seen to be a crucial element in the derivation
since, for RS codes, ν = q − 1 and thus M | q − 1. The latter
guarantees that an M-point DFT exists in Fq. For the more
general family of BCH codes, ν can differ from q − 1 such
that M | ν no longer guarantees the existence of an M-point
DFT in Fq. This section deals with filter bank representations
for BCH codes.

4.1. Filter bank representation in an extension field

Let B[ν, κ] be a BCH code in Fq. Let n be the multiplicative
order of qmodulo ν, that is, n is the smallest integer such that
xν−1 | xqn−1−1. Let αν ∈ Fqn be a primitive νth root of unity
in Fqn . Let M be a common divisor of ν and qn − 1 with M
and q − 1 coprime. Unless ν is prime, this is always possible
since ν | qn − 1. In the extension field Fqn , the M-point
DFT transform exists, so that the filter bank representation
of B[ν, κ] can readily be constructed in the extension field,
according to Theorem 1.

Example 4. Let us consider a BCH code B[10, 5] in F32

(ν = 10, κ = 5, q= 32). Let α8 be a primitive root of unity in
F32 . Since the multiplicative order of 9 mod 10 (i.e., q mod ν)
equals n = 2, the extension field is F34 . Therefore, let α80 and
α10 = α8

80 be a primitive, respectively, 10th root of unity in
F34 . Assume a set of roots is chosen that is symmetric around
1, for example, α−2

10 = α8
10, α−1

10 = α9
10, α0

10, α1
10, α2

10. With

g
(
z−1) = α4

8 + α7
8z
−1 + α6

8z
−2 + α2

8z
−3 + α3

8z
−4 + z−5,

(26)

a maximum distance separable (MDS) BCH code B[10, 5]
is obtained. (Such a BCH code is called an optimal BCH
code.) The techniques presented in Section 3 can directly be
applied to this BCH code in the extension field F34 . The
resulting filter bank representation is shown in Figure 5.
The filter coefficients in this filter bank are powers of α10.
Unfortunately, α10 /∈F32 . This imposes problems if the filter
bank is used in the applications mentioned in Section 1;
for example, the complexity of a SISO RS decoder based
on the extension field filter bank is more complex than its
counterpart in Fq Section 4.2 deals with a transformation of
the filter bank in F34 to a filter bank in F32 .

4.2. Transforming the filter bank from Fqn to Fq

Before tackling this general problem, let us first investigate
how a single element of Fqn can be decomposed into elements
of Fq. Any set λ of linearly independent elements of Fq can
serve as a basis for Fqn [22]. For example, if the field Fpm

(p prime) is constructed starting from Fp using a primitive
polynomial P (x), the normal basis λ = [1 αq−1 α2

q−1 · · · ]
is used. However, also other bases can be used. What is
needed is a mathematical tool that allows us to easily
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α10
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15z
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15z

−2

Figure 3: Filter bank with component codes in each subband for the R[15, 10] (Example 3).
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15 + α6

15z
−1 + α9

15z
−2 + α12

15z
−3 + 1z−4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↑ 5

↑ 5

↑ 5

↑ 5

↑ 5

+

α7
15 + α2

15z
−1

α3
15 + α2

15z
−1

α4
15 + α2

15z
−1

α5
15 + α2

15z
−1

α6
15 + α2

15z
−1

1 + 1z−1 + 1z−2 + 1z−3 + 1z−4

1 + α12
15z

−1 + α9
15z

−2 + α6
15z

−3 + α3
15z

−4

1 + α9
15z

−1 + α3
15z

−2 + α12
15z

−3 + α6
15z

−4

1 + α6
15z

−1 + α12
15z

−2 + α3
15z

−3 + α9
15z

−4

1 + α3
15z

−1 + α6
15z

−2 + α9
15z

−3 + α12
15z

−4

Figure 4: Filter bank with component codes in each subband for the R[15, 10] (Example 3).

decompose elements of a Galois field along a specified basis.
This tool is called the trace [22].

Definition 1. The trace of a ∈ Fqn from Fqn to Fq is defined as

Trn(a) =
n−1∑

j=0

aq
j ∈ Fq. (27)

This is a useful property for decomposing an element a
along a specified basis λ = [ λ[0] · · · λ[n− 1] ], as we will
see. First, we define the complementary basis. A basis λ =
[ λ[0] · · · λ[n− 1] ] is said to be complementary to λ if

Trn
(
λ[i]λ[i]

) = δi j , (28)

with δi j the Kronecker delta. Each element a ∈ Fqn can now
be written as [22]

a =
n−1∑

i=0

a{i}λ[i] (29)

with

a{i} = Trn
(
aλ[i]

) ∈ Fq. (30)

Two properties of the trace will be used here:

Trn
(
a + b

) = Trn
(
a
)

+ Trn
(
b
) ∀a, b ∈ Fqn ,

Trn
(
a·b) = a·Trn

(
b
) ∀a ∈ Fq, b ∈ Fqn .

(31)

Example 5. As an example, the trace can be used to obtain
the polynomial representation of, for example, a = α5

8 ∈ F32

defined by P (x) = x2 + 2x + 2. The complementary basis λ
of the normal basis λ = [ 1 α8 ] is calculated:

λ =
[
α8 α2

8

]
. (32)

Now, the traces are calculated according to (27):

Tr2
(
λ[0]a

) = Tr2
(
α1

8·α5
8

) = α1
8·α5

8 + α13

8 ·α53

8 = 0,

Tr2
(
λ[1]a

) = Tr2
(
α2

8·α5
8

) = α2
8·α5

8 + α23

8 ·α53

8 = α4
8 = 2.

(33)

According to (29), α5
8 = 0·α0

8 + 2·α1
8 which can be easily

verified.

Let us now investigate how elements in Fqn can be
multiplied using Fq arithmetic. This leads to an extension of
the concept of a trace. Assume a, b, c = a·b ∈ Fqn . Using
(29), a and b can be decomposed as follows:

a =
n−1∑

i=0

a{i}λ[i],

b =
n−1∑

i=0

b{i}λ[i].

(34)

Using (30) and assuming a normal basis (λ[i] = αiqn−1), the
ith coordinate of c becomes

c{i} = Trn
(
a·bλ[i]

)
(35)

= Trn

(

λ[i]
n−1∑

j=0

n−1∑

k=0

b{ j}a{k}αk+ j
qn−1

)

(36)

=
n−1∑

j=0

b{ j}
n−1∑

k=0

a{k}Trn
(
λ[i]α

k+ j
qn−1

)
. (37)
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1 + 1z−1 + 1z−2 + 1z−3 + 1z−4

α8
80 + α6

80z
−1 + α4

80z
−2 + α2

80z
−3 + 1z−4

α6
80 + α2

80z
−1 + α8

80z
−2 + α4

80z
−3 + 1z−4

α4
80 + α8

80z
−1 + α2

80z
−2 + α6

80z
−3 + 1z−4

α2
80 + α4

80z
−1 + α6

80z
−2 + α8

80z
−3 + 1z−4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↑ 5

↑ 5

↑ 5

↑ 5

↑ 5

+

α5
80 + 1z−1

α6
80 + 1z−1

α7
80 + 1z−1

α3
80 + 1z−1

α4
80 + 1z−1

α5
80 + α5

80z
−1 + α5

80z
−2 + α5

80z
−3 + α5

80z
−4

α5
80 + α3

80z
−1 + α1

80z
−2 + α9

80z
−3 + α7

80z
−4

α5
80 + α1

80z
−1 + α7

80z
−2 + α3

80z
−3 + α9

80z
−4

α5
80 + α9

80z
−1 + α3

80z
−2 + α7

80z
−3 + α1

80z
−4

α5
80 + α7

80z
−1 + α9

80z
−2 + α1

80z
−3 + α3

80z
−4

Figure 5: Critically subsampled filter bank representation over Fqn of the BCH code B[10, 5].

The last equation is obtained using the properties of the trace
in (31). The inner sum will be denoted in a special way:

a{i, j} =
n−1∑

k=0

a{k}Trn
(
λ[i]α

k+ j
qn−1

)

=
n−1∑

k=0

Trn
(
a{k}λ[i]α

k+ j
qn−1

)

= Trn

(n−1∑

k=0

a{k}λ[i]α
k+ j
qn−1

)

= Trn

(

λ[i]α
j
qn−1

n−1∑

k=0

a{k}αkqn−1

)

= Trn
(
λ[i]α

j
qn−1a

)
.

(38)

Using this notation, (35) becomes

c{i} =
n−1∑

j=0

a{i, j}b{ j}, (39)

which resembles a matrix multiplication. Indeed, defining
the n×1 vectors c and b and the n×n matrix A as c[i] = c{i},
b[i] = b{i}, and A[i, j] = a{i, j},

c = Ab. (40)

Example 6. Let us define F34 by its primitive polynomial
P (x) = 2 + 2x3 + x4, with root α80 such that α8 = α10

80 ∈ F32 .
With a = α11

80, b = α23
80, c becomes α34

80. The complementary
basis λ of the normal basis λ = [ 1 α80 ] is calculated:

λ =
[
α14

80 α45
80

]
. (41)

The elements a and b can be expanded according to this basis
resulting in the following vectors/matrices:

⎡

⎣
α7

8

α2
8

⎤

⎦

︸ ︷︷ ︸
c

=
⎡

⎣
0 α6

8

α1
8 α4

8

⎤

⎦

︸ ︷︷ ︸
A

⎡

⎣
α2

8

α1
8

⎤

⎦

︸ ︷︷ ︸
b

. (42)

As can be verified, λc = c = α34
80.

All necessary notation is now defined to properly state
the theorem.

Theorem 2. LetB[ν, κ] be a BCH code in Fq.M is a common
divisor of ν and qn − 1. Let am(z−1), dm(z−1), and cm(z−1)
be the analysis, subband, and synthesis filters of a critically
subsampled filter bank over Fqn , as defined by (1), (16), and
(3), respectively. ThenB[ν, κ] can be implemented as a sum of
n critically subsampled filter banks over Fq. The analysis and
synthesis banks of the n′th filter bank (n′ = 0 : n − 1, band
m) are defined, respectively, as am{n

′ ,0}(z−1), cm{0,n′}(z−1). The

subband filters d̃m(z−1) are the same for each filter bank:

d̃m
(
z−1) =

n−1∑

k=0

a[k]d
qk
m
(
z−1) (43)

with

a =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a[0]

a[1]

...

a[n− 1]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (44)

a solution of the following system of equations:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ[0] λ[0]q λ[0]q
2 · · · λ[0]q

n−1

λ[0]q
n−1

λ[0] λ[0]q · · · λ[0]q
n−2

...
...

...
. . .

...

λ[0]q λ[0]q
2

λ[0]q
3 · · · λ[0]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

a =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (45)

(Given a polynomial a(z−1), ab(z−1) denotes the polynomial
with each coefficient raised to the power b.)

Proof. Considering an input u(z−1) = z j
′

with j′ ∈
{0, . . . ,N − 1}, the filter bank output (impulse response) for
B[ν, κ] can be written as

y
(
z−1) =

M−1∑

m=0

cm
(
z−1)dm

(
z−N

)
xm
(
z−1) (46)
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1 + 1z−1 + 1z−2 + 1z−3 + 1z−4

α2
8 + α2

8z
−1 + 1z−2 + α7

8z
−3 + 1z−4

α2
8 + α7

8z
−1 + α2

8z
−2 + 1z−3 + 1z−4

1 + α2
8z
−1 + α7

8z
−2 + α2

8z
−3 + 1z−4

α7
8 + 1z−1 + α2

8z
−2 + α2

8z
−3 + 1z−4

0 + 0z−1 + 0z−2 + 0z−3 + 0z−4

α5
8 + α2

8z
−1 + α6

8z
−2 + α1

8z
−3 + 0z−4

α2
8 + α1

8z
−1 + α5

8z
−2 + α6

8z
−3 + 0z−4

α6
8 + α5

8z
−1 + α1

8z
−2 + α2

8z
−3 + 0z−4

α1
8 + α6

8z
−1 + α2

8z
−2 + α5

8z
−3 + 0z−4

α4
8 + α4

8z
−1 + α4

8z
−2 + α4

8z
−3 + α4

8z
−4

α4
8 + α6

8z
−1 + α6

8z
−2 + α4

8z
−3 + α3

8z
−4

α4
8 + α6

8z
−1 + α3

8z
−2 + α6

8z
−3 + α4

8z
−4

α4
8 + α4

8z
−1 + α6

8z
−2 + α3

8z
−3 + α6

8z
−4

α4
8 + α3

8z
−1 + α4

8z
−2 + α6

8z
−3 + α6

8z
−4

0 + 0z−1 + 0z−2 + 0z−3 + 0z−4

0 + α6
8z
−1 + α3

8z
−2 + α7

8z
−3 + α2

8z
−4

0 + α3
8z
−1 + α2

8z
−2 + α6

8z
−3 + α7

8z
−4

0 + α7
8z
−1 + α6

8z
−2 + α2

8z
−3 + α3

8z
−4

0 + α2
8z
−1 + α7

8z
−2 + α3

8z
−3 + α6

8z
−4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↓ 5, 4

↑ 5

↑ 5

↑ 5

↑ 5

↑ 5

↑ 5

↑ 5

↑ 5

↑ 5

↑ 5

+

α4
8 + 1z−1

α1
8 + 1z−1

0 + 1z−1

α1
8 + 1z−1

α4
8 + 1z−1

α4
8 + 1z−1

α1
8 + 1z−1

0 + 1z−1

α1
8 + 1z−1

α4
8 + 1z−1

Figure 6: Critically subsampled filter bank representation over Fq of the BCH code B[10, 5] (n = 2).

with

xm
(
z−1) = α

ν′m(N−1− j′)
M . (47)

We show that the filter bank output y′(z−1) of the filter bank
in Fq equals y(z−1). The filter bank output of the n′th filter
bank of B[ν, κ] equals

yn′
(
z−1) =

M−1∑

m=0

c{0,n′}
m

(
z−1)d̃m

(
z−N

)
x{n

′,0}
m

(
z−1). (48)

Substitutions of d̃m(z−1) (see (43)) and

c{0,n′}
m

(
z−1) =

n−1∑

i=0

(
cm
(
z−1)λ[0]ρn

′)qi
,

x{n
′,0}

m

(
z−1) =

n−1∑

j=0

(
λ[n′]xm

)q j

(49)

and summing over all filter banks (n′ = 0, . . . ,n − 1) while
using

n−1∑

n′=0

α
n′qi
qn−1λ[n′]q

j = δi j , (50)

(28) leads to

y
(
z−1) =

M−1∑

m=0

n−1∑

k=0

a[k]
n−1∑

i=0

λ[0]q
i

c
qi
m
(
z−1)d

qk
m
(
z−N

)
x
qi
m
(
z−1).

(51)

Grouping terms with k − j constant (i = k − j mod n) gives

y
(
z−1) =

∑

k, j

a[k]λ[0]q
k− j∑

m

c
qk− j

m
(
z−1)d

qk
m
(
z−N

)
x
qk− j

m
(
z−1).

(52)

It can be verified that the inner sum with j = 0 is independ-
ent of k:

M−1∑

m=0

c
qk
m
(
z−1)d

qk
m
(
z−N

)
x
qk
m
(
z−1) = y

(
z−1). (53)

For j /= 0, it can be seen that the inner sum is again
independent of j. Summing over all i, y(z−1) = y′(z−1) if
a[k] is a solution of the system in (45) which proves the
theorem.

Example 7. In this example, the filter bank over F34 as shown
in Figure 5 is transformed into a filter bank over F32 as stated
by the previous theorem. In this case, the system of equations
in (45) becomes

⎡

⎣
α14

80 α46
80

α46
80 α14

80

⎤

⎦

⎡

⎣
a0

a1

⎤

⎦ =
⎡

⎣
1

0

⎤

⎦ , (54)

with solution a = [ α59
80

α51
80

]
. The filter bank so obtained can be

found in Figure 6.
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5. CONCLUSION

This paper presents an in-depth investigation of filter bank
representations for RS and BCH codes, motivated by a
number of applications presented earlier. STFT filter banks
are the starting point. In most applications, these filter
banks are explicitly designed to ensure a linear time-invariant
operation. However, if the subsample factor is increased,
the filter bank acts as a periodically time-varying system.
Although this is normally considered as an undesirable
artefact, it is this periodicity that is exploited to build
critically subsampled filter bank representations for the
family of RS codes. In this case, a proper distribution of the
roots of the RS code over the subbands is the key element
in constructing such a filter bank. In the more general case
of a BCH code, similar filter bank structures exist. The
same techniques used for RS codes can first be applied to
obtain a critically subsampled filter bank representation in an
extension field. Finally, it is explained how this filter bank can
be transformed from the extension field into the base field.
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