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This paper introduces a novel joint channel and queuing-aware OFDMA scheduler for delay-sensitive traffic based on a hopfield
neural network (HNN) scheme. It allows providing an optimum OFDMA performance by solving a complex combinational prob-
lem. The algorithm is based on distributing the available subcarriers among the users depending, on the one hand, on the time
left for the transmission of the different packets in due time, so that packet droppings are avoided. On the other hand, it also
accounts for the available channel capacity in each subcarrier depending on the channel status reported by the different users.
The different requirements are captured in the form of an energy function that is minimized by the algorithm. In that respect, the
paper illustrates two different algorithms coming from two settings of this energy function. The algorithms have been evaluated for
delay-sensitive traffic and they have been compared against other state-of-the-art algorithms existing in the literature, exhibiting a
better behavior in terms of packet-dropping probability.
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1. INTRODUCTION

Orthogonal frequency division multiple access (OFDMA)
has emerged as one of the most promising schemes for
broadband wireless networks. By using multiple parallel low-
rate subcarriers, OFDMA can offer satisfactory high-speed
data rate, robust wireless transmission, and flexible radio re-
source management, among other remarkable features, as it
is widely documented in the open literature. In fact, current
standards like DVB-T, wireless LAN IEEE.802.11a, and fixed-
mobile broadband access system IEEE 802.16 have adopted
OFDMA scheme. In addition to that, OFDMA has also been
selected as access technology for the future 3G long-term
evolution (LTE) in the evolved universal telecommunication
radio access (EUTRA) [1], and most of the 4G initiatives also
consider OFDMA as a prime access strategy. As a result of this
current trend and from the radio resource allocation point of
view, there has recently been a lot of attention to manage dy-
namically the inherent flexibility offered by OFDMA in an

optimal and still practical· way, either in isolated [2] or in
multicell OFDMA systems [3].

Concerning packet data transmission, most of the sub-
carrier allocation strategies proposed in OFDMA-based
wireless multimedia networks intent somehow to maximize
the system throughput or minimize the overall transmitted
power while achieving the terminal bit rate requirements
[4]. A recent good survey on these topics can be found in
[5]. Unfortunately, the traffic-related queuing impact when
considering dynamic resource allocation (DRA) scheduling
schemes is not covered at the same extent. That is particu-
larly relevant for interactive services and in general terms for
delay-bounded services, in which packets should be delivered
within specified deadlines. In that respect, there has been
little work on these relevant performance measures such as
the delay bound and the delay violation probability, which
are indicative of the worst-case delay behavior. To the best
of our knowledge, [6, 7] are among the first papers to face
the constrained delay issue in managing the OFDMA system
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resources using for this purpose a heuristic approach based
on utility and priority functions when assigning resources to
users.

OFDMA scheduling should actually include both joint
subcarrier and power allocations. This is a rather complex
problem, and usually it is simplified by separating these two
allocations. Subcarrier allocation provides more gain than
power allocation in [8], and in fact it is shown in [9, 10] that
waterfilling allocation only brings marginal performance im-
provement over fixed power allocation with adaptive code
and modulation (ACM). Then, in this paper, we focus on
a subcarrier allocation strategy that is aware of the queuing
state per each user and that retains a fixed power allocation as
well as adaptive quadrature amplitude modulation (QAM).

Subcarrier allocation in OFDMA can be seen as a com-
binational problem where there are plenty of possible com-
binations associated to a given user. A user can be granted
with many subcarriers at a given point of the time. In turn,
each subcarrier provides a given channel capacity depend-
ing on the current fading and interference, so that multiuser
diversity can be exploited. Also, a given subcarrier can only
be assigned to one user. This is a natural choice, based on
[9], that proves that the optimum OFDMA performance is
reached by assigning each subcarrier to one user only in a
cell among the many users trying to get access. In queuing-
aware OFDMA systems like the one considered here, the in-
formation about queuing and channel status is exploited to
efficiently allocate resources through proper cross-layer de-
signs of the data scheduler. As a matter of fact, like in gen-
eral OFDMA, DRA proposals, heuristic algorithms are usu-
ally selected to circumvent the fact that NP-hard algorithms
would be necessary to obtain the optimum solutions. This
is the case of [11], where a heuristic two-step algorithm is
proposed to first allocate a number of subcarriers to each
user and then to assign the specific subcarrier to each ter-
minal. Similarly, in [12], an alternative approximate asymp-
totic mechanism is exploited. It relies on the fact that in a
heavy traffic scenario minimizing delay violation is approx-
imately equivalent to minimizing mean waiting time. Simi-
larly, in [13], an allocation strategy depending on the queue
size of each terminal relative to the overall data queued at
the access point is presented for video streams. It is shown
that this allocation achieves significant improvements with
respect to static allocation methods, in spite of not including
in the allocation neither channel gain information nor any
stream specific knowledge. In [14], a cross-layer DRA strat-
egy is presented that combines the channel status informa-
tion together with the queue status and quality requirements
in order to maximize power efficiency and ensure user fair-
ness using a virtual clock scheduling algorithm, an adaptive
subcarrier, and power allocation.

In this paper, due to the fact that the typical DRA in
OFDMA turns out to be actually a combinational problem
among all subcarriers involved, we have devised the collective
computation property featured by the hopfield neural net-
works (HNN) which provide an optimal solution for many
combinational problems [15, 16], as a very suitable approach
for the problem addressed here. In fact, the HNN approach
provides feasible solutions to complex optimization prob-

lems, like the NP-hard algorithms mentioned above. Un-
der the proper conditions we can take advantage of the fact
that the so-called HNN energy evolves toward a minimum
value [17] providing a final neuron state that includes, in a
natural way, the optimal subcarrier combination to be allo-
cated. Consequently, this optimal allocation can be obtained
by properly including different constraints (i.e., channel and
queue status for the different users) in the definition of the
HNN energy. From an implementation point of view, HNN
methodology can be carried out either by solving iteratively a
numerical differential equation based on the Euler technique
or by means of hardware implementations (HNN is derived
with an initial hardware implementation in mind) such as
the field-programmable gate array (FPGA) chip [18] that has
been proved practically for implementation purposes.

Under this framework, this paper proposes a novel HNN-
based joint channel and queue-aware scheduling strategy
for downlink OFDMA systems suitable for delay-bounded
services. A multiuser scenario with statistically independent
fading channels and an isolated cell is considered. Then, the
subcarrier allocation is directly related to the remaining time
before the agreed bounded delay service per user is violated
for each packet as well as to the channel state. The proposed
algorithm is compared against other approaches existing in
the literature [11] and against a heuristic algorithm, also pro-
posed in this paper as a first simple step in the provision of a
joint channel and queue-aware strategy, which simply prior-
itizes the users according to their remaining packet lifetime
and assigns subcarriers until they are exhausted.

The rest of the paper is organized as follows. Section 2
describes the considered system model, including the queue-
ing behavior and the OFDMA considerations. Section 3 de-
scribes the proposed HNN-based algorithm with two dif-
ferent possibilities depending on the definition of the en-
ergy function. The proposed algorithm will be compared
against the reference schemes presented in Section 4. Results
are given in Section 5 and finally, conclusions are summa-
rized in Section 6.

2. SYSTEMMODEL

The considered DRA problem assumes a set of N users,
i = 1, . . . ,N , with their corresponding queues located at the
base station of the access network which contains the pack-
ets pending to be transmitted in the downlink direction of
an OFDMA system, as illustrated in Figure 1. It is considered
that nonshaped traffic is arriving to the queues, so that all the
incurred packet delay is introduced at the network level. Also
the model allows for differentiating among different classes
of traffic (services classes) as will be discussed later. When
a packet cannot be delivered within this bounded delay it is
dropped and therefore, a dropping probability appears as a
key performance indicator of the scheduling behavior.

The envisaged HNN-based scheduling algorithm oper-
ates in frames of duration T and allocates a certain bit rate
to each user by assigning to him a set of subcarriers. Multi-
ple transmissions of different users in parallel are allowed by
making use of different subcarrier combinations. A granular-
ity of one subcarrier is considered in the assignment process.
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Figure 1: System model.
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Figure 2: Queue of the ith user (for simplicity, the dependency with
the number of frame k has been omitted).

The bit rate allocation will be executed by means of an op-
timal mechanism based on HNN, through the minimization
of a properly defined energy function which includes a main
function associated to the eligible bit rate per user according
to the queue status and service-class requirements, as well
as other terms to include the OFDMA downlink network
restrictions. These considerations related with queue status
and OFDMA model are explained in the following.

2.1. Queuingmodel

With respect to the queue model, let us assume that at the
beginning of the kth frame, the ith user has Li packets in the
queue as depicted in Figure 2. li,m(k) denotes the number of
bits of the mth packet of the ith user in the kth frame.

Assuming a first input first output (FIFO) policy for the
queue of each user, the amount of bits that should be trans-
mitted until the transmission of the mth packet of the com-
plete ith user is given by

Bi,m(k) =
m∑

n=1

li,n(k). (1)

On the other hand, the delay constraint is given by Dmax,i,
measured as the maximum packet delay measured in frames
specified in the contract of each user. Let fi,m(k) be the
elapsed time at the beginning of the kth frame since the ar-
rival of the mth packet in the queue of the ith user. Then, the
maximum timeout left for transmission of this packet is

TOi,m(k) = Dmax,i − fi,m(k). (2)

Consequently, the minimum bit rate required to guarantee
the transmission in due time of this packet is given by

vi,m(k) = Bi,m(k)
TOi,m(k)

. (3)

We define the optimum bit rate (OBR) for the ith user in the
kth frame as the one that allows transmitting all the packets
in due time, given by

Rb,i,opt(k) = max
m=1,...,Li

{
vi,m(k)

}·(1 + θ), (4)

where θ (≥0) is a safety empirical factor introduced to face
fluctuations in the packet generation of the successive frames.
This OBR should be provided to each user by the OFDMA
scheduler. To this end, it will perform the most suitable ag-
gregation of a given number of subcarriers. Notice that a con-
tinuous transmission at the OBR would avoid packet losses
for this user. However, it cannot always be guaranteed for all
the users because of the total bandwidth restrictions.

2.2. OFDMA systemmodel

The system model assumes a total of S subcarriers with sep-
aration Δ f (Hz) to be allocated to the N users. It is assumed
that the transmitter knows the channel state at the terminal
side, and in particular, the receiver signal-to-noise ratio of
the ith user in the jth subcarrier ρi j(k) in the kth frame. This
value should be transmitted regularly by the mobile to the
base station via a feedback channel, as illustrated in Figure 1,
being the elapsed time lower than the channel coherence
time. Then the actual capacity ci j(k) of the jth QAM mod-
ulated subcarrier with Gray bit mapping in the kth frame for
the ith user can be approximated by [18]

ci j(k) = log2

(
1 + βρi j(k)

)
bits/s/Hz

β = −1, 6/ ln(5 BER),
(5)

where BER is the target bit-error rate. Then, the throughput
of the OFDMA system in the kth frame is given by

R(k) =
N∑

i=1

S∑

j=1

χi j(k)ci j(k)Δ f , (6)

where χi j(k) is set to 1 when the jth subcarrier is assigned
to the ith user and is set to 0, otherwise. Finally, as not all
the ci j(k) values are allowed in a QAM modulation, the value
obtained in (5) will be rounded to the highest integer lower
than or equal to ci j(k) from the set {0, 1, 2, 4, 6} bits/s/Hz.

3. HNN-BASED SCHEDULINGMODEL

This section presents the proposed HNN-based scheduling
algorithm to be executed in each frame k in order to deter-
mine the subcarrier allocation in accordance with the chan-
nel status for each user captured in the capacity ci j(k) seen
by the ith user in the jth subcarrier in the kth frame, and
the buffer status captured in the value of the OBR for the ith
user in the kth frame, Rb,i,opt(k). For simplicity in the nota-
tion, the explicit dependency with the number of frame k will
be omitted in the following.

The above DRA problem subject to the mentioned re-
strictions can be formulated in terms of a two-dimensional
neural network with L = N × S neurons [15]. The output
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values of the neurons, denoted by Vi j , will be equal to 1, if
the jth subcarrier is assigned to the ith user and 0, otherwise.

In a 2D HNN, each neuron is modeled as a nonlinear
device with a sigmoid monotonically increasing function de-
fined by the logistic function

Vij = f
(
Uij
) = 1

1 + e−αUij
, (7)

where Ui j and Vi j are the input and output, respectively, of
the (i, j) neuron, and α is the corresponding gain of the am-
plifier of the neuron.

Each neuron receives resistive connections from other
neurons and these connections are fully described by the in-
terconnection matrix T = [Tij,pq], where Tij,pq is the inter-
connection weight from the (i, j) neuron to the (p, q) neu-
ron. Each neuron also receives an input bias current Ii j that
is an adjustable parameter. The dynamics of the HNN are
represented by [15]

dUij

dt
= −Uij

τ
+

N∑

p=1

S∑

q=1

Tij,pqVpq + Ii j , (8)

where τ is a time constant. Furthermore, the quadratic en-
ergy function is defined as

E = −1
2

N∑

i=1

S∑

j=1

N∑

p=1

S∑

q=1

Tij,pqVi jVpq −
N∑

i=1

S∑

j=1

Ii jVi j . (9)

Then, taking into account the derivative of the energy func-
tion E in (9), the HNN dynamics represented by (8) can be
formulated in a more compact way by the following differen-
tial equation:

dUij

dt
= −Uij

τ
− ∂E

∂Vij
. (10)

It is shown in [20] that, for a symmetric matrix T and suf-
ficiently high gain α, neurons in HNN evolve along a trajec-
tory over which the energy function decreases monotonically
to a minimum occurring at the 2N×S corners inside the N ×
S-dimensional hypercube defined on Vij ∈ {0, 1}, thus pro-
viding the allocation of subcarriers to users.

It is worth noticing that by selecting a suitable expression
for the energy function E, a queuing-aware OFDMA embed-
ded optimization can be achieved. The optimization process
of the HNN is carried out on a frame-by-frame basis and
relies on minimizing the energy function through the con-
vergence of the above differential equation. In the following,
two suitable expressions for the energy function compliant
with the definition in (9) are introduced, which will give rise
to two different scheduling HNN-based algorithms.

3.1. HNN1 algorithm

A first expression proposed for the energy E follows as

E = μ1

2

N∑

i=1

(
1−

∑S
j=1ci j Vi jΔ f

mi

)2

+
μ2

2

N∑

i=1

S∑

j=1

ψijVi j

+
μ3

2

N∑

i=1

S∑

j=1

Vij
(
1−Vij

)
+
μ4

2

S∑

j=1

(
1−

N∑

i=1

Vij

)2

.

(11)

The first term is a cost function intended to be minimized by
a proper setting of Vi j . It includes the expression

mi =
([

Rb,i,opt

Δ f

]
+ 1
)
·Δ f , (12)

where [·] denotes the integer part, so that (12) is actually a
quantification of the OBR valueRb,i,opt in multiples ofΔf. The
minimum value of the energy E would be achieved for spe-
cific combinations of Vi j that minimize each summand, so
that each user tends to be allocated with its OBR. Notice that
OBR can be changed at each frame depending on the traffic
dynamics and the packets evolution in the queues. Similarly,
the channel fading also impacts OBR dynamics as the capac-
ity of the different subcarriers can be changed on a frame
basis.

The second summand in (11) simply penalizes the allo-
cated subcarriers with bit rates equal to zero. That is, when
the ith user is considered with a subcarrier jth in which
ci j = 0, ψij = 1, thus increasing their contribution to the
energy function. In this way, the corresponding subcarriers
are brought out of the energy minima and become available
for other users. Otherwise, it is set to ψij = 0.

The third summand of (11) was introduced in [21] in or-
der to force convergence toward Vij ∈ {0, 1} and the fourth
term is introduced to reflect the physical OFDMA constraint
that a given subcarrier can only be allocated to one user. The
relationship between the energy function (11), the HNN in-
terconnection matrix T = [Tij,pq], and the input bias current
Ii jvalues in the general expression of the energy function in
(9) can be obtained according to the details shown in the ap-
pendix.

The terms μ1, μ2, μ3,and μ4 are constants to be set.
The numerical iterative solution of (10) is obtained fol-

lowing the Euler technique as

Uij(n + 1) = Uij(n) + Δ
[
− Uij(n)

τ
− ∂E

∂Vij

]
, (13)

where Δ denotes the discrete step and neuron’s voltage is
updated at each nth iteration using (7). After reaching a fi-
nal state, each neuron is either ON (i.e., Vi j is set to 1 if
Vij ≥ 0, 5) or OFF (i.e., Vi j is set to 0 if Vij < 0, 5).

Then, once the final Vi j values are achieved as solution of
(7) and (10), the final bit rate assigned to the ith user after
the execution of the algorithm in one frame follows:

Rb,i =
S∑

j=1

Vij ci j Δ f . (14)

3.2. HNN2 algorithm

A second expression for the energy function that captures ad-
ditional features concerning both users and channel subcar-
rier status not considered in algorithm HNN1 is

E = μ1

2

N∑

i=1

ωi

(
1−

∑S
j=1 ci j Vi jΔ f

mi

)2

+
μ3

2

N∑

i=1

S∑

j=1

Vij
(
1−Vij

)
+
μ4

2

S∑

j=1

(
1−

N∑

i=1

Vij

)2

.

(15)



Nuria Garcı́a et al. 5

In this case, the first term has been modified with respect to
the HNN1 algorithm with the inclusion of a new coefficient
ωi introduced with a two-fold objective. First, it should favor
the users with high OBR that the former formulation of the
term could not capture. Second, it should favor the allocation
of subcarriers to the users with the best channel capacity thus
making a better exploitation of the multiuser diversity. For
that purpose, the users are first ordered in decreasing value
of their OBR Rb,i,opt, and orderi is defined as the position of
the ith user in this ordered list. Then, the coefficient ωi is
empirically defined as

ωi =
(

2− 1
orderi

)
·
(

1−
∑S

j=1ci j
∑N

i′=1

∑S
j=1ci′ j

)
. (16)

Notice that, with this definition, users with either a high OBR
(i.e., a low value of orderi) or a good channel status in the
different subcarriers will tend to have smaller values of ωi and
consequently, the minima of the energy function will tend to
occur in Vi j values, so that a certain number of subcarriers is
allocated to these users.

On the other hand, notice also that the effect of coeffi-
cient ωi already captures to some extent the avoidance to al-
locate the subcarriers to the users with a bad channel status,
which was intended by the second summand in the energy
function of the HNN1 algorithm in (11), and consequently,
this summand is not included in the definition of the en-
ergy function for the HNN2 algorithm in (15). The Appendix
shows the relationship between the energy function in (15)
and the interconnection matrix and input bias currents.

4. REFREENCE SCHEDULING SCHEMES

The proposed HNN-based algorithms described in the pre-
vious section have been compared against other approaches.
First, a simple heuristic reference scheduling algorithm has
been considered which exploits the OBR concept, but does
not take into consideration the optimization in accordance
with the HNN procedure. This algorithm, denoted in the fol-
lowing as reference scheduling scheme 1(RSS1), simply tries
to allocate to each user its optimum bit rate OBR as defined
in (4). The algorithm operates then in the following steps in
each frame.

Step 1. Order the users in the increasing value of Rb,i,opt.

Step 2. Allocate sequentially to each user ith the necessary
number of subcarriers, so that its final scheduled bit rate
is higher than or equal to mi from (12). This allocation is
carried out by ordering first all the available subcarriers still
pending to be allocated in the increasing value of ci j .

Step 3. Once all the S available subcarriers have been allo-
cated, assign a bit rate equal to 0 kb/s (i.e., no transmission)
to the remaining users.

Notice that, as far as the OFDMA capacity can satisfy
the required OBR per user and frame, the reference system
would lead to a quite satisfactory scheduling approach from
a delay point of view.

Furthermore, focusing on the existing approaches in the
literature, the proposed algorithm has also been compared
against the recent proposal introduced in [11], which will be
denoted in the following as reference scheduling scheme 2
(RSS2). This algorithm also focuses on delay-sensitive traffic
and operates on two different steps.

The first step is the subcarrier allocation algorithm which
determines the number of subcarriers to be allocated to each
user. For that purpose, it accounts for different average chan-
nel conditions in all subcarriers as well as for the delay re-
quirements of the different packets in the queue. After an ini-
tial computation, the algorithm executes several iterations in
order to ensure that the total number of allocated subcarriers
equals the number of available subcarriers S.

In the second step, the subcarrier assignment algorithm
is executed which decides the specific subcarriers allocated to
each user. This is done by creating a priority list ordering the
different users in accordance with the history of packet drop-
pings experienced by each one, so that users with a higher
number of droppings have a higher priority. In turn, for users
with equal number of droppings, the priority is computed in
accordance with the channel quality (i.e., users with better
quality have a higher priority). Then, according to the prior-
ity list, each user selects the best available subcarriers up to
the number of subcarriers computed in the first step.

For details of the algorithm, the reader is referred to [11].
It is worth mentioning that this algorithm was in turn com-
pared in [11] against other previous references, such as [13],
exhibiting better performance. Consequently, this algorithm
has been retained here for comparison purposes as an ap-
propriate reference representative of the state-of-the art in
OFDMA dynamic resource allocation algorithms for delay-
sensitive traffic.

5. RESULTS ANDDISCUSSION

A single cell scenario has been considered to assess the pro-
posed HNN-based DRA strategy for a downlink OFDMA
wireless access. We consider S = 128 subcarriers and Δf =
15 kHz. In the simulation, the scheduling algorithm operates
in frames of T = 10 milliseconds. We will also assume that
the coherence time is larger than the frame time, so within a
frame it is assumed that the channel impulse response does
not vary. In our simulation, each user channel suffers from
multipath Rayleigh fading with a delay profile characterized
by a time variant impulse response following the pedestrian
model of [22] with a mobile speed of 5 km/h and an aver-
age signal-to-noise ratio equal to 17 dB. We let a target BER
= 10−4 and assume a set of possible transmission bit rates:
15m kb/s per subcarrier (m = 0,1,2,4,6) by properly adjust-
ing the modulation levels of a 2m QAM-adopted signalling
format.

The selected parameters appearing in the formulation of
the HNN are μ1 = 4000, μ2 = 30000, μ3 = 800, μ4 = 18000,
τ = 1, and α = 1.0. Simulations not shown here for the sake
of brevity concerning the variation of these parameters have
revealed that they are actually robust values, so that changing
them to a certain extent (i.e., variations as large as 50% have
been tested) does not impact significantly the final results.
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The only conditions are that these parameters should be pos-
itive and satisfy μ3 < μ4, as it is shown in the appendix.

On the other hand, the iterative numerical solution
in (13) is finalized when iterations n and n − 1 satisfy
‖Vn −Vn−1‖2 < ε, where ‖‖2 is the Euclidean norm and V
is a matrix which includes all the elements Vi j . We have set
Δ = 10−4 in (13) and ε = 10−5. The convergence to a stable
value is attained in practice in most of the situations between
1000 and 1500 iterations. As a result of that, a maximum of
2000 iterations has been used to stop the iterative process. If
all these conditions are fulfilled, we decide that the process
converges and the values Vij provide us the inputs to calcu-
late the total bit rate allocated to each user in each frame Rb,i

according to (14).
An interactive service following the WWW traffic model

from [22] has been considered as a representative of a delay-
sensitive service. Specifically, WWW sessions are composed
of an average of 5 pages with an average time between pages
of 30 seconds. In each page, the average number of packets
is 25 with an average time between packets of 0.0277 second.
The packet length follows a Pareto with cutoff distribution
with parameters alpha = 1.1, minimum packet size 81.5 bytes
and maximum packet size 6000 bytes. The average time be-
tween WWW sessions is 0.1 second (i.e., it is assumed that
a user is continuously generating sessions). Two interactive
user classes, namely, Class 1 and Class 2, have been included,
as representatives of two different user profiles, with maxi-
mum allowed delays of 120 milliseconds and 60 milliseconds,
respectively; 60% of the users belong to class 1 and 40% to
class 2.

By setting the parameter θ > 0 for the OBR in (4), queues
are forced to be emptied faster than for θ = 0, which is par-
ticularly true for low-loaded systems. However, there is not
an optimum θ setting unique for all the loads. Then, from
the obtained results, θ = 0.6 has been retained as a satis-
factory value in all the studied cases. Let us notice that, in
general, high values of θ could end up at assigning band-
width in excess to some users in detriment of others. This
is clearly pointed out in the RSS1 scheme, where the first-
ordered users could be provided with an excessive bandwidth
(and actually not required), which would prevent the alloca-
tion to other users in the ordered list.

Figure 3 plots the comparison between the considered
strategies in terms of packet dropping probability for class-1
users as a function of the total number of users in the sce-
nario (similar results not shown here for the sake of brevity
would be observed for class-2 users). It can be observed that
the worst performance is obtained with the RSS1 scheme,
and that the two approaches based on HNN are able to out-
perform both RSS1 and RSS2 strategies, thanks to the consid-
eration of both queuing time constraints and channel status
in the optimization carried out by hopfield neural networks.
Notice that, for low dropping probability values, the reduc-
tion achieved by HNN-based strategies is in around one or-
der of magnitude with respect to both RSS1 and RSS2. In that
respect, notice also that the energy function from HNN2 is
able to achieve always a lower dropping probability than the
energy function from HNN1. Equivalently, the performance
in terms of dropping probability can be translated into a cer-
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Figure 3: Packet dropping ratio for class-1 users as a function of the
number of users in the scenario.
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Figure 4: Average packet delay for class-1 users as a function of the
number of users in the scenario.

tain system capacity (i.e., maximum number of users that the
system can handle for a certain maximum dropping proba-
bility of, for example, 1%). Specifically, while RSS2 would
exhibit a capacity of around 1200 users, in the case of HNN2
the capacity is increased up to around 1350 users (i.e., a ca-
pacity gain of 13%).

With respect to the performance on average terms,
Figure 4 compares the average packet delay measured for
class-1 users with different approaches. In this case, the com-
parison reveals that HNN-based approaches achieve an aver-
age delay that lies between the RSS1 and RSS2 schemes. How-
ever, Figure 5 which plots the ratio between standard devia-
tion and average delay for each strategy indicates that RSS2
is actually the strategy with the highest dispersion in terms
of delay, which eventually justifies that, in spite of having
a good performance on average terms, the packet dropping
ratio is higher than with the HNN-based algorithms. Con-
sequently, whenever delay-sensitive traffic is considered, the
performance should not be optimized only on average terms
but also specific conditions in terms of maximum allowed
delays should be considered. Finally, it is worth mentioning
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Figure 5: Ratio between the standard deviation and the average of
the packet delay for class-1 users.

that actually both HNN1 and HNN2 provide just an up-
per bound of the dropping probability due to the above-
mentioned truncation of the iterative Euler technique and
the existence of a minimum in the energy function. So, even
better results could be expected by exploring other numeri-
cal solutions or alternative improved energy function defini-
tions, what is left for future work.

As an illustrative result of how the different algorithms
operate, Figure 6 plots the cumulative distribution function
(CDF) of the bit rate allocated per user with the different ap-
proaches for a situation with 1000 users in the scenario (for
illustrative purposes, only the bit rate of class-1 users is pre-
sented, but the performance for class-2 users would be sim-
ilar). Actually, only the most relevant part of CDF relative
to the highest percentile is stressed in Figure 6 to better dif-
ferentiate the reference and the HNN-based scheduler algo-
rithms operation. It can be observed that both HNN-based
strategies are able to make allocations of higher bit rates,
thanks to the HNN-optimization accounting for the joint
queue and channel status, which ensures that the subcarriers
are allocated to the most suitable users. In that respect, the
main difference between HNN1 and HNN2 would be for the
lowest bit rates (i.e., below 30 kb/s, not shown in the graph,
and where the crossing point between the HNN1 and HNN2
curves occurs), in which HNN1 would exhibit a higher prob-
ability than HNN2 of allocating low bit rates.

Finally, Figure 7 plots the comparison in terms of the
CDF of the total allocated bandwidth obtained with HNN1
with respect to the total requested bandwidth (i.e., the sum
of all the OBRs of the different users) for the cases with
1200 users and 1600 users. It can be observed how the to-
tal requested bandwidth increases with the number of users,
but the total allocated bandwidth remains approximately the
same; meaning that the system has reached its maximum ca-
pacity. However, in spite of the fact that the total requested
bandwidth is higher than the total allocated bandwidth, the
algorithm carries out a smart allocation that keeps the packet
dropping probability at low values, as illustrated in Figure 3.
Similar results are obtained with HNN2.
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Figure 6: CDF of the allocated bit rate for class-1 users for the dif-
ferent strategies with 1000 users in the scenario.
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6. CONCLUSIONS

This paper has presented a novel strategy to carry out the dy-
namic resource allocation of subcarriers to users in OFDMA
systems with delay-sensitive service in which packets should
be transmitted within a specific maximum delay bound. It
is based on hopfield neural network methodology which is
a powerful optimization technique and takes into account
both service-class constraints in terms of maximum allowed
delay as well as channel capacity limitation in each subcar-
rier. Actually, HNN methodology has been carried out by
solving iteratively a numerical differential equation having a
hardware implementation in mind, and the different delay
requirements are captured in the form of an energy function
that is minimized by the algorithm. In that respect, two dif-
ferent energy functions have been analyzed by means of sim-
ulations and compared against two reference schemes reveal-
ing a better behavior in terms of packet-dropping probability,
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which eventually turns into system capacity increase. Specifi-
cally, capacity gains of around 13% for a maximum dropping
probability of 1% have been observed with respect to a repre-
sentative state-of-the-art algorithm existing in the literature.

APPENDIX

INTERCONNECTIONMATRIX AND INPUT BIAS
CURRENT FOR THE PROPOSED HNNMODEL

This appendix presents the relationship between the energy
functions considered in the two HNN-based algorithms and
the general expression of the energy function for an HNN
given in (9), so that both the interconnection matrix Tij =
[Tij,pq]p=1,...,N

q=1,...,S
and the input bias current Ii j can be obtained.

In order to make the derivation valid for both HNN1
and HNN2 algorithms, let us consider the following com-
mon definition of the energy function E:

E = μ1

2

N∑

i=1

ωi

(
1−

∑S
j=1ci j Vi jΔ f

mi

)2

+
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2
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ψijVi j

+
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2

N∑
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S∑
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(
1−Vij

)
+
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2

S∑
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N∑

i=1

Vij

)2

.

(A.1)

Notice that, the energy function of HNN1 in (11) is obtained
by taking ωi = 1 in (A.1), while the energy function of HNN2
in (15) is obtained by taking μ2 = 0 in (A.1).

For the energy function defined as (15) and a given Vi∗ j∗

neuron we obtain
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(A.2)

Furthermore, since ∂Vij /∂Vi∗ j∗ = 1 for i = i∗, j = j∗, and
∂Vij /∂Vi∗ j∗ = 0 for i /= i∗, j /= j∗ (A.2) can be expressed as

∂E

∂Vi∗ j∗
= −μ1

ci∗ j∗Δ f ωi∗
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(A.3)

By substituting (A.3) into (10) it is obtained that

∂E

∂Ui∗, j∗
= −Ui∗ j∗
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(A.4)

By identifying the coefficients in (A.4) with the correspond-
ing coefficients in (8), it is possible to obtain the interconnec-
tion weights and bias currents as

Tij,pq = −μ1
ci jciq

(
Δ f
)2
ωi

(
mi
)2 δip + μ3δipδjq − μ4δjq,

Ii j = μ1
ci jΔ f ωi

mi
− μ2

2
ψij −

μ3

2
+ μ4,

(A.5)

where function δip is 1 if i = p and 0 otherwise.
It is worth mentioning that a solution for the selection of

the optimal bit rate per user can be easily performed simply
by changing the input bias current Ii j and the interconnec-
tions values Tij,pq at a frame basis.

In order to have minimum points with respect to output
voltages Vi j of neurons, it is necessary that the second deriva-
tives be positive, or equivalently

∂2E

∂V 2
i j

> 0 ⇐⇒ μ1
ci jciq

(
Δ f
)2

(
mi
)2 − μ3 + μ4 > 0, (A.6)

Condition (A.6) is satisfied if we ensure always that −μ3 +
μ4 > 0, which yields the following relationship between the
parameters of the energy function

μ3 < μ4. (A.7)
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