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1. INTRODUCTION

In recent years, code design for multiple-input multiple-
output (MIMO) channels, with orthogonal frequency divi-
sion multiplexing (OFDM) modulation, has gained much at-
tention in wireless communications. Space-time block codes
(STBC) first proposed by Alamouti [1] provide full spatial
diversity in wireless channels, with simple linear maximum
likelihood (ML) decoders. An efficient scheme of concate-
nated trellis code and STBC (TC-STBC) which provides ad-
ditional diversity and coding gain was proposed by Gong
and Letaief [2]. Tarasak and Bhargava [3] applied the con-
stant modulus (CM) differential encoding scheme of Tarokh
and Jafarkhani [4] to the TC-STBC system [2]. The differ-
ential encoding has the advantage of avoiding channel esti-
mation and the transmission of pilot symbols. Further im-
provement of TC-STBC performance is possible by using
a coordinate interleaver [5]. Coordinate interleaved signal
sets provide signal space diversity and hence improve the
symbol error performance of communication systems in fast
fading channels. The recent application of coordinate inter-
leaving to MIMO-OFDM which shows that this technique
provides considerable diversity gain without significant in-
crease of encoding and decoding complexities was proposed

by Rao et al. [6]. The single symbol decodability of coor-
dinate interleaved orthogonal design (CIOD) [7] is an im-
portant feature ensuring low decoding complexity. The joint
use of CIOD and OFDM provides spatial and multipath di-
versities, and further concatenation of TC and CIOD (TC-
CIOD) [5] as a consequence gives much better performance
compared to CIOD OFDM [6], linear constellation precoded
(LCP)-CIOD OFDM [6], and TC-STBC OFDM [2].

In this paper, we apply the nonconstant modulus (non-
CM) differential space-time block (STB) encoding scheme
proposed by Hwang et al. [8] to CIOD, and use it in TC-
CIOD scheme [5]. The proposed differential scheme achieves
full spatial and multipath diversities, and provides consider-
able coding gain advantage without channel state informa-
tion (CSI). We derive the design criteria for differential TC-
CIOD and found that under some approximation they are
same as in TC-CIOD case. The new differential scheme pro-
vides same diversity gain as the TC-CIOD scheme, and has
diversity four times greater than of both the TC-STBC sys-
tem introduced by Gong and Letaief [2] and its differential
counterpart proposed by Tarasak and Bhargava [3]. To clar-
ify the effect of interleaver selection on the diversity gain of
TC-STBC, we extend the results given in [2, 3] where the



2 EURASIP Journal on Wireless Communications and Networking

two-symbol interleaver is considered between TC and STBC,
to the symbol interleaver case.

2. PRELIMINARIES

In this section, we summarize the encoding and decoding of
non-CM differential STBC, and in the following sections, the
non-CM differential STBC is used in differential TC-CIOD
system. Note that, the use of any CM differential encoding
technique with CIOD is not possible due to nonconstant
modulus of coordinate interleaved signal constellation.

Let us assume a quasistatic fading channel with two
transmit and one receive antennas, and denote the channel
gains corresponding to two transmit antennas with h1 and
h2, respectively. Let the dummy symbols to be transmitted
during the first two transmission periods be a1 and a2. There-
fore, a1 and −a∗2 are transmitted from the first transmit an-
tenna, and a2 and a∗1 are transmitted from the second trans-
mit antenna during the first and second transmission peri-
ods, respectively. The differential STBC encodes the first data
symbol pair (x1, x2) by using the following equations [8]:

a3 = x1a1 − x2a
∗
2√|a1|2 + |a2|2

,

a4 = x1a2 + x2a
∗
1√|a1|2 + |a2|2

.

(1)

The difference of non-CM differential STBC from CM dif-
ferential STBC [4] is in the scaling coefficient

√|a1|2 + |a2|2
which ensures that the total transmission energy of two an-
tennas remains equal to one. The transmission of space-
time-block- (STB-) encoded dummy symbols a1 and a2 re-
sults with reception of

r1 = h1a1 + h2a2 + n1,

r2 = −h1a
∗
2 + h2a

∗
1 + n2,

(2)

where n1 and n2 are complex additive white Gaussian noise
terms. Similarly, the transmission of STB-encoded a3 and a4

carrying non-CM symbols x1 and x2 results with reception of

r3 = h1a3 + h2a4 + n3,

r4 = −h1a
∗
4 + h2a

∗
3 + n4.

(3)

The differential decoder uses the received symbols r1, r2, r3,
and r4 to find the estimations of the transmitted non-CM
symbols using

x̂1 = r3r
∗
1 + r∗4 r2

(|h1|2 + |h2|2)
√|a1|2 + |a2|2

,

x̂2 = r3r
∗
2 − r∗4 r1

(|h1|2 + |h2|2)
√|a1|2 + |a2|2

.

(4)

As seen from (4), to find the transmitted non-CM symbol
estimates x̂1 and x̂2, the receiver should know or at least esti-
mate the channel power (|h1|2 + |h2|2) and the signal power
of previously transmitted symbols (|a1|2 + |a2|2).

The simple estimation for the channel power p = (|h1|2+
|h2|2) denoted by p̂ is possible by evaluating the expected
value of |rt|2, that is,

p̂ = RRH

M
, (5)

where M is the number of received symbols included in ex-
pected value calculation, R = [r1 r2 r3 r4 · · · rM], and
RH is the Hermitian of R. The computational complexity of
(5) can be reduced by using

p̂t = M − 1
M

p̂t−1 +
1
M
|rt|2, (6)

where t is the recursion index.
There are two simple methods to estimate the signal

power of previously transmitted symbols. The first one is to
use the previous decoder output. The second one is to use (2)
to obtain
∣
∣r1
∣
∣2

+
∣
∣r2
∣
∣2 =

(∣
∣h1
∣
∣2

+
∣
∣h2
∣
∣2
)(∣
∣a1
∣
∣2

+
∣
∣a2
∣
∣2
)

+ nr ,

(7)

where nr is the Gaussian noise term. From (7), the estimation
of the signal power of previously transmitted symbols can be
written as

(∣
∣a1
∣
∣2

+
∣
∣a2
∣
∣2
)
≈
∣
∣r1
∣
∣2

+
∣
∣r2
∣
∣2

p̂
. (8)

3. SYSTEMMODEL

In this section, we describe the proposed differential TC-
CIOD OFDM system, and its encoding and decoding opera-
tions.

3.1. Differential encoder

The encoder block diagram of the proposed differential
TC-CIOD OFDM for two transmit antennas is shown in
Figure 1, where the source bits are trellis encoded at rate 2/3
and mapped to 8-PSK signal constellation. Each 8-PSK sym-
bol is rotated by θ and then a vector of rotated symbols is
coordinate interleaved by π. To achieve maximum diversity,
a proper coordinate interleaver should be used. Let

X
t =
[
xt0 xt1 xt2 xt3 · · · xt2K−2 xt2K−1

]
(9)

be the tth rotated trellis codeword of length 2K , where the
symbols xtk are obtained by rotating the symbols xtk of the tth
trellis codeword Xt by θ, that is,

xtk = xtk exp ( jθ). (10)

The coordinate interleaver π, which has a great impact on
the overall system performance, performs the following as-
signments:

x̃t2k = xtk,I + jxtk+(K/2),Q,

x̃t2k+1 = xtk+K ,I + jxt(k+(3K/2))2K ,Q

(11)
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Figure 1: Proposed differential TC-CIOD OFDM transmitter block
diagram (nT = 2).

for k = 0, . . . ,K − 1, and the coordinate interleaved symbols
x̃tk form the vector

X̃t =
[
x̃t0 x̃t1 x̃t2 x̃t3 · · · x̃t2K−2 x̃t2K−1

]
. (12)

In (11), the operators (·)I and (·)Q represent the real and
imaginary parts of a complex symbol, respectively, and the
operator (·)2K takes modulo 2K of the operand. The vector
X̃t enters the differential encoder which produces a vector
At+1 with elements at+1

k obtained from

at+1
2k =

x̃t2ka
t
2k − x̃t2k+1a

t∗
2k+1√∣

∣at2k
∣
∣2

+
∣
∣at2k+1

∣
∣2

,

at+1
2k+1 =

x̃t2ka
t
2k+1 + x̃t2k+1a

t∗
2k√∣

∣at2k
∣
∣2

+
∣
∣at2k+1

∣
∣2

(13)

for k = 0, . . . ,K−1, similar to (1). The differentially encoded
symbol pairs at+1

2k and at+1
2k+1 are STB encoded as

Yt+1
k =

⎛

⎝
at+1

2k at+1
2k+1

−at+1∗
2k+1 at+1∗

2k

⎞

⎠ (14)

and transmitted from the αkth OFDM subcarrier. There is a
one-to-one mapping between k and OFDM subcarriers, de-
noted by αk, which corresponds to the channel interleaver
α. The rows of Yt+1

k are transmitted from (2t + 2)th and
(2t + 3)th OFDM frames, respectively, and the columns of
Yt+1
k are transmitted from first and second transmit anten-

nas, respectively.
The differential transmitter starts encoding at t = 0 by

using initial dummy vector A0 with nonzero elements se-
lected from considered signal constellation. The transmis-
sion consists of first STB encoding of arbitrary vector A0,
which does not convey any information, and then sending it
in the first two OFDM frames. The transmitter subsequently
encodes the data in an inductive manner.

3.2. Channel model

Multipaths between transmit and receive antenna pairs in
wireless communication channels cause intersymbol inter-
ference (ISI) in the received signals. The baseband impulse
response for the MIMO channel with L paths between the
μth transmit (1 ≤ μ ≤ nT) and νth receive (1 ≤ ν ≤ nR)
antennas is given as [9]

hμν(t, τ) =
L−1∑

l=0

hμν(t, l)δ
(
τ − τl

)
. (15)

In (15) hμν(t, l) is the time-dependent channel tap weight,
δ(·) is the Dirac function, and τl is the path propagation de-
lay of the lth path (0 ≤ l ≤ L − 1). OFDM modulation with
cyclic prefix (CP) addition at the transmitter and removal at
the receiver transforms the frequency-selective channel into
K frequency nonselective subchannels without ISI. Assuming
that the channel weights remain constant during an OFDM
frame, the channel response becomes independent from time
variable t, for single OFDM symbol period, and then the sig-
nal received by the νth antenna at the tth symbol interval, for
the kth subcarrier (0 ≤ k ≤ K − 1), can be expressed as

rtν(k) =
nT∑

μ=1

Ht
μν(k)ytμ(k) + ntν(k), (16)

where ytμ(k) is the symbol transmitted by the kth subcar-
rier during tth symbol interval from μth transmit antenna,
the samples ntν(k) are zero-mean complex Gaussian r.v. with
variance are N0/2 per dimension, and

Ht
μν(k) =

L−1∑

l=0

htμν(l) exp
(
− j2πkτl

Ts

)
(17)

is the frequency-domain complex subchannel gain between
μth transmit and νth receive antennas for the kth subchannel
during tth symbol interval. In (17), Ts is the effective OFDM
symbol interval length and htμν(l) is the channel tap weight.

For simplicity we will drop the receive antenna index ν
in the following derivations. However, the proposed system
structure is easily extendable for more than one receive an-
tenna. If we assume a quasistatic channel, we may also drop
the time index t, from subcarrier transmission gains. Let
the transmission of Yt+1

k be affected by the subcarrier trans-
mission gains H1(αk) and H2(αk) corresponding to the first
and second transmit antennas, respectively. For simplicity,
we will denote Hμ(αk) as H

μ
k , for μ = 1, 2. Let, rt+1

k be the
symbol received from αkth subcarrier of the (t + 1)th OFDM
symbol, and nt+1

k for k = 0, 1, . . . ,K − 1 being the subchan-
nel noise variables which are independent and identically dis-
tributed zero-mean complex Gaussian r.v. with varianceN0/2
per dimension. Then, the MIMO-OFDM transmission can
be modeled by

Rt+1
k = Yt+1

k Hk + Nt+1
k , (18)

where Rt+1
k = (r2t+2

k r2t+3
k )

T
, H = (H1

k H2
k )

T
, and Nt+1

k =
(n2t+2

k n2t+3
k )

T
for k = 0, 1, . . . ,K − 1. Let us consider

an OFDM codeword Yt+1 = {Yt+1
0 , Yt+1

1 , Yt+1
2 , . . . , Yt+1

K−1}
trans-mitted over K different subcarriers. The transmis-
sion of codeword Yt+1 results in the reception of Rt+1 =
{Rt+1

0 , Rt+1
1 , Rt+1

2 , . . . , Rt+1
K−1}, and the corresponding additive

Gaussian noise affecting Rt+1 can be expressed as Nt+1 =
{Nt+1

0 , Nt+1
1 , Nt+1

2 , . . . , Nt+1
K−1}.

3.3. Differential decoder

When the receiver does not have any CSI, the decoding met-
ric for the trellis codeword

Xt =
[
xt0 xt1 xt2 xt2 · · · xt2K−2 xt2K−1

]
(19)
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can be expressed as

m(Rt+1, Rt, Xt) =
(K/2)−1∑

k=0

mt
k. (20)

The decoder should determine the tth trellis codeword Xt

minimizing (20) to perform maximum likelihood (ML) de-
coding, where the differential CIOD decoding metric is de-
fined as

mt
k =m

(
Rt+1
k , Rt+1

k+(K/2), Rt
k, Rt

k+(K/2), x̃
t
2k, x̃t2k+1, x̃t2k+K , x̃t2k+K+1

)
.

(21)

The CIOD decoding metric mt
k used in (20) can be written

as

mt
k = m̃t

2k + m̃t
2k+1 + m̃t

2k+K + m̃t
2k+K+1 (22)

for k = 0, . . . , (K/2) − 1, where the STB symbol metric for
ξ = 2k, 2k + 1, 2k + K and 2k + K + 1 is

m̃t
ξ =
∣
∣x̃tξ − x̂tξ

∣
∣2

+
(
Stξ − 1

)∣∣x̂tξ
∣
∣2

, (23)

derived similar to [10, page 453]. In (23), the scaling coef-
ficient, which can be estimated by the methods described at
the end of Section 2, is given by

Stk =
(∣∣H1

k

∣
∣2

+
∣
∣H2

k

∣
∣2)
√∣
∣at2k
∣
∣2

+
∣
∣at2k+1

∣
∣2

(24)

and the coordinate interleaved symbol estimates for k =
0, . . . ,K − 1 are

x̂t2k = r2t+2
k r2t∗

k + r2t+3∗
k r2t+1

k ,

x̂t2k+1 = r2t+2
k r2t+1∗

k − r2t+3∗
k r2t

k ,
(25)

similar to (4). The scaling coefficient in (24) can be estimated
by using the subchannel power estimation as (6) and the sig-
nal power estimation of previously transmitted symbols as
(8). Similar to (6) and (8), we can express the estimation of
Stk as

Ŝtk =
√

p̂k
(∣∣r2t

k

∣∣2
+
∣∣r2t+1

k

∣∣2
)

, (26)

where the subchannel power estimate p̂k is calculated recur-
sively from

p̂tk =
M − 2
M

p̂t−1
k +

2
M

(∣∣r2t
k

∣∣2
+
∣∣r2t+1

k

∣∣2
)

(27)

with initial value p̂0
k = 1.

The metrics in (22) related with coordinate interleaved
STB symbols are not suitable for Viterbi decoding. Substitut-
ing (23) in (22) and using (11), the metrics in (22) become
related to the rotated trellis codeword symbols xtk, xtk+(K/2),
xtk+K , and xtk+(3K/2). Hence, the CIOD decoding metric in (22)
can be further expressed in terms of the branch metrics mt

k,
mt

k+(K/2), m
t
k+K , and mt

k+(3K/2) as

mt
k = mt

k + mt
k+(K/2) + mt

k+K + mt
k+(3K/2), (28)

where

mt
k =
(
x̂t2k,i − xk,i

)2
+
(
st2k − 1

)
x2
k,i

+
(
x̂t2k+k+1,q − xk,q

)2
+
(
st2k+k+1 − 1

)
x2
k,q,

mt
k+(k/2) =

(
x̂t2k+k,i − xk+(k/2),i

)2
+
(
st2k+k − 1

)
x2
k+(k/2),i

+
(
x̂t2k,q − xk+(k/2),q

)2
+
(
st2k − 1

)
x2
k+(k/2),q,

mt
k+k =

(
x̂t2k+1,i − xk+k,i

)2
+
(
st2k+1 − 1

)
x2
k+k,i

+
(
x̂t2k+k,q − xk+k,q

)2
+
(
st2k+k − 1

)
x2
k+k,q,

mt
k+(3k/2) =

(
x̂t2k+k+1,i − xk+(3k/2),i

)2
+
(
st2k+k+1 − 1

)
x2
k+(3k/2),i

+
(
x̂t2k+1,q − xk+(3k/2),q

)2
+
(
st2k+1 − 1

)
x2
k+(3k/2),q

(29)

for k = 0, . . . , (K/2) − 1, which can be used by Viterbi de-
coder, to estimate the source bits.

4. TRELLIS CODE DESIGN

To achieve full diversity and high coding gain with the pro-
posed differential TC-CIOD OFDM, we obtained the pair-
wise error probability (PEP) upper bound, which is the prob-
ability that the decoder chooses an erroneous sequence Z in-
stead of the transmitted sequence X, defined as

P(X, Z | H) = Pr
[
m
(

Rt+1, Rt, Xt
)
> m
(

Rt+1, Rt, Zt
)]
.

(30)

In (30), we substitute m(Rt+1, Rt, Xt) with the metrics in
(20), (22), and (23), and the corresponding metrics for
m(Rt+1, Rt, Zt). Assuming that the previous codeword sym-
bols atk = (1 + j)/2 and the subchannel noise variables ntk are
i.i.d. zero-mean complex Gaussian distributed r.v. with vari-
ance N0/2 per dimension, by dropping the time index t for
simplicity, we obtain

P(X, Z | H)

=
(K/2)−1∏

k=0

Q

⎡

⎢
⎢
⎣

√
√
√√
√ Es

2N0

(d2
k+d2

k+(K/2))
2

d2
k(1+E2

k)+d2
k+(K/2)(1+E2

k+(K/2))

⎤

⎥
⎥
⎦ ,

(31)

where Q(·) is the Gaussian error function:

d2
ξ =

1∑

i=0

(∣
∣H1

ξ

∣
∣2

+
∣
∣H2

ξ

∣
∣2
)∣
∣x̃2ξ+i − z̃2ξ+i

∣
∣2

, (32)

and the symbol energy involved in STBC is

E2
ξ =

1∑

i=0

|x̃2ξ+i|2 (33)

for ξ = k and k+ (K/2). If we further assume that E2
ξ = 1, the

pairwise error probability given by (31) simplifies to

P(X, Z | H) =
(K/2)−1∏

k=0

Q

[√
Es

4N0

(
d2
k + d2

k+(K/2)

)]

, (34)
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which is the same expression given in [5], except that 2N0 is
replaced by 4N0, corresponding to 3 dB performance loss of
differential TC-CIOD scheme. Using the inequality

Q(x) ≤ 1
2

exp
(
− x2

2

)
(35)

and ignoring multiplier 1/2 for simplicity, we may upper
bound (34) as

P(X, Z | H) < exp
[
− Es

8N0
d2(X, Z)

]
, (36)

where the modified Euclidean distance between pair of trellis
codewords X and Z is given as

d2(X, Z) =
K−1∑

k=0

1∑

i=0

(∣∣H1
k

∣
∣2

+
∣
∣H2

k

∣
∣2)∣∣x̃2k+i − z̃2k+i

∣
∣2
. (37)

The rotated trellis codewords corresponding to X and Z
are denoted by X and Z, respectively. Let X and Z dif-
fer only during the short part with length κ, that is, only
[xs+1 xs+2 · · · xs+κ] differs from [zs+1 zs+2 · · · zs+κ]. In
this case, we may rewrite (37) as

d2(X, Z)

=
∑

k∈η

2∑

μ=1

[∣∣H
μ
f (k)

∣∣
2(
xk,I−zk,I

)2
+
∣∣H

μ
g(k)

∣∣2(
xk,Q−zk,Q

)2]
,

(38)

where η = {s + 1, s + 2, . . . , s + κ}, f (k) = �πI(k)/2�, g(k) =
�πQ(k)/2� and �·� takes the integer part of the operand. The
coordinate interleaver π can be represented by a pair of per-
mutations for real and imaginary parts of the input vector
denoted by πI(k) and πQ(k), respectively, used in the defini-
tion of f (k) and g(k). According to (11),

πI(k) =
⎧
⎨

⎩

2k, k < K ,

2k − 2K + 1, K ≤ k < 2K ,
(39)

πQ(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2k + K + 1, k <
K

2
,

2k − K ,
K

2
≤ k <

3K
2

,

2k − 3K + 1,
3K
2
≤ k < 2K.

(40)

Perfect coordinate interleaving guarantees that f (ξ) /=g(ω)
for every pair ξ,ω ∈ η and f (ξ) /= f (ω), g(ξ) /=g(ω) for every
pair ξ,ω ∈ η when ξ /=ω. Assuming perfect coordinate inter-
leaving, there are no repeated subcarrier fading coefficients
H

μ
k in (38). If the subcarriers are perfectly interleaved and

transmit antennas are well separated, we can assume that the
subcarrier fading coefficients H

μ
k used in (38) are zero mean

i.i.d. complex Gaussian random variables with variance 1/2

per dimension. Taking the expectation of (36) over Rayleigh
distributed r.v. |Hμ

k | using (38), we obtain

P(X, Z)

<
∏

k∈η

2∏

μ=1

[
1+

Es
8N0

(
xk,I−zk,I

)2
]−1[

1+
Es

8N0

(
xk,Q−zk,Q

)2
]−1

.

(41)

In general, θ can be selected such that for xk /=zk, both of real
and imaginary components of xk and zk do not differ. Hence,
we should consider two different sets of k values, ηI and ηQ
for which real and imaginary components of rotated trellis
codeword symbols xk and zk differ, respectively. In this case,
at high signal-to-noise ratios (SNR), (41) can be expressed as

P(X, Z)

<
(

Es
8N0

)−2(|ηI |+|ηQ|)
[
∏

k∈ηI

(
xk,I−zk,I

)∏

k∈ηQ

(
xk,Q−zk,Q

)
]−4

,

(42)

where |ηI | and |ηQ| represent the cardinality of sets ηI and
ηQ, respectively. It is clear from (42) that under the as-
sumption of perfect coordinate and channel interleaving, the
achievable diversity of the system is

Gd = 2×min
X,Z

(∣∣ηI
∣∣ +
∣∣ηQ
∣∣), (43)

and the differential TC-CIOD coding gain is

Gc= 1
2

min
arg min X,Z(|ηI |+|ηQ|)

[
∏

k∈ηI

(
xk,I−zk,I

) ∏

k∈ηQ

(
xk,Q−zk,Q

)
]4/Gd

.

(44)

The codeword error probability can be written in terms
of pairwise error probability as

Pe =
∑

X

P(X)
∑

Z /=X

P(X, Z), (45)

where P(X) is the probability of the codeword X being gen-
erated by the trellis encoder and the PEP P(X, Z) is upper
bounded by (42). The trellis code and θ can be selected to
minimize the codeword error probability upper bound ob-
tained by substituting (42) in (45). The trellis code search
is performed over all possible trellis generator polynomials
based on the representation given in [11]. We selected θ val-
ues ranging from 0.5◦ till 22.5◦ with 2◦ steps and Es/N0 =
17 dB during an exhaustive computer-based 4- 8- 16-, and
32-state 8-PSK R = 2/3 trellis codes search minimizing the
codeword error probability upper bound calculated over all
possible trellis codeword pair X and Z with length κ = 3
starting and ending at the common trellis states. Figure 2
shows the codeword error probability (Pe) upper bound of
best trellis codes found for different values of θ for consid-
ered 4-, 8-, 16-, and 32-state trellises. It is clear from Figure 2
that the codeword error probability upper bounds for the
best trellis code decrease with θ and achieve their minimum
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Table 1: 8-PSK rate 2/3 trellis codes optimized for TC-CIOD.

States h0 h1 h3 Gd Gc

4 7 2 6 6 0.53

8 13 6 4 8 0.50

16 23 6 10 10 0.45

32 65 4 12 12 0.33

2 4 6 8 10 12 14 16 18 20 22 24
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Figure 2: Codeword error probability upper bound of best trellis
codes found for different values of θ (R = 2/3, 8-PSK, Es/N0 =
17 dB, κ = 3).

value for θ= 22.5◦. Note that using rotation angles greater
than 22.5◦ gives the same Pe upper bound values due to the
considered 8-PSK constellation. The generator polynomials
in octal form for the trellis codes optimizing (45) obtained by
exhaustive computer based code search are given in Table 1,
where the optimum θ= 22.5◦ is used. Table 1 also shows the
achievable diversity gain Gd and the coding gain Gc values
obtained from (43) and (44), respectively, for θ= 22.5◦. The
4-state trellis code in Table 1 is found by minimizing the
codeword error probability upper bound for Es/N0 = 21 dB
and κ = 4. Similarly, the 8- 16-, and 32-state trellis codes are
found for Es/N0 = 17 dB and κ = 6. The κ value used during
the search is selected larger for trellises with larger number
of states to cover the critical codeword pairs with consider-
able effect on the system CER performance. The Es/N0 values
used during the search were selected to find the optimum
trellis codes for CER of 10−2 which usually is an operation
region for the system.

5. NUMERICAL RESULTS

In this section, we give the simulation results for the pro-
posed system and evaluate the effect of interleaver selec-
tion on the performance of the concatenated schemes. We
use two-symbol [3], symbol, and coordinate interleavers and
consider the performance of both differential and nondif-

ferential TC-STBCs. Figure 3 shows the codeword error rate
(CER) of the systems with efficiency of 2 bps/Hz, when trel-
lis code termination and OFDM cyclic prefix are excluded.
The channel model used during the simulations is given in
(18), where H

μ
k ’s are independent and identically distributed

Gaussian random variables with variance 1/2 per dimension,
and in order to obtain the mean CER performances of the
differential systems, the H

μ
k values are randomly assigned

multiple times during the simulation after each 10 code-
word transmissions followed by a dummy frame transmis-
sion to initiate the differential decoder to the random chan-
nel change. Hence, this model corresponds to a very slow
varying fading channel. The perfectly interleaved multipath
channel, that is, independent H

μ
k ’s, 48 OFDM subcarriers,

and the perfect knowledge of the scaling coefficients Stk, were
assumed during the simulations. The proposed scheme out-
performs the differential two-symbol interleaved TC-STBC
proposed by Tarasak and Bhargava [3] by 8.5 dB in SNR
at a CER of 10−3. Note that the symbol interleaver dou-
bles the multipath diversity achieved by TC-STBC compared
to two-symbol interleaver considered in [2, 3], and outper-
forms the two-symbol interleaved case by 6.5 dB in SNR at
the CER of 10−3. During the simulations, we employed a
2 × 48 block interleaver between TC and STBC as symbol
interleaver. When a symbol interleaver is used, the set size
ω, defined in [2], becomes equal to effective length (time di-
versity) of the trellis code. Hence, the maximum achievable
diversity of TC-STBC doubles. All of the codes employ a rate
2/3 8-PSK 4-state trellis used in [2], except the one denoted
by T2, which uses the optimized 4-state trellis code given in
Table 1. For TC-CIOD, the rotation angle θ is taken equal
to 22.5◦, which is found to be optimum for R = 2/3 8-PSK
trellis codes with 4-, 8-, 16-, and 32-states. The T2 trellis op-
timized for TC-CIOD improves the performance of differ-
ential TC-CIOD by 0.4 dB. For the sake of comparison, the
CER performances of the nondifferential TC-STBC and TC-
CIOD systems are also shown in Figure 3. As expected, the
CER performances of nondifferential schemes have approx-
imately 3 dB coding gain advantage compared to their dif-
ferential counterparts. In Figure 4, the CER performances of
the optimum differential TC-CIOD with trellis codes given
in Table 1 are compared with those of 8-, 16-, and 32-state
differential TC-STBC with optimum trellis codes proposed
in [3, Table I]. The perfectly interleaved multipath channel,
256 OFDM subcarriers, and perfect knowledge of the scal-
ing coefficients Stk, were assumed during the simulations. As
seen from Figure 4, the proposed scheme considerably out-
performs the differential two-symbol interleaved TC-STBC
given in [3]. Using TC-CIOD instead of TC-STBC with fore-
mentioned 8-, 16-, and 32-state trellis codes provides ap-
proximately 9.5 dB, 4 dB, and 3.5 dB SNR gain at the CER
of 10−3.

Figure 5 shows the simulation results of the proposed
differential TC-CIOD and reference two-symbol interleaved
differential TC-STBC [3] with the same bandwidth efficiency
over the COST 207 12-ray typical urban (TU) channel model
[12]. The TC-CIOD and TC-STBC employ 4-state 8-PSK
R = 2/3 trellis codes from Table 1 and [3], respectively.
K = 256 OFDM subcarriers and OFDM symbol duration



K. Aksoy and Ü. Aygölü 7
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Figure 3: CER performances of TC-STBC and TC-CIOD OFDM
schemes in a very slow varying fading channel (K = 48, nT = 2,
nR = 1).
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Figure 4: CER performances of differential TC-STBC and TC-
CIOD OFDM schemes with 8-, 16-, and 32-state trellises in a very
slow varying fading channel (K = 256, nT = 2, nR = 1).

Ts = 128 μs were selected during simulations. The CER per-
formances with perfect knowledge (PK) of the scaling coef-
ficients Stk were simulated for normalized Doppler frequen-
cies fD,n = 0.001 and fD,n = 0.01, that for OFDM symbol
period Ts = 128 μs and carrier frequency fc = 900 MHz
correspond to mobile terminal speeds v = 9.37 km/h and
v = 93.69 km/h, respectively. Figure 5 shows that the high
mobile terminal speeds cause an error floor due to the rapid

6 8 10 12 14 16 18 20 22 24 26 28 30 32
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C
E
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TC-STBC [3] fD,n = 0.01
TC-CIOD fD,n = 0.01, M = 4
TC-STBC [3] fD,n = 0.001
TC-CIOD fD,n = 0.01, PK
TC-CIOD fD,n = 0.001, M = 10
TC-CIOD fD,n = 0.001, PK

Figure 5: CER performances of differential TC-STBC and TC-
CIOD OFDM schemes with 4-state 8-PSK R = 2/3 trellis codes in
COST 207 12-ray TU channel model (K = 256, Ts = 128 μs, nT = 2,
nR = 1, 2 bps/Hz).

change of channel weights. The simulations performed by
estimating the scaling coefficients Stk at the receiver by us-
ing (26) and (27) are indicated by the subchannel power es-
timation length M in Figure 5. M = 10 and M = 4 were
found to be optimum by exhaustive computer simulations
for fD,n = 0.001 and fD,n = 0.01, respectively, under the con-
sidered channel conditions. When perfect channel interleav-
ing is not considered, the selection of the channel interleaver
α considerably affects the CER performances of TC-CIOD
and TC-STBC systems. We performed the simulations for all
possible block-type channel interleavers α and found that the
performance of both systems improves when 2 × 128 block
type channel interleaver is employed. Hence, all of the results
given in Figure 5 are for 2 × 128 block channel interleaver.
Figure 5 shows that the perfect knowledge (PK) of the scal-
ing coefficients Stk provides approximately 2 dB and 4 dB SNR
gain at the CER of 10−2 when fD,n = 0.001 (M = 10) and
fD,n = 0.01 (M = 4), respectively. Note that we also simu-
lated the TC-CIOD performance when scaling coefficients Stk
are estimated by using the previous decoder output in (13)
to find (|at2k|2 + |at2k+1|2) and used in (24). However, this
method does not provide useful results due to error prop-
agation. Figure 5 also shows that the proposed TC-CIOD
scheme outperforms the reference TC-STBC [3] scheme by
4 dB at the CER of 10−2 and by 6 dB at the CER of 10−3 when
fD,n = 0.001. Additionally, the proposed scheme has a much
lower error floor when channel weights are rapidly changing
( fD,n = 0.01).

Figure 6 shows the CER performances of the proposed
differential TC-CIOD and the reference two-symbol inter-
leaved differential TC-STBC [3] with 8-state 8-PSK R = 2/3
trellis codes from Table 1 and [3], respectively. The 2 × 128
block-type channel interleaver α is employed in all systems.
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Figure 6: CER performances of differential TC-STBC and TC-
CIOD OFDM schemes with 8-state 8-PSK R = 2/3 trellis codes
in COST 207 12-ray TU channel model (K = 256, Ts = 128 μs,
nT = 2, nR = 1, 2 bps/Hz).

Figure 6 shows that PK of the scaling coefficients Stk provides
approximately 2 dB and 3 dB SNR gain at the CER of 10−2

when fD,n = 0.001 and fD,n = 0.01, respectively. Figure 6 also
shows that the proposed 8-state TC-CIOD outperforms the
reference 8-state TC-STBC [3] by 4 dB at the CER of 10−2 and
by 6 dB at the CER of 10−3 when fD,n = 0.001. Additionally,
the proposed scheme has a 10 times lower error floor when
the channel weights are rapidly changing ( fD,n = 0.01).

6. CONCLUSIONS

A robust differential TC-CIOD OFDM system, which pro-
vides a high diversity gain, and achieves a considerable CER
performance improvement compared to existing schemes,
has been proposed. The new space-time coding scheme
employs coordinate interleaver and trellis code to boost
the MIMO-OFDM performance, and has the advantage of
avoiding pilot symbol transmission for CSI recovery. We have
derived the Viterbi branch metrics for differential decoding,
and investigated the design criteria for trellis codes. The opti-
mized 4-, 8-, 16-, and 32-state R = 2/3 8-PSK trellis codes for
TC-CIOD have been found by exhaustive computer-based
search. The computer simulation results have shown that the
new differential scheme considerably outperforms the exist-
ing scheme.
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