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1. INTRODUCTION

The benefits of using multiple transmit and receive antennas
and space-time coding for wireless communication are well
known [1]. In principle, the capacity of such multiple-input
multiple-output (MIMO) channel can be much higher than
a single-input, single-output (SISO) channel. The capacity
of a MIMO channel is maximum when each transmit
and receive antenna pair forms a statistically independent
transmission path, a condition which is nearly met in a
rich scattering environment. Space-time codes (STC) can
be used to exploit the spatial diversity available in such a
channel to realize high-rate data transmission [1]. However,
in realistic situations, the channel capacity is degraded by
spatial correlations at the transmitting and/or receiving
antenna arrays, due to, for example, insufficient spacing of
antenna elements in the arrays, the existence of few dominant
scatters, or small AOA spreading [2]. Furthermore, recent
studies, both theoretical and experimental, have shown that,
in addition to antenna correlation, the MIMO channel
capacity can also be decreased by so-called keyhole effects

in wave propagation [3, 4]. In particular, a keyhole effect
reduces the rank of the MIMO channel matrix to one, even
in the absence of any spatial correlation in the channel [4].
In a keyhole MIMO channel, the signals from the transmit
antenna array are constrained by the physical structure of
the propagation environment to pass through a keyhole
before reaching the receive antenna array (Figure 1(a)). Such
keyhole effects have been observed in both indoor and
outdoor propagation environments [5, 6].

In previous work, the capacity of MIMO keyhole chan-
nels is studied in [3, 7–9]. In [10], expressions for the
exact symbol error rate (SER) of orthogonal space-time
block codes (OSTBC) over a double Rayleigh fading keyhole
channel are derived for M-PSK and M-QAM modulation
schemes. In a subsequent work [7], similar analysis is also
carried out for keyhole channels with Nakagami-m fading.
In another related work, [11] derives expressions for the
pairwise error probability (PEP) of MIMO systems with
keyhole channels. However, in [7, 10, 11], the channel is
assumed to be spatially uncorrelated. Similar analysis for
MIMO keyhole channels with spatial correlations has not
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been reported so far. It is well known that if the channel
correlation matrix is known at the transmitter (e.g., as
channel side information (CSI)), a linear precoder matched
to the channel correlation structure can be used at the MIMO
channel input to improve the system performance (see,
e.g., [12–16]). However, the aforementioned work assumes
Rayleigh or Ricean fading and is not applicable to double
Rayleigh fading as in the case of channels with keyholes.
Formally, a keyhole MIMO channel can be modeled by a
matrix which is the outer product of two complex Gaussian
vectors [4]. This implies that each coefficient in the channel
matrix is a product of two independent complex Gaussian
variables (and hence the name double Rayleigh fading). Since
keyhole effects lead to the degeneration of the channel matrix
[3, 4], it is particularly important to exploit CSI available
at the transmitter using a properly designed precoder to
enhance the MIMO system performance.

In contrast to previous work, we consider in this paper
the SER analysis and the design of linear precoders which
minimize the average SER of double Rayleigh fading MIMO
channels with spatial correlations. More specifically, we
derive easy, to evaluate, exact analytical expressions for the
average SER of systems with M-PSK, M-PAM, and M-
QAM signaling and maximum likelihood (ML) detection.
These closed-form SER expressions are useful in perfor-
mance analysis of such systems and can be easily evaluated
with computing software, using readily available functions.
Numerical results are presented in this paper to confirm
that our analytical expressions agree with those obtained
by simulation of the OSTBC-MIMO system. Based on the
analytical expressions for SER, we then present a design
of linear precoders which minimize the average SER by
exploiting the knowledge of the channel correlation matrix
(available at the transmitter either as prior knowledge or via
a feedback channel from the receiver), under a constraint on
the total average transmitted power. In our formulation, the
antenna correlations are allowed to be complex valued [17].
In the general case, we consider it is difficult to find a closed-
form solution for the minimum SER (MSER) precoder. As
such, the MSER precoder matrix is found by a constrained
gradient descent minimization method, based on the deriva-
tives of the average SER. Experimental results are presented
to demonstrate the performance improvements achieved by
the proposed MSER precoder. In these experiments, MIMO
keyhole channels with both real and complex correlation
matrices have been considered.

The expressions and the optimal precoder design derived
in this paper are novel in the following aspects. Different
to [10], the SER expression derived in this paper applies
to MIMO keyhole channels with spatial correlations at both
transmit and receive antennas. While the SER expressions
in [10], which apply only to uncorrelated channels, do not
generalize to our case, we show that in the absence of
spatial correlations the SER expressions we derive reduce
to those in [10]. Note that, for the uncorrelated channel
considered in [10], the precoding problem we consider is
not relevant. Also, different to [14, 15], the SER expressions
and the optimal precoders derived in this paper account
for the keyhole effect, that is, each channel coefficient is a
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Figure 1: (a) Keyhole MIMO channel, (b) Block diagram of the
system under consideration.

product of two complex Gaussian random variables. While
there is no direct relationship between these expressions,
they correspond to two extreme cases of a double scattering
channel with ns ≥ 1 scatterers [4]. In particular, when
ns = 1, the channel exhibits the keyhole effect considered
in this paper. When ns→∞, the MIMO channel is the single-
scattering case considered in [14, 15]. It should be noted that
neither the results in this paper nor those in [14, 15] readily
generalize to the case 1 < ns <∞.

The rest of this paper is organized as follows. Section 2
describes the keyhole channel model and the OSTBC-MIMO
system model under consideration. Section 3 derives the SER
expressions for this system, where M-PSK, M-PAM, and M-
QAM modulation schemes are considered. Section 4 then
presents an algorithm for designing an MSER linear precoder
for the system. In Section 5, numerical results are presented
to demonstrate the accuracy of the given SER expressions
and the performance gains achievable with the proposed
precoder designs. Finally, concluding remarks are given in
Section 6. Some proofs are provided in the appendices.

Notation

vec(·) is matrix stack operator, (·)T is matrix transpose, (·)H
is Hermitian operation, (·)∗ is complex conjugate, Tr (·)
denotes the trace of a matrix, ‖·‖2

F is Frobenius norm, (‖·‖2 is
vector norm), ⊗ denotes the Kronecker product, IN denotes
N ×N identity matrix, and � defines new symbols.
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2. CHANNELMODEL AND SYSTEMDESCRIPTION

Channel model

The gain matrix H of a double Rayleigh fading keyhole
MIMO channel with nt transmit antennas and nr receive
antennas can be represented by the outer product of two
independent complex Gaussian vectors hr (size nr × 1)
and ht (size 1 × nt) representing transmit and receive
Rayleigh fading, respectively, [4], that is, H = hrht.
However, each vector is assumed to be correlated so that
ht = htwR

1/2
t and hr = R1/2

r hrw, where Rt is the nt × nt
transmit antenna correlation matrix, Rr is the nr ×nr receive
antenna correlation matrix, and htw ∼CN (01×nt , Int ) and
hrw ∼CN (0nr×1, Inr ) are independent identically distributed
(iid) complex Gaussian vectors of sizes 1 × nt and nr × 1,
respectively, (here, R1/2

t and R1/2
r are the unique square roots

of Hermitian positive semidefinite matrices Rt and Rr , resp.,
[18]). Note that each element of H is a product of two
independent Gaussian variables. Note also that the rank of
H is necessarily one.

Systemmodel

The communication system considered in this paper is
shown in Figure 1(b). An orthogonal space-time block
(OSTB) encoder operates on a block of input symbols x =
(x1, . . . , xK ), where xk ∈ A and A is the complex valued
modulation signal set with |A| = M. In this paper, M-PSK,
M-PAM, and M-QAM signal sets will be considered. Let the
output of the OSTB encoder C be a B × N matrix, where
B is the space dimension and N is the time dimension. The
elements of C are linear combinations of x1, . . . , xK and their
complex conjugates. The OSTB codeword is precoded using a
nt×B matrix F to produce the transmitted codeword Z = FC.
Thus, the transmission rate is R = K/N . The average power
of a transmitted codeword is Pt = E{Tr (ZZH)}. From the
orthogonality property of the OSTBC [21], it follows that

Pt = aKPxTr
{
FFH

}
, (1)

where Px = E{|xk|2} is the average power of modulation
signal set, and a is a constant that depends on the particular
OSTBC in use. For example, a = 1 for G2 [21], and a = 2 for
G4 in [19].

The codeword Z is transmitted through the MIMO
keyhole channel H whose output is a nr×N matrix Y = HZ+
V, where V is the nr ×N complex channel noise matrix. The
elements of V are independent complex Gaussian variables
with iid real and imaginary parts of variance N0/2. The
receiver decodes channel output using a ML detector. It is
assumed that the channel matrix remains constant for the
duration of a codeword (quasi-static channel), and that the
receiver has the knowledge of F and H to be used in ML
decoding. While H is not known to the transmitter, the
antenna correlation matrices Rt and Rr are assumed to be
known.

3. MGF OF OUTPUT SNR AND SER EXPRESSIONS

We use the moment generating function-(MGF) based
approach [23] to find the average output SER of the above-
described system, assuming that the precoder matrix F is
given. Our main goal in this section is to find an easy to
evaluate expression for average SER. To this end, we first find
an expression for the MGF of the output signal to noise ratio
(SNR). When the space-time block code is orthogonal, the
MIMO system is equivalent to a SISO system, in which the
SNR at the input of the ML detector is given by [10]:

γ = η‖HF‖2
F , (2)

where η = (Es/N0)/(ntR) with Es/N0 being the SNR per
receive antenna. Noting that ‖HF‖2

F = ‖hr‖2‖htF‖2, con-
sider ∥∥htF∥∥2 = htFFHhHt (3)

= htwR1/2
t FFHR1/2

t hHtw (4)

= htwQhHtw, (5)

where Q � R1/2
t FFHR1/2

t is an nt × nt Hermitian positive
semidefinite matrix. Using eigenvalue decomposition, let
Q = UqΛqUH

q , where Uq is the unitary matrix of eigen
vectors and Λq is the diagonal matrix of whose diagonal

elements are eigenvalues λ
(q)
i ≥ 0, i = 0, . . . ,nt − 1 of Q.

Then, (5) can be expressed as∥∥htF∥∥2 = htwUqΛqUH
q h

H
tw = ĥtwΛqĥHtw, (6)

where ĥtw = htwUq is also an iid complex Gaussian vector of
size 1× nt. Hence, it follows that

yt �
∥∥htF∥∥2 =

nt−1∑
i=0

λ
(q)
i

∣∣{ĥtw}i∣∣2
, (7)

where {ĥtw}i denotes the ith element of ĥtw. In a similar
manner,

yr �
∥∥hr∥∥2 =

nr−1∑
j=0

λ(r)
j

∣∣{ĥrw} j∣∣2
, (8)

where λ(r)
j , j = 0, . . . ,nr − 1 are the eigenvalues of the matrix

Rr and ĥrw is an iid complex Gaussian vector of size nr × 1.
Note that if the channel is uncorrelated and F = Int , then
yt and yr are chi-square distributed random variables with
2nt and 2nr degrees of freedom, respectively. This special case
was considered in [10]. On the other hand, in general, the
MGF of yt is given by [24, equation (14)]:

φyt (s) = E
{
e−sy

} = nt−1∏
i=0

1

1 + λ
(q)
i s

. (9)

A similar expression exists for φyr (s). In this paper, we mainly
focus on the case in which the eigenvalues of both Q and
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Rr are distinct. However, the following derivation may be
generalized to the case of eigenvalues with multiplicity, by
using the appropriate partial fraction expansion, as discussed
at the end of this section. For the case of distinct eigenvalues,
the partial fraction expansion yields

φyt (s) =
nt−1∑
i=0

αi

1 + λ
(q)
i s

, (10)

where

αi =
nt−1∏
k=0
k /=i

λ
(q)
i

λ
(q)
i − λ

(q)
k

, i = 0, . . . ,nt − 1. (11)

Let the corresponding set of coefficients for φyr (s) be βj , j =
0, . . . ,nr − 1. Hence, the pdf of yr can be found by inverse
Laplace transform as

fyr (x) =
nr−1∑
j=0

βj

λ(r)
j

e−x/λ
(r)
j . (12)

The pdf of Y = yt yr (where yt and yr are independent)
is given by [25, page 141]

fY (y) =
∫∞
−∞

fyt

(
y

x

)
fyr (x)

1
|x|dx. (13)

Then, it follows that the MGF of Y is

φY (s) =
∫∞

0
φyt

(
syr
)
fyr
(
yr
)
dyr (14)

=
nt−1∑
i=0

nr−1∑
j=0

αiβj

λ(r)
j

∫∞
0

e−yr /λ
(r)
j

1 + λ
(q)
i s

dyr (15)

=
nt−1∑
i=0

nr−1∑
j=0

−αiβj

λi j s
e1/(λi j s)Ei

(−1
λi j s

)
, (16)

where λi j = λ
(q)
i λ(r)

j and Ei(x) is the exponential integral [26,
(8.211)]

Ei(x) = −
∫∞
−x

e−t

t
dt (x < 0). (17)

This integral is readily available as a built-in function in
software packages such as Matlab and Mathematica. Given
this result, the MGF of the output SNR, γ = ηY can be
obtained as φγ(γ) = φY (ηs).

The average SER, PS, of several modulation schemes over
the correlated keyhole channel can now be derived using
the MGF of the random variable γ [23]. For example, the
conditional SER of M-PSK given the instantaneous SNR γ is
[23, (8.23)]

PS,MPSK(γ) = 1
π

∫ ((M−1)/M)π

0
exp

(
− γ

gMPSK

sin2θ

)
dθ, (18)

where gMPSK = sin2(π/M). For convenience, define

ρi j
(
θ1, θ2, ξ

)
� −

∫ θ2

θ1

sin2θ

λi jξ
esin2θ/(λi j ξ)Ei

(−sin2θ

λi jξ

)
dθ.

(19)

Then, the average SER of M-PSK signaling can be expressed
as

PS,MPSK = 1
π

∫ ((M−1)/M)π

0
φY

(
η
gMPSK

sin2θ

)
dθ (20)

= 1
π

nt−1∑
i=0

nr−1∑
j=0

αiβjρi j

(
0,
M − 1
M

π, ξ1

)
, (21)

where ξ1 = ηgMPSK. Similar expression can be obtained for
M-PAM and M-QAM using [23, (8.5) and (8.12)] which are
summarized below:

PS,MPAM = 2(M − 1)
πM

nt−1∑
i=0

nr−1∑
j=0

αiβjρi j
(
0,π/2, ξ2

)
, (22)

PS,MQAM = c
nt−1∑
i=0

nr−1∑
j=0

αiβj

[
1√
M

ρij
(
0,π/4, ξ3

)
+ρi j

(
π/4,π/2,ξ3

)]
,

(23)

where ξ2 = 3η/(M2 − 1), ξ3 = 3η/[2(M − 1)], and c =
(4/π)(1− 1/

√
M).

Note

When Q and/or Rr have repeated eigenvalues, the partial
fraction expansions of φt(s) and φr(s) have to be appropri-
ately modified. We now outline the solution for this case.

Suppose Q has n1 distinct eigenvalues with λ
(q)
i repeating lqi

times, and Rr has n2 distinct eigenvalues with λ(r)
j repeating

lr j times. For this general case, the same procedure as above
can be used to show that the MGF of Y is given by (see
Appendix A)

φY (s)=
n1−1∑
i=0

n2−1∑
j=0

lr j∑
k=1

lqi∑
m=1

αikβjmΓ(m)(
λi j s
)m

(m−1)!
ψ
(
m,m−k+1;

1
λi j s

)
,

(24)

where ψ(m,m − k + 1; z) is the confluent hypergeometric
function [26, (9.211-4)], Γ(·) is the gamma function, and αim,
βjk are partial fraction coefficients (procedures for finding
which are well known). This expression can now be used to
generalize the SER expressions (21)–(23). It can be shown
that when lqi = 1 for all i (n1 = nt) and lr j = 1 for all
j (n2 = nr), (24) reduces to (16). Other interesting cases
are when either transmit antennas or receive antennas are
uncorrelated, in which case either Rt or Rr is the identity
matrix. Also, when both Rt and Rr are identity matrices (no
channel correlation), then it is easy to show that (24) reduces
to [10, (6)].

4. PRECODER OPTIMIZATION

Given Rt and Rr , our goal is to find the optimal precoder
matrix Fopt which minimizes the average SER PS(F), subject
to a constraint Pmax on the average transmitted power P in
(1). This constrained optimization problem can be solved by
minimizing the Lagrangian [27]:

L(F,μ) = PS(F) + μ
[
Tr
(
FFH

)− P̃max
]
, (25)
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where μ > 0 is the Lagrange multiplier and P̃max =
Pmax/(aKPx). It is generally difficult to find directly the
minimum of this function, by setting the partial derivatives
to zero. Hence, we resort to gradient descent minimization to
find locally optimal values for F and μ, starting from an initial
value F0 [27]. In general, the solution of a constrained min-
imization problem such as (25) by gradient descent requires
gradient projection, [27, Chapter 11]. However, the specific
nature of the constraint (1) allows a simpler approach. To this
end, let DF∗PS(F) be the 1× ntB vector of partial derivatives
of Ps(F) with respect to the elements of vec(F∗), where DF∗

denotes the matrix derivative operator[28, Definition 2]. We
can perform gradient decent according to

vec
(
Fi+1

) = vec
(
Fi
)− τ

[
DF∗L(F,μ)

]T
F=Fi ,μ=μi

= vec
(
Fi
)− τ

{[
DF∗PS

(
Fi
)]T

+ μi vec
(
Fi
)}

,
(26)

where τ > 0 and μi is chosen so that the updated solution
satisfies the power constraint, by solving

Tr
(
Fi+1FHi+1

)− P̃max = 0. (27)

By defining fi = vec(Fi) − τ[DF∗PS(Fi)]T and Bi =
fi vec(Fi)

H , (27) can be written as[
τ2P̃max

]
μ2
i − τTr

(
Bi + BH

i

)
μi +

[
Tr
(
fifHi

)− P̃max
] = 0.

(28)

This equation yields two positive values for μi for which
the updated precoder in (26) satisfies the power constraint,
provided that the step size τ is chosen sufficiently small (see
Appendix B). The choice of the smaller value for μi out of
the two possible solutions results in the proper convergence
of the gradient descent algorithm (see Figure 8). In each
iteration i, we first find μi by solving (28) and then Fi+1 using
(26). The convergence of the solution can be decided when
‖Fi+1 − Fi‖F becomes less than a prescribed threshold. In the
following, we derive closed-form expressions for DF∗PS(F)
for different modulation schemes.

While the SER expressions derived in the previous sec-
tion are simple to evaluate for a given F, the elements of the
precoder matrix appear only indirectly (in the eigenvalues
of Q) in these expressions. Consequently, they are not
easily differentiable with respect to the precoder matrix.
However, a slight reformulation of the given expressions
readily eliminates this difficulty as follows. First, we express
(14) as φY (s) = Eyr{φyt (syr)}. Then, from (18) it follows that

PS,MPSK = Eyr

{
1
π

∫ ((M−1)/M)π

0
φyt

(
ξ1yr
sin2θ

)
dθ
}

, (29)

where ξ1 = ηgMPSK. Now using [24, equation (14)], (9) can
be rewritten as

φyt (s) =
1

det
(
Int + sQ

) . (30)

Hence,

PS,MPSK = Eyr

{
1
π

∫ ((M−1)/M)π

0

dθ

det
[
G
(
θ, yr , ξ1

)]}, (31)

where G(θ, x, ξ) � Int + (ξx/sin2θ)Q and we have obtained
SER of M-PSK as a function Q (and hence as an explicit
function of F). However, note that the evaluation of this
expression requires the explicit evaluation of a double
integral, which is avoided in (21) by using the exponential
integral. Similar expressions can be derived for M-PAM and
M-QAM using [23, (8.5) and (8.12)] and the same procedure
as above, which are summarized below:

PS,MPAM = Eyr

{
2(M − 1)

πM

∫ π/2

0

dθ

det
[
G
(
θ, yr , ξ2

)]}, (32)

PS,MQAM = Eyr

{
c√
M

∫ π/4

0

dθ

det
[
G
(
θ, yr , ξ3

)]
+ c
∫ π/2

π/4

dθ

det
[
G
(
θ, yr , ξ3

)]},

(33)

where ξ2 = 3η/(M2 − 1), ξ3 = 3η/[2(M − 1)], and
c = (4/π)(1 − 1/

√
M). It can now be seen that computing

DF∗PS(F) for (31)–(33) simply involves computing the ntB×
1 derivative vector of the form (see Appendix C):

c(F, θ, ξ, x) � ∂

∂ vec
(
F∗
)det

[
G(θ, x, ξ)

]−1
,

=
( −ξx

sin2θ

)(
FT ⊗ R̃T

t

)vec
[(
G(θ, x, ξ)

)−1]
det
[
G(θ, x, ξ)

] ,

(34)

where R̃t = (R1/2
t )∗R1/2

t . Then, by defining

D
(
F, ξ, θ1, θ2

)
�

nr−1∑
j=0

βj

λr j

∫∞
0

∫ θ2

θ1

c(F, θ, ξ, x)dθe(−x/λr j) dx,

(35)

DF∗PS(F) for M-PSK, M-PAM, and M-QAM can expressed,
respectively, as

[
DF∗PS(F)

]T = D
(
F, ξ1, 0,

M − 1
M

π
)

,

[
DF∗PS(F)

]T = D
(
F, ξ2, 0,π/2

)
,

[
DF∗PS(F)

]T = 1√
M

D
(
F, ξ3, 0,π/4) + D

(
F, ξ3,π/4,π/2).

(36)

5. NUMERICAL RESULTS ANDDISCUSSION

In this section, we present numerical results to verify the
analytical SER expressions derived in Section 3 and to
demonstrate the benefit of the proposed MSER precoders.
In order to confirm the analytical SER expressions derived
in Section 3, we compare them with SER estimated by sim-
ulating the underlying MIMO system. While the expressions
we have derived are valid for a general channel correlation
matrix, we here present experimental results obtained for
the case of exponential correlation model [29] widely used
in the literature. In this case, the transmit and receive
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Figure 2: Comparison of SER computed using analytical expres-
sions (21), (22), and (23) with the estimates obtained by system
simulation. Results obtained with a 2 × 2 MIMO system (without
precoding) based on rate 1 OSTBC G2 (Alamouti code) [19] and the
exponential antenna correlation model.

antenna correlation matrices are given by {Rt}l,m = r|l−m|t ,
and {Rr}l,m = r|l−m|r , where 0 < |r1|, |r2| < 1. In our
simulations, we have used rt = rr = 0.9. We have considered
a number of different OSTBC-MIMO systems to verify the
SER expressions. A typical set of examples are presented
in Figsure 2 and 3 which confirm that the analytical SER
computed with (21), (22), and (23) agrees very well with the
values estimated by system simulation.

The results in Figure 2 are for a 2 × 2 MIMO system
based on the OSTBC G2 from [19] (Alamouti code) for which
a = 1. In this case, B = nt = nr = 2, K = N = 2, that
is, rate is one. Figure 3 shows the results for a 4 × 2 MIMO
system based on the OSTBC C4 from [20] for which a = 1
and B = N = nt = 4, nr = 2, K = 3, that is, rate is 3/4.
Note that no precoding has been used in these cases (F set
to a scaled identity matrix). Since spatial correlation in the
channel degrades the SER performance, it is also of interest
to compare the SER of an OSTBC over a correlated keyhole
channel with that over a keyhole channel with no spatial
correlation. Such a comparison for the 2 × 2 MIMO system
is shown in Figure 4 which shows that the degradation of
performance due to spatial correlation in the given keyhole
channel can be quite significant at high SNR (exponential
antenna correlation model is used). Also included here is the
SER over an6 Rayleigh fading channel (no keyhole effect and
no antenna correlation). In particular, these curves clearly
highlight the loss of diversity (as indicated by the slope of the
curves [1]) in the MIMO system due to the combined effect
of the keyhole propagation and the antenna correlation.

Next, we investigate the performance achievable with
MSER precoders found using the proposed design algorithm.
Figure 5 shows the performance of the above-described 4×2

40353025201510
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8-PSK (simulation)
8-PAM (analytical)

8-PAM (simulation)
16-QAM (analytical)
16-QAM (simulation)

Figure 3: Comparison of SER computed using analytical expres-
sions (21), (22), and (23) with the estimates obtained by system
simulation. Results obtained with a 4 × 2 MIMO system (without
precoding) based on rate 3/4 OSTBC C4 from [20] and the
exponential antenna correlation model.

40353025201510
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Uncorrelated, keyhole
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Figure 4: Performance degradation and loss of diversity due to the
keyhole effect and antenna correlation in a 2 × 2 MIMO system
based on G2 (Alamouti code) [19], 8-PSK modulation, and the
exponential antenna correlation model.

MIMO system with a linear precoder as function of SNR
(only 8-PSK and 16-QAM performance is shown, but similar
improvements were also observed for 8-PAM). As before, the
results in Figure 5 are obtained for the case of exponential
correlation at both transmit and receive antennas so that
both Rt and Rr have real elements. Since our derivation
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Figure 5: Performance improvements achieved with optimal
precoding in a 4× 2 MIMO system based on OSTBC C4 from [20]
and the exponential channel correlation model.

is valid for a complex Hermitian and positive semidefinite
correlation matrix, we also carried out precoder designs for a
4 × 4 MIMO system based on G4 from [21], in which the
transmit antennas have the exponential correlation matrix
while the receive antennas have the complex correlation
matrix [22]:

Rt =

⎡⎢⎢⎢⎢⎣
1 C B A

C∗ 1 C B

B∗ C∗ 1 C

A∗ B∗ C∗ 1

⎤⎥⎥⎥⎥⎦ , (37)

where A = 0.3773 + j0.5411, B = 0.0673 − j0.8081, and
C = −0.6821 + j0.6512.

The relevant results are presented in Figure 6. The results
in both Figures 5 and 6 clearly demonstrate the effectiveness
of the MSER precoder designed by the proposed algorithm.
The effect of the precoder is to shift the SER versus SNR
curve downwards, without changing its slope at high SNR.
Thus, the precoder does not change the diversity order
of the system. (The slope of SER versus SNR curve at
high SNR determines the diversity order of the system.
This asymptotic slope depends on the rank of the channel
correlation matrix.) The fact that precoding is less useful at
high SNRs is generally known [13].In our particular case, it
can be shown that in the limit Es/N0→∞, the MSER precoder
is proportional to the identity matrix (see Appendix D), that
is,

Fopt =
√

Pmax

aKPxnt
Int . (38)

30252015105
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8-PSK (optimal precoding)

16-QAM (no precoding)
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Figure 6: Performance improvements achieved with optimal
precoding in a 4 × 4 MIMO system based on OSTBC G4 from
[21]. The transmit antenna correlation follows the exponential
model while the receive antenna correlation is modeled by a general
complex correlation matrix from [22].

However, at low to moderate channel SNR, the optimal
precoder is seen to improve the system performance, the
improvement being dependent on the degree of spatial
correlation in the channel coefficients. It was also observed
that at low SNR, the precoder matrix obtained by the design
algorithm had nearly identical elements in all the cases we
considered. If the MSER precoder matrix has equal elements,
it can be shown that there exists an equivalent solution
(which is also optimal in the MSER sense) of the form (see
Appendix E):

F′ = (u 0 · · · 0), (39)

where u is an nt × 1 vector and 0 is a nt × 1 vector with
all elements equal to zero. Then, from the discussion in [13,
Section IV- A], it follows that the resulting precoding scheme
is also equivalent to beamforming in the direction of u. Note
that if the MSER precoder matrix is known to have equal
elements, it can be directly determined by using the power
constraint.

Note that the result in Appendix E shows the existence
of multiple local minima. Since the given descent algorithm
may converge to a local minimum, one can choose the
best design among multiple designs obtained with random
initializations for the precoder. In our experiments, the best
solution obtained in this manner was comparable to the
one obtained with the diagonal initialization which is the
scaled (to satisfy the power constraint) identity matrix. It is
also possible to use a relaxation-type algorithm in which the
SNR is reduced from a higher value (for which the diagonal
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Figure 7: The convergence of the proposed precoder design
algorithm (8-PSK system in Figure 6 and Es/N0 = 2 dB). Left:
variation of J(i) = ‖Fi − Fi−1‖2

F versus iteration number; Right:
variation of μi with iteration number.

Power constraint

vec(Fi)

vec(Fi+1)

−τDF∗Ps(Fi)

fi

−τμivec(Fi)
A

A′

O

Figure 8: A graphical interpretation of the solutions of (28). The
gradient vector DF∗Ps(Fi) + μi vec(Fi) depends on μi. Provided that
the step-size τ is small enough, (28) yields two possible values for μi
for which the updated precoder Fi+1 satisfies the power constraint.
The two possible solutions for the updated precoder are given byOA
and OA′. The use of smaller μi yields the desired updated precoder
OA for which the gradient descent converges.

precoder is nearly optimal) to the desired value in steps, and
to progressively optimize the precoder to each SNR value. In
all our designs, the gradient descent minimization algorithm
converged rapidly to a stable solution. A typical example
is shown in Figure 7 which shows the convergence of both
the precoder matrix and the Lagrange multiplier. Thus, this
algorithm can be used to adaptively update the precoder
matrix based on, for example, the estimates of the channel

correlation matrix obtained via measurements. Typically, the
channel correlation matrix changes much slower than the
channel matrix itself and hence can be estimated periodically
at the receiver and be fed back to the transmitter for adapting
the precoder matrix.

6. CONCLUDING REMARKS

Exact analytical expressions were derived for SER of M-PSK,
M-PAM, and M-QAM modulated OSTBCs over a MIMO
spatially correlated keyhole channel. A general complex
correlation matrix has been assumed in the derivations.
These expressions are easy to compute using numerical
software and have been verified by Monte Carlo simulations.
The given analytical expressions have been used to design
MSER linear precoders based on the knowledge of channel
correlation matrix available as CSI at the transmitter. Using
simulation experiments, it has been demonstrated that the
proposed MSER precoder can significantly reduce the error
probability of a MIMO system operating on a fading channel
degraded by a keyhole effect.

An important extension to this work includes precoder
design for more general multiple scattering fading channels
[5]. In particular, an interesting case is the double scattering
model [4] (of which the keyhole channel is a special case).

APPENDICES

A. PROOF OF (24)

Using partial fraction expansion, we can write

φyt (s) =
n1−1∑
i=0

lqi∑
k=1

αik(
1 + λ

(q)
i s
)k , (A.1)

φyr (s) =
n2−1∑
j=0

lr j∑
m=1

βjm(
1 + λ(r)

j s
)m , (A.2)

where αik and βjm are partial fraction coefficients. Taking the
inverse Laplace transform of (A.2), we have

fyr (x) =
n2−1∑
j=0

lr j∑
m=1

βjmxm−1(
λ(r)
j

)m
(m− 1)!

e−x/λ
(r)
j . (A.3)

Then, from (14), it follows that

φY (s) =
n1−1∑
i=0

n2−1∑
j=0

lqi∑
k=1

lr j∑
m=1

αikβjm(
λ(r)
j

)m
(m− 1)!

∫∞
0

e−x/λ
(r)
j xm−1(

1 + λ
(q)
i sx

)k dx

=
n1−1∑
i=0

n2−1∑
j=0

lqi∑
k=1

lr j∑
m=1

αikβjm(
λi j s
)m

(m− 1)!

∫∞
0

e−t/(λi j s)tm−1

(1 + t)k
dt,

(A.4)

where λi j = λ
(q)
i λ(r)

j . The integral in this equation can be
computed using the confluent hypergeometric function [26,
(9.211-4)] :

ψ(x, y; z) = 1
Γ(x)

∫∞
0
e−zttx−1(1 + t)y−x−1dt, (A.5)
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where x > 0, z > 0, and Γ(·) is the Gamma function.
Specifically, by letting x = m, y = m− k + 1 and z = 1/(λi j s),
we obtain (24).

B. SOLUTIONOF (28)

Clearly, all coefficients of (28) are real. A simplified graphical
interpretation of the solution to this equation is shown in
Figure 8. Note that fi is the updated solution for the precoder
matrix, without considering the power constraint, that is,
when μi = 0. This solution satisfies the power constraint as
an inequality if Tr(fifHi ) < P̃max. In this case, the rescaling
of vec(Fi) = fi to satisfy the power constraint will result in a
solution with a lower SER. On the other hand, if Tr(fifHi ) −
P̃max > 0, we have to choose μi so that vec(Fi) satisfies the
power constraint. Thus, we consider this case.

It is easy to show that

Tr
(
Bi + BH

i

) = 2P̃max − τbi,

Tr
(
fifHi

)− P̃max = τ2
∥∥DF∗

∥∥2 − τbi,
(B.1)

where bi = Tr(DF∗vec(Fi)
H + vec(Fi)DH

F∗). It, then, follows
that (28) has real positive roots only if

τ ≤ 2P̃max(
4P̃max

∥∥DF∗
∥∥2 − b2

i

)1/2 . (B.2)

Otherwise the updated solution cannot satisfy the power
constraint. This scenario is also evident from Figure 8. Thus,
the step-size τ for gradient descent must be chosen suffi-
ciently small, in order to ensure the convergence (however, an
overly small step-size results in slow speed of convergence).
In Figure 8, OA and OA′ are the two candidate solutions for
the updated precoder Fi+1, corresponding to the roots of the
quadratic (28). The desired solution is OA (corresponding
to the smaller μi), which ensures the convergence of the
gradient descent algorithm. This can be seen form the fact
that OA′, which corresponds to the larger μi, will be opposite
to Fi+1 closer to the convergence point, where Fi+1 ≈ Fi.

C. PROOF OF (34)

Consider the matrix derivative of the form:

c(F) = ∂

∂ vec(F∗)

{
1

det[G]

}
, (C.1)

where G = Int + κQ (κ is a constant) and Q = R1/2
t FFHR1/2

t .
Note that the derivative vector on the right-hand side has size
ntB × 1, see [28, Table III]. Now, using [28, Table II], the
differential of 1/det[G] can be expressed as:

d
(

1
det[G]

)
= − 1

det[G]2 d
(
det[G]

)
= − 1

det[G]
Tr
(
G−1dG

)
= − 1

det[G]
vecT

(
G−T

)
d vec(G),

(C.2)

where we use the fact that Tr(AB) = vecT(AT)vec(B). Also,
d vec(G) = κd vec(Q) and from [28, Table V]:

d vec(Q) = vec
[
R1/2
t d

(
FFH

)
R1/2
t

]
= [((R1/2

t

)∗
F∗
)⊗ R1/2

t

]
d vec(F)

+
[(
R1/2
t

)∗ ⊗ (R1/2
t F

)]
Knt ,Bd vec

(
F∗
)
,

(C.3)

where Knt ,B is the commutation matrix of size ntB × ntB
[30]. For nt × B matrix F, the commutation matrix satisfies
Knt ,B vec(F) = vec(FT). Let R̃t � (R1/2

t )
∗
R1/2
t . Then, using

[28, (4)] , we obtain

[
c(F)

]T = −κ
det(G)

vecT
(
G−T

)
Knt ,nt

(
F⊗ R̃t

)
,

c(F) = −κ
det(G)

(
FT ⊗ R̃T

t

)
vec
(
G−1), (C.4)

where we use the fact that Knt ,nt (F⊗ R̃t) = (R̃t ⊗ F)Knt ,B [30,
Theorem 3.1]. From this, the result in (34) follows.

D. PROOF OF (38)

Consider SER expression (31) for M-PSK (proof easily
extends to M-PAM and M-QAM as well). Assuming Rt is
nonsingular for Es/N0→∞, we have

PS,MPSK −→ Eyr

{
1
π

∫ ((M−1)/M)π

0

dθ

det
((
ξ1yr/sin2θ

)
Q
)}

= 1
det(Q)

Eyr

{
1

πξnt1 yntr

∫ ((M−1)/M)π

0
sin2nt θdθ

}
.

(D.1)

Under this condition, MSER precoder maximizes det(W)
subject to Tr(W) = Pmax/aKPx, whereW = FFH . Now, from
[31, Lemma 2.2], it directly follows that the MSER precoder
is a scaled identity matrix and hence the result in (38).

E. PROOF OF (39)

First, we prove that if F is a solution to (25), then F′ = FV,
where V is a unitary matrix (i.e., VVH = I), is also a solution.
To this end, note that (25) is a function of FFH and not F
itself. From the unitary property of V, it follows that

F′F′
H = FVVHFH = FFH , (E.1)

and hence L(F′,μ) = L(F,μ), that is, the objective function
(25) is unchanged by a unitary transformation of F.

Next, consider the singular value decomposition (SVD)
of F = UΘVH , where U and V are unitary matrices and Θ is
a diagonal matrix of singular values of F. If F has identical
elements, then it has rank one and hence only a single
nonzero singular value θ1, that is, Θ = diag(θ1, 0, . . . , 0).
Therefore, it can be seen that F′ = FV has the form F′ =
(u 0 · · · 0), where u is a nt × 1 vector and 0 is the nt × 1
matrix of zero elements.
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