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Optimizing the balance between handoff quality and power consumption is a great challenge for seamless mobile communications
in wireless networks. Traditional proactive schemes continuously monitor available access networks and exercise handoff.
Although such schemes achieve good handoff quality, they consume much power because all interfaces must remain on all
the time. To save power, the reactive schemes use fixed RSS thresholds to determine when to search for a new available access
network. However, since they do not consider user motion, these approaches require that all interfaces be turned on even when
a user is stationary, and they tend initiate excessive unnecessary handoffs. To address this problem, this research presents a novel
motion-aware scheme called network discovery with motion detection (NDMD) to improve handoff quality and minimize power
consumption. The NDMD first applies a moving average convergence divergence (MACD) scheme to analyze received signal
strength (RSS) samples of the current active interface. These results are then used to estimate user’s motion. The proposed NDMD
scheme adds very little computing overhead to a mobile terminal (MT) and can be easily incorporated into existing schemes. The
simulation results in this study showed that NDMD can quickly track user motion state without a positioning system and perform
network discovery rapidly enough to achieve a much lower handoff-dropping rate with less power consumption.
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1. INTRODUCTION

As wireless technologies advance, various wireless networks
such as UMTS, WiFi, and WiMax networks are expected
to jointly support universal ubiquitous services for future
mobile users. To enjoy such ubiquitous services, equipping
a mobile terminal (MT) with multiple network interfaces (or
multimode) is getting more important. To ensure ubiquitous
access, a multimode MT must seamlessly switch, or handoff,
its connection between access points or base stations as users
move between wireless networks.

Maintaining good handoft quality with minimal power
consumption is an essential capability of multimode MT
[1-3]. An active interface in a regular single-mode MT
continuously monitors available access points and executes
handoff whenever it is beneficial in a homogeneous wireless
network. However, the scenario for multimode handsets
differs. To continuously monitor varying wireless networks,
a multimode MT must always turn on all other interfaces
not currently in use. Although this proactive scheme ensures

seamless handoff, a multimode MT requires much more
power than a single-mode MT.

To reduce power consumption, a multimode MT uses
existing reactive schemes [4-7] that turn on all interfaces for
network discovery only when the RSS or frame error rate
(FER) of the current active interface exceeds a predetermined
threshold. These reactive schemes, however, are insufficiently
reliable for handoff when users are quickly moving away
from an access point (AP) or a base station (BS), and they
often activate interfaces unnecessarily even when users are
stationary. Therefore, activating interfaces for network dis-
covery according to user motion is important for improving
handoff quality and minimizing power requirements.

This work presents a novel motion-aware scheme, called
network discovery with motion detection (NDMD) to assist
a handset in improving its handoff quality while reducing
power consumption. In NDMD, when a user moves away
from AP, an MT must start discovering available networks
in its neighborhood early to avoid handoff failure. On the
other hand, an MT can stop network discovery when a user
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is stationary even if the user is far from the BS or AP. Thus,
NDMD can reduce the handoff dropping rate and power
consumption of an MT.

The proposed NDMD system employs a user motion
detection (UMD) mechanism to estimate the user motion
state. The UMD analyzes RSS samples from current active
interface then applies a moving average convergence diver-
gence (MACD) scheme [8] to determine the user motion
state. The MACD consists of two lowpass filters with different
smoothing factors. Since accurately estimating user motion
requires accurately selecting smoothing factors, this study
presented a set of possible choices and evaluated their
respective performance. In contrast with previous work [7,
9-12] that exploit a positioning system to maintain handoff
quality, UMD estimates user motion states by analyzing RSS
samples. Therefore, no additional hardware, such as GPS, is
needed.

The NDMD has advantages as follows. (1) Without a
positioning system, the MT can determine whether the user
is leaving the AP, approaching the AP or stationary. (2)
An MT can activate and terminate its interfaces rapidly
enough to minimize the handoff dropping rate and power
consumption. (3) The simplicity of the system requires
minimal computing overhead. (4) Because the NDMD can
initiate network discovery, it can be combined with all
handoff decision mechanisms.

The rest of this paper is organized as follows. Section 2
discusses related network discovery mechanisms. Section 3
presents details of the predictive algorithm for network
discovery. Section 4 evaluates the performance of NDMD.
Finally, Section5 draws conclusions and discusses future
works.

2. RELATED WORK

Current network discovery mechanisms can be categorized
as proactive, reactive [13], and location-aware [14]. A
common proactive approach uses a decision function based
on a handoff mechanism. In a heterogeneous network envi-
ronment, traditional RSS comparisons [15, 16] are unreliable
for or incapable of making accurate handoff decisions.
Therefore, many metrics, such as service type, monetary cost,
network conditions, user preferences, velocity, have been
adopted in decision functions [17-20] to determine whether
a handoff is needed. In the proactive approach, an MT
must turn on all its interfaces to perform network discovery
in advance and then monitor all available networks. These
approaches can reduce handoff latency, but it substantially
increases power consumption. Although Al-Gizawi et al.
[20] proposed a mechanism for periodic, on demand or by
event network discovery in a UMTS-WLAN interoperability
platform, their methods were not described in detail.

On the other hand, many researchers have studied reac-
tive network discovery schemes [4-7] that trigger handoff
initiation by using predefined thresholds. However, few
have addressed the problem of network discovery. Power
consumption and handoff dropping rate are a tradeoff
if a predefined RSS threshold is adopted for network
discovery. For instance, if the RSS threshold is high, power

consumption may increase as an MT turns on its interfaces
early for network discovery, which then enhances handoff.
In contrary, if the RSS threshold is set to a low value, the
handoff dropping rate may increase if the MT may turn on
its interfaces late and leaves insufficient time for the MT to
perform network discovery and handoff execution.

In location-aware schemes [7, 9—12], location informa-
tion services such as GPS, location service server (LSS),
and topology map are used to provide information such as
coverage area, latency, and bandwidth of available wireless
networks around an MT. In [7, 12], an MT first determines
whether the RSS falls below a predefined RSS threshold. If
so, the MT applies a decision function to determine whether
handoff is required based on the information that provided
by LSS. If a handoff is not required, the MT does not activate
other interfaces to save battery power. However, this work
demonstrates only the results of MT energy consumption but
does not evaluate the handoff dropping rate.

In [10], a handoff trigger node installed in a WLAN/
cellular transition region to generate a specific link layer
trigger for vertical handoff. This specific trigger can enable
an MT to initiate the vertical handoff process in time to
reduce the handoff latency and the handoff dropping rate.
However, the authors did not describe the details of interface
management. In an earlier work [9], the authors assumed
that an MT manages its WLAN interface using a location-
aware base station controller (BSC). Based on BSC, an
MT can activate or terminate the WLAN interface in an
appropriate time to reduce power consumption. However, a
reactive method was also used for handoff initiation.

In [11], a positioning system and LSS were employed for
network discovery to reduce unnecessary power consump-
tion during handoff. Based on the distance between an AP
and an MT, the MT uses various time intervals to perform
network discovery. If the distance to the AP is long, then the
MT requires a long time interval to perform network dis-
covery. However, the LSS-based network discovery scheme
requires additional hardware and cannot be implemented
in an indoor environment where no positioning system can
work.

3. NETWORK DISCOVERY WITH MOTION DETECTION

An MT must detect the movement of users to predict when
they leave or enter the associated AP. The user behavior can
be classified into the following three states: (1) approaching
state: the user is moving toward the AP; (2) leaving state:
the user is leaving the AP; (3) stationary state: the user is
stationary. By using a user motion detection (UMD), an MT
can easily apply RSS to identify the user state without the
assistance of a positioning system.

The simplest method for detecting the user motion state
is RSS. Since the receiving signal power of an MT is related
to the distance between the MT and its associated AP, the
received signal power P, at distance d is given by

P.[i] = P; — 10plog[d] + X3, (1)

where i is an accumulated value that is determined by the
measuring frequency, P; is the transmitted signal power,
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p is the path loss exponent, and Xyp is a Gaussian random
variable with zero mean and standard deviation o4z (also
called shadowing deviation) representing shadow fading.
According to (1), the difference between two consecutive
measured received signal powers at distances d; and d, can,
without considering Xz, be expressed as

AP,[i] = P,[i] - P,[i — 1] = —10plog [%]. 2)
1

Given the measured RSS interval and the direction and speed
of user motion, the following characteristics of mobile radio
propagation can be specified based on (2). UMD motion
behavior

if dy =d,, AP, =0,
if d1 > dz, AP, >0, (3)
if dy <d,, AP, <0.

Stationary state,

(DIF) = { Approaching state,

Leaving state,

Thus, the variation in AP, indicates the motion state of
a user. However, the received signal power measured by an
MT fluctuates constantly because of the fading effect even if
a user is in a stationary state. Therefore, an MT cannot easily
detect user motion based only on the difference between two
consecutive RSS values.

3.1. MACD-based UMD mechanism

This work uses a trend-following indicator called moving
average convergence divergence (MACD) [8] to elucidate a
user behavior in a wireless environment without a position-
ing system. The MACD involves two exponentially weighted
moving average (EWMA) filters to analyze the time series
data. These two EWMA filters can be expressed as follows:

Eli] = (1 - @)E[i — 1] + aO[i], (4)

where E[i] is the current estimate of the time series data,
E[i — 1] is the prior estimate, O[i] is the current observation,
and « is a smoothing factor within the range zero to one.
Equation (4) indicates that E[i] represents a compromise
between a previous estimate and the current observation.
If « is large, then the current observation is emphasized,
and the filter provides good agility. That is, the estimate
can be generated rapidly in response to changes in time
series data. If & is small, more emphasis is given to the
prior estimate, and the filter provides good stability. Restated,
the generated estimate can resist the noise in individual
observations but cannot react rapidly to changes in time
series data. Therefore, the EWMA filter can provide different
reactivity with different a.

The MACD employs two EWMA filters to calculate an
agile estimate and a stable estimate in a single time series
data. If the observed values are increasing constantly, then
the rising velocity of the agile estimate exceeds that of the
stable estimate. Restated, the difference between the agile
estimate and the stable estimate increases. This phenomenon
is called divergence. Similarly, if the observed values decline
constantly, the same phenomenon occurs. If the observed
values remain constant, the agile estimate and the stable

3
DIF
Approaching state
DIFthresh2 \l/
Zero line  —— Stationary state [

DIFthreshl \L T
Leaving state Measuring
frequency

FIGURE 1: Determining user’s behavior.

estimate gradually converge toward the same value. That is,
the difference between the agile estimate and stable estimate
becomes smaller. This phenomenon is called convergence.
Based on the difference between the agile estimate and the
stable estimate, MACD can reduce random fluctuations and
identify the underlying direction (upward, downward, or
unchanging) in the time series data. Since RSS is also time
series data and changes with user motion, UMD uses MACD
to smooth RSS fluctuation and identify RSS changes. The MT
can then determine the user motion state.

The proposed UMD mechanism operates as follows.
It first adopts EWMA filter in MACD to calculate two
smoothed received signal strengths (SRSSs). Let a and S
be the smoothing factors used to calculate the agile and
stable SRSS, respectively. R[i] is the received signal strength
measured by an MT. According to (4), the agile SRSS A[i]
and stable SRSS S[i] can be obtained by

Ali] = (1 - a)Ali — 1] + aR[i],
S[i] = (1 = B)S[i — 1] + BRIi],

where the initial values of A[0] and S[0] equal R[0]. Since f3
must be smaller than a, the following relationship is defined:

(5)

0<f<a<l, ﬁz%,k>1, (6)
where k is a constant value. The difference DIF between the
agile SRSS A[i] and the stable SRSS S[i] is defined as follows:

DIE[i] = A[i] — S[i. 7)

The DIF can determine user state. As Figure 1 shows,
two DIF thresholds are defined to determine user behavior.
Based on the DIF value and the DIF thresholds, the detection
of user motion state by AP, is modified as follows: UMD
motion behavior

Stationary, if DIFthresh2 >DIF > DIFthresh1,
(DIF) = § Approaching, if DIF >0, DIF > DIFthresh2,
Leaving, if DIF < 0, DIF < DIFthreshl.

(8)

3.2. NDMD algorithm

Based on the user motion state determined by UMD,
NDMD activates or terminates an M T interfaces for network
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F1GURE 2: The NDMD algorithm for network discovery.

discovery at the right time to save power and reduce handoff
dropping rate. In NDMD, a new network discovery threshold
(THnp) and three network discovery modes are defined. The
higher THxp is necessary since an MT must turn on all its
interfaces in time to perform network discovery procedures
such as searching base stations, association, AAA, address
acquisition, and other high layer signaling functions, before
switching to another network. However, using a high RSS
threshold certainly increases power consumption. Therefore,
the following three network discovery modes are defined to
reduce power consumption.

(i) NON_ND mode: this mode is used when a user
is approaching an AP or BS. Therefore, network
discovery is unneeded.

(i) ND mode: this mode is used when a user is leaving
the associated AP or BS. Therefore, timely activation
of interfaces is critical for detecting all available
wireless networks.

(iii) SEMI_ND mode: this mode is applied when a user
is stationary. An MT first determines whether any
APs or BSs is available in its neighborhood. If so, it
determines whether a horizontal handoff is required.
Otherwise, the MT must activate all of its interfaces
to perform network discovery.

Figure 2 shows a flow chart of the NDMD algorithm.
When an MT connects to an AP, the RSS is measured and
the user motion is continuously determined. When the RSS
is below or above the predefined RSS threshold mentioned
above, the MT is set to change to a suitable network discovery
mode to activate or terminate its interfaces based on the
NDMD algorithm.

Figure 3 presents an example of NDMD application.
Suppose an MT is currently associated with WLAN AP1. In
scenario (1), the MT can terminate its network discovery

&QSX o WiMAX BS
&)

()

A
WLAN AP2

FiGure 3: Example of proposed algorithm.

even if its initial location is far from AP1, because the user
is in an approaching state. In scenario (2), the MT activates
its interfaces to discover other networks in time to reduce
the handoff dropping rate because it is leaving the associated
AP. In scenario (3), the user is leaving AP1 initially but stops
before he has left. In this case, the MT certainly activates all
its interfaces to discover other available networks when the
RSS of the MT is below the predefined network discovery
threshold. However, the proposed algorithm eventually
detects that the user is in a stationary state, thus the MT
turn off other interfaces to reduce power consumption. Here,
the MT simply determines whether a horizontal handoff is
required because AP2 is nearby.

3.3. Analysis of NDMD algorithm

In NDMD, an MT can predict whether a user is leaving
its associated WLAN by applying UMD and then activating
or terminating its interfaces within an appropriate time.
The UMD strongly affects the performance of the NDMD
algorithm. The change of DIF is used to determine the
motion state of a user in UMD. Thus, the DIF value must
respond quickly to user behavior so that the motion state can
be determined rapidly. The analysis requires determining the
difference, & DIF, between two consecutive DIF values.
Substituting (5) into (7) yields

DIF[i] = A[i — 1] = S[i — 1] + a(R[i] — A[i — 1])
~ B(RI) — S[i — 1))
= DIF[i — 1] + a(R[i] — A[i — 1])
- B(R[i] — S[i - 1]).

Let ADIF denotes DIF[i] — DIF[i — 1], the DIF is given by

)

ADIF[i] = a(R[i] — A[i — 1]) = B(R[i] - S[i — 1]).
(10)

Using 8 = a/k in (6), we have

ADIF[i] = a[(R[i] CAli—1]) - %(R[i] _s[i- 1])].
(11)

Equation (11) shows that a, k, (R[i] — A[i — 1]), and
(R[7] = S[i — 1]) strongly affect ADIFE. (R[i] — A[i — 1]) and
(R[i] — S[i — 1]) represent two forms of ADIF, which are the
differences between two consecutive RSS measurements.

The ADIF is affected by many other factors, such as
mobile radio propagation characteristics. Some of these
factors are summarized as follows.
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(i) Smoothing factor a: according to (11), if k, (R[i] —
Ali — 1]) and (R[i] — S[i — 1]) are fixed, the increasing «
increases ADIFE. However, since A[i — 1] and S[i — 1] are also
governed by «, the effect of &« must be discussed in detail
here. Figure 4 presents the effect of the smoothing factor & on
SRSS when the distance to the transmitter is large by using a
computer simulation. The simulation result was produced by
NS2 with a log normal shadow model. Here, SRSS represents
either an agile SRSS or a stable SRSS. Consider the agile
SRSS as an example. When « is set to one, SRSS is the
actual RSS. The value of (R[i] — A[i — 1]) with the larger
« (dotted line) is smaller than that with a smaller « (dashed
line). As the distance between the MT and the transmitter
increases, the gap (R[i] — S[i — 1]) with a large « (dotted
line) decreases faster than a gap with a small « (dashed line).
Therefore, although a large « can produce a large ADIF, ADIF
decreases more rapidly than when « is small as the distance
to the transmitter increases. Assume that SRSS with a = 0.5
represents an agile SRSS, and SRSS with « = 0.1 denotes a
stable SRSS. As the distance between the transmitter and the
MT increases, Figure 4 shows that the (R[i] — S[i — 1]) gap
remains very large although (R[i] — A[i — 1]) gap becomes
small. Moreover, ADIF bounces back because (R[i]—A[i—1])
may be less than 1/k(R[i] — S[i — 1]) when a user moves away
from the transmitter beyond a particular distance.

(ii) k value: according to (11), given that «, (R[i] — A[i —
1]) and (R[i] —S[i—1]) are fixed, a larger k can increase ADIF.

(iii) Path loss: path loss is the attenuation of an elec-
tromagnetic wave moving from a transmitter to a receiver
and is governed by many factors, including carrier frequency,
environmental factors (e.g., urban versus rural), distance
between transmitter and receiver, and antennas height and
others. According to (2), a larger (smaller) path loss exponent
(p) implies larger (smaller) attenuation and AP,. Restated, a
larger (smaller) path loss corresponds to a larger (smaller)
ADIE

(iv) Distance: suppose that a user is leaving (approach-
ing) a transmitter at a fixed speed, direction, and RSS
measurement interval. According to (2), a longer (shorter)
distance to the transmitter corresponds to a smaller (larger)
d,/d,. Therefore, a longer (shorter) distance corresponds to
a smaller (larger) AP, or a smaller (larger) ADIF.

(v) Velocity: the following equation can be derived from

(2),

d1+Vt]. (12)

AP,[i] = —10plog [%] = —IOpIOg[ p
1 1

Suppose a user is moving in a fixed direction. A larger
velocity corresponds to a larger AP,.

(vi) Network type: when a user moves with a fixed speed,
direction, and RSS measurement interval, the AP, measured
in WIMAX or 3G is smaller than that measured in WLAN
because the coverage of the former networks is larger.

3.4. Selection of UMD parameters

In the UMD, a and k must maintain DIF between DIFthresh1
and DIFthresh2 when a user is stationary and the RSS
fluctuation of an MT varies due to fading effects. Therefore,

—30 ¢ The gap (dotted line and dashed line) denotes

the difference between the i measured RSS
and the i — 1 smoothed RSS

780 o

Received signal strength (dBm)

790 -

—100
Distance to the transmitter

—— a =1
-x- a=0.5
% ao=0.1

FIGURE 4: Effect of smoothing factor a.

choosing appropriate « and k is important for UMD to
work well. Figure 5 plots the relationship among «, k, and
the number of detected motions under various shadowing
deviations (log normal shadow model) when a user is
stationary. Accurate selection of a and k values minimizes the
number of incorrect movement detections. Therefore, with
reference to Figure 5, a and k should be chosen such that
the number of motion detections approximates zero. Figures
5(a) and 5(b) also reveal that a larger shadowing deviation
increases the number of detected motions.

According to the earlier analysis, maximizing « and k
can increase ADIF to enable rapid detection of user state.
However, Figure 5 also illustrates the inverse relationship
between o and k. A large « can produce a large ADIF but
ADIF quickly diminishes as a user moves away from an AP.
Therefore, when an MT accesses a network with smaller
coverage, such as a WLAN, it must use a large o and a
small k to quickly determine the user motion state. However,
when a user is in networks with large coverage such as 3G or
WiIiMAX, the MT should use a small « and a large k so it can
identify user motion even when the AP, measured by the MT
is very small and the user is moving at a low velocity.

4. PERFORMANCE EVALUATION

In this section, extensive simulations were conducted to
evaluate the performance of UMD and NDMD. The ns-
2 simulator [21] and the BonnMotion node-movement
generation tool [22] were used for computer simulations.
In all simulations, a log normal shadowing model was used
to simulate the wireless environment. A simple straight
movement trajectory and random waypoint mobility model
were adopted to simulate a user movement trajectory.
Figure 6 shows an example of the random waypoint mobility
model and Figure 7 shows the example of straight movement
trajectory. A single user with an MT in a single wireless
environment is simulated.
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FIGURE 5: Relationship among «, k, and number of detected
motions (DIFthreshl = —1, DIFthresh2 = 1, Sample Number =
1000).

4.1. Evaluation of UMD mechanism

The proposed UMD mechanism was evaluated by different
a, k, shadowing deviation, velocity, and distance from an AP
in a WLAN and a WMAN environment. In the WLAN envi-
ronment, an MT equipped with an Orinoco 802.11 PC card
in a closed environment [23] was simulated. In the WMAN
environment, a customer premises equipment (CPE) was
simulated based on information provided by the Airspan
Corporation [24]. Table 1 shows the related parameters set
to simulate the WLAN and WMAN environments.

4.1.1.  Comprehensive analysis

As shown in Figure 7, a user is moving from location A
to location C at 1 m/sec in a WLAN environment. Figure 8
shows the effect of using different a with fixed k on DIF
value; the x-axis represents the distance between the MT
and the transmitter. The negative x-axis represents the
MT is approaching the transmitter and the positive x-axis
represents the MT is leaving the transmitter. The results
reveal that a barely affects the DIF value as a user approaches
the transmitter. However, increasing « can rapidly reduce

200 T T T T T T T T T T
180 1

160 1
140 1
120 1
100 1
80 1
60 1
40} 1
20} 1

0 1 1 1
0 20 40 60

80 100 120 140 160 180 200 220
—— MT’s moving path

FIGURE 6: Examples of the random waypoint.

R/ a BA C

Transmitter

FIGURE 7: Examples of straight movement trajectory.

TaBLE 1: Default parameters for the simulation of UMD mecha-
nism.

Parameters for radio propagation

Wireless environment WLAN WMAN
Cell radius (m) 50 740
Frequency (Hz) 2.472e9 3.5e9
Path loss exponent 4.0 3.0
Shadowing deviation (dB) 4.0 4.0
Transmitter antenna height (m) 1 40
Receiver antenna height (m) 1 2
Tx power (dBm) 15 27
Transmitter antenna gain (dB) 1 5
Receiver antenna gain (dB) 1 1
Rx sensitivity (dBm) —94 -98
Parameters for mobile terminal
Sampling interval (second) 0.1 0.5
Sampling size 8 4

DIF when the user moves away from the transmitter. That
is, the MT can rapidly detect the user’s leaving state when a
larger « is used in UMD.

Figure 9 presents the effect of using various k with a
fixed & on the DIF value. The simulation results reveal that
increasing k increases ADIE. Restated, increasing k enables
faster and more accurate detection of user state. These two
figures also show that, due to the effects of mobile radio
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FiGure 9: Effect of k in WLAN.

propagation, a longer distance between the user and the
transmitter corresponds to a smaller rate of DIF change.
When the user leaves the transmitter and the distance
between the user and the transmitter exceeds a certain value,
the DIF rebounds.

The results in Figures 8 and 9 indicate that a larger
a and k enable rapid and accurate identification of user
motion state. However,  and k are inversely related to those
(a, k) pairs that minimize incorrect movement detection.
Therefore, three (a, k) pairs are selected based on Figure 5
to study the UMD characteristics in WLAN and WMAN.
Figure 10 presents the effect of three (a, k) pairs on the DIF
value. A larger o and smaller k can cause DIF to drop quickly
when the user moves away from the transmitter but causes
DIF to slowly rise when the user approaches the transmitter.

20

=]
=)
10 . . . . . . . . .
-50 —-40 -30 -20 -10 0 10 20 30 40 50
Distance to the transmitter (m)
—— a=02,k=2
-x- a=0.15k=225
%o a=01,k=25
FiGure 10: Effect of « and k in WLAN.
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—-800 —600 —400 —200 0 200 400 600 800

Distance to the transmitter (m)

—— a=0.15k =225
-~ a=0.075k=5
% a=0.05k=10

FiGure 11: Effect of « and k in WMAN.

In a WMAN environment, a user is moving from location
A to location C at 12.5m/sec. Figure 11 demonstrates the
variation of the DIF value. If the same parameters used for
WLAN (a¢ = 0.15, k = 2.25) are also used in WMAN,
detecting user behavior becomes very difficult because the
smaller k corresponds to a smaller ADIF and a larger «
makes ADIF drops quickly as the user moves away from the
transmitter in WMAN. Therefore, based on the simulation
results and analysis, @ and k must be smaller and larger,
respectively, in a WMAN environment than in a WLAN
environment.

Figure 12 illustrates the effect of shadowing deviation
on the DIF value as the user moves from location A
to location C at 1m/sec in a WLAN environment. The
simulation results reveal that UMD eliminates almost all RSS
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FiGure 12: Effect of shadowing deviation in WLAN.
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Ficure 13: Effect of velocity in WLAN.

fluctuations. Figure 13 shows how velocity affects the DIF
value for the same movement trajectory when the user isin a
WLAN environment. The results indicate that higher velocity
corresponds with a greater rate of DIF change.

Figure 14 displays the effect of starting point on DIF
variation as the user moves at 1 m/sec in a WLAN envi-
ronment. Figure 14(a) shows that the DIF values are almost
independent of starting position when the user approaches
the transmitter. Figure 14(b) presents the DIF change when
a user leaves from AP at various locations. The results reveal
that the rate of DIF change declines as the starting position
of a user is farther away from the transmitter. As Figure 14
shows, the mobile radio propagation strongly affects the
behavior of UMD. As the distance between an MT and
its transmitter increases, the sensitivity of UMD in motion
detection with a fixed « and k declines.

14

DIF

5 . . . . . . . . .
-50 —-45 -40 -35 -30 -25 -20 -15 —-10 -5 0
The distance to the transmitter (m)

—— Distance = 50 m, a = 0.15, k = 2.25
-~ Distance = 40m, « = 0.15, k = 2.25
*-- Distance = 30m, o = 0.15, k = 2.25

(a) The effect of DIF when an MT approaches away AP from different
distance in WLAN
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FiGure 14: MT approaching and moving away AP from various
distances.

4.1.2.  Feasibility of UMD mechanism

The random waypoint mobility model is adopted to simulate
a single user ina WLAN and a WMAN environment to study
the feasibility of UMD. Table 2 shows the related settings of
the simulation parameters.

Figure 15(a) shows the user motion trajectory in a
WLAN environment. The user temporarily remains sta-
tionary at each turning point. Table 3 shows the detailed
user movement data. Figure 15(b) shows the measured RSS
value from the MT. Figure 16 displays the variation in the
DIF value obtained by the MT, and the symbols on the x-
axis indicate the locations presented in Figure 15(a). The
simulation result confirms that the DIF value can easily
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TABLE 2: Parameters for UMD mechanism and random waypoint
mobility model.

WLAN WMAN
User velocity (m/s) 0.5-2.5 0.5-27.7
Max pause (second) 60 180
Duration (second) 400 800
o 0.15 0.075
k 2.25 5.0
100 T T T T
C
80 E ]
1
60 - WLAN AP 1
E Cell radius = 50 meters A
=
40 + D 1
A B
G
20 + \ b
F
0 . . . .
0 20 40 60 80 100
x (m)

(a) The trajectory of the MT in WLAN (random waypoint model)
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F1GURE 15: User motion trajectory and the RSS measured by the MT
in WLAN.

determine the user motion state: stationary, leaving, and
approaching—by using UMD.

Figure 17(a) shows the user motion trajectory in a
WMAN environment. At each turning point, the user
remains stationary for a period. Table 4 presents in detail user
motion data. Figure 17(b) shows the measured RSS value
from the MT in the WMAN environment. Figure 18 shows
the DIF in the WMAN environment. When a small « and a
large k are used in the simulation, the stationary state cannot

=]
()
MotionA ;B B C C ED ;DEE E }F F_>G
0 50 100 150 200 250 300 350 400
Time (s)

—— a=0.15k = 2.25

FIGURE 16: Variation in DIF value obtained by the MT in WLAN.

TABLE 3: Parameters of user motion in WLAN.

Start End Duration (second) Velocity (m/s)
A B 18.252303 2.035956
B B 57.295744 0

B C 35.670937 1.682126
C C 44.752047 0

C D 44.779019 1.239218
D D 36.085495 0

D E 26.587702 1.625802
E E 55.217815 0

E F 30.340680 2.269885
F F 25.141795 0

F G 25.876464 0.769553

TABLE 4: Parameters of user motion in WMAN.

Start End Duration (second) Velocity (m/s)
A B 66.936229 14.609059
B B 80.483504 0

B C 312.523963 3.495420

C C 175.488542 0

C D 28.918318 16.878986

be detected quickly (such as when the user is at location B)
unless a user is stationary for a long time (such as at location
C).

4.1.3. Experiment

The feasibility of UMD was investigated experimentally.
A laptop with an Intel PRO/Wireless 2200BG network
connection mini PCI adapter and a D-Link DWL-3200
AP were used. The authors randomly walked around the
AP and continuously recorded RSS to determine the DIF
value. Figure 19 plots the RSS measured by an MT over
time, and Figure 20 presents the calculated DIF value. The
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FiGure 17: User motion trajectory and the RSS measured by the MT
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FIGURE 19: Measured received signal strength.
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FIGURE 20: Variation in DIF value throughout experiment.

experimental results demonstrate that the proposed UMD
mechanism clearly identifies the user motion state.

4.2. Evaluation of NDMD algorithm

The performance of NDMD was compared with RSS
threshold-based handoff algorithm [15], RSS threshold com-
bined with dwell-time-based handoff algorithms [16], RSS
threshold combined with hysteresis-based handoff algorithm
[16], RSS threshold combined with hysteresis and dwell-
time-based handoff algorithms [16] and geographic-based
handoff algorithm [12].

(i) In RSS threshold-based method, an MT initiates a
network discovery to search available networks in its
neighborhood when RSS of current servicing access
point (RSSyq) is lower than a predefined network
discovery threshold (THnp). Then, the MT triggers
a handoff when RSSyq is lower than a predefined
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TaBLE 5: Default parameters in a WLAN environment for the
simulation of NDMD algorithm.

Parameter Value Parameter Value

Cell radius (m) 100 Tx Power (dBm) 22

Frequency (Hz) 2.472e9 Rx sensitivity (dBm) —-94

Transmitter antenna 1 Receiver antenna 1

height (m) height (m)

Transmitter antenna 1 Receiver antenna gain 1

gain (dB) (dB)

Path loss exponent 4.0 Sampling interval 0.05
(second)

?(}ilg()iowmg deviation 4.0 Sampling size 8

TABLE 6: Parameters of random waypoint mobility model.

Velocity (m/s) 0.5-2.5
Max pause (second) 60
Duration (second) 86400
Network discovery preprocessing time 5 sec

handoff threshold (THyo) and RSSq is lower than
the RSS of neighborhood access point (RSSyew ).

(ii) In RSS threshold combined with dwell-time-based
handoff algorithms, an MT triggers a network dis-
covery when THnp > RSSiq and initiates a handoff
when THyo > RSSgq and this state is maintained
over a dwell time.

(iii) In RSS threshold combined with hysteresis-based
method, an MT triggers a network discovery when
THxp > RSS,1q and initiates a handoff when THyo >
RSSo1¢ and RSSpew > RSSoia + H, where H is a given
hysteresis value.

(iv) RSS threshold combined with hysteresis and dwell-
time-based handoff algorithms is a combination of
above three methods.

(v) In geographic-based handoff method, an MT initi-
ates a handoff according to a GPS and topology map
information from a resource manager.

The simulations evaluated the performance of NDMD in
terms of the power consumption, total number of handoff
and total number of fail handoff.

(i) Power consumption: an accumulated all interfaces
activated time in WLAN. A larger active time repre-
sents larger power consumption.

(ii) Number of handoff: handoff process switches the
connection between different access points and may
stop the transmission in a while. Thus, unnecessary
handoffs may decrease the performance of a commu-
nication system.

(iii) Number of failed handoff: since discovering available
networks requires a nonnegligible time, a handoff
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F1GURE 21: The deployment of overlay WLAN.

may fail if an MN starts network discovering late.
Moreover, unnecessary handoffs may increase the
risk of connection break due to handoff failure.

Figure 21 shows an indoor WLAN overlay structure
was used to evaluate the performance of different network
discovery mechanism. The authors use four adjacent cells
with 100-meter radius. The BSs are located in the same
floor with the following coordinates: (100,240), (100, 100),
(240,100), and (240,240). An MT is equipped with four
network interfaces. A log normal shadowing model is used
and simulation parameters for an indoor WLAN environ-
ment are set as presented in Table 5. In the simulations, the
random waypoint mobility model is adopted to generate the
tour of a mobile user. Table 6 presents simulation parameters
for the random waypoint mobility model. Since the user
is in an indoor environment, the range of velocities is set
between 0.5m/sec and 2.5m/sec. A preprocessing time is
introduced to represent the latency of the network discovery
procedure including the time required to activate interface,
search base station, associate with a chosen AP, and so forth.
The parameters of various approaches and thresholds are
presented in Table 7.

Figure 22 shows the accumulated active time of all
interfaces in various approaches. In Figure 22, the RSS
threshold-based method and the RSS threshold combined
with dwell-time-based method consumes more power than
other approaches. In the RSS threshold-based method, an
MT turns on all interfaces to search available access networks
and executes handoff procedure only according to THxp and
THpo. In NDMD, an MT can identify the user motion state.
When the MT is in a stationary state, the MT turns off other
interfaces to reduce power consumption. Thus, NDMD
consumes less power than other approaches. Moreover, the
dwell time method requires an MT to turn on all interfaces
for checking their RSS from neighborhood access points over
a dwell time, thus the dwell time method consumes much
power.

Figure 23 shows the accumulated number of handoff. In
Figure 23, geographic-based handoff method has the lowest
number of handoff because it triggers handoff process and
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TABLE 7: Parameters for different handoff mechanisms.
Method NDMD NDMD T T T+D T+D T+H+D T+H+D T+H T+H Geographic-based
lod 0.15 0.15 None None None None None None None None None
k 5.5 5.5 None None None None None None None None None
THy (dBm) -1 -1 None None None None None None None None None
THp (dBm) 1 1 None None None None None None None None None
Hysteresis (dBm) None None None None None None 10 10 10 10 None
THxp (dBm) —87 -92 —87 -92 —87 -92 —87 -92 —87 -92 None
THpo (dBm) —-87 -92 —87 -92 —87 -92 —87 -92 —87 -92 None
THpwen (sec) None None  None None 4 4 4 4 None None None
T: Threshold/D: Dwell-time/H: Hysteresis.
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F1GURE 22: Accumulated active time of all interfaces in WLAN.

switches MT’s connection to a new AP according to MT’s
location information from a GPS and a location server
(resource manager server). Since NDMD can identify user
motion of an MT, NDMD can reduce unnecessary handoffs.
On the other hand, the RSS threshold based algorithms
has the largest number of handoff due to an MT always
triggers network discovery and handoff when the MT is in
a stationary state. Moreover, the dwell time method limits
the handoff trigger by a time constraint during the network
discovery, thus the MT triggers handoff late and reduces
unnecessary handoffs. Nevertheless, both RSS threshold
based method, RSS threshold combined with dwell time
based method, RSS threshold combined with hysteresis based
method, and RSS threshold combined with hysteresis and
dwell time based method cause larger number of unnecessary
handoffs. Figure 24 shows the accumulated number of failed

0 2 4 6 8 10 12 14 16 18 20 22 24

Simulation time (hour)

—s— NDMD, « = 0.15, k = 5.5, threshold —87 dBm
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-8 - Geographic-based, minimum number of necessary handoff

F1GURE 23: Accumulated number of handoff in WLAN.

handoff in WLAN. In Figure 24, NDMD performs better
than other algorithms because NDMD can determines user
motion, activates and terminates MT’s interfaces rapidly
enough to reduce unnecessary handoffs.

5. CONCLUSION AND FUTURE WORK

This work presents MACD-based user motion detection
mechanism (UMD) and a predictive algorithm called
NDMD for network discovery in heterogeneous wireless net-
work environments. Without any assistance from a position-
ing system, UMD can identify the user’s behavior correctly.
The NDMD determines when a user leaves, approaches or
remains stationary with respect to its associated access point
by UMD and then initiates or terminates the corresponding
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F1GURE 24: Accumulated number of failed handoff in WLAN.

network discovery procedure in an appropriate time. The
simulation results demonstrate that NDMD can immediately
determine when a user is leaving the coverage area of a
wireless network and then activates interfaces to perform
network discovery in time. Thus, the system not only reduces
handoff dropping rate, it also terminates the interfaces
whenever a user remains stationary or approaches the
transmitter. Therefore, it can reduce the power consumption
of network discovery at a mobile node. Additionally, NDMD
can trigger and terminate network discovery in time, it can be
easily incorporated into existing handoff decision schemes,
such as dwell time approaches, hysteresis approaches, and
the combination of above approaches to reduce hand-
off dropping rate and power consumption in handoff
process.

However, some problems with the UMD mechanism
remain to be solved. The mobile radio propagation features
degrade the sensitivity of the UMD mechanism as the
distance between an MT and its transmitter increases.
The UMD mechanism must use different configurations
for various wireless networks. Therefore, future work may
explore the dynamic adaptation of the UMD configuration
to various wireless networks.
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