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We address the problem of superimposed trainings- (STs-) based linearly time-varying (LTV) channel estimation and symbol
detection for orthogonal frequency-division multiplexing access (OFDMA) systems at the uplink receiver. The LTV channel
coefficients are modeled by truncated discrete Fourier bases (DFBs). By judiciously designing the superimposed pilot symbols,
we estimate the LTV channel transfer functions over the whole frequency band by using a weighted average procedure, thereby
providing validity for adaptive resource allocation. We also present a performance analysis of the channel estimation approach
to derive a closed-form expression for the channel estimation variances. In addition, an iterative symbol detector is presented
to mitigate the superimposed training effects on information sequence recovery. By the iterative mitigation procedure, the
demodulator achieves a considerable gain in signal-interference ratio and exhibits a nearly indistinguishable symbol error rate
(SER) performance from that of frequency-division multiplexed trainings. Compared to existing frequency-division multiplexed
training schemes, the proposed algorithm does not entail any additional bandwidth while with the advantage for system adaptive
resource allocation.
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1. Introduction

Orthogonal Frequency-Division Multiplexing Access
(OFDMA) is a promising technique for future high-speed
broadband wireless communication systems, and it has
recently been proposed or adopted in many industry
standards (e.g., IEEE 802.16e [1], 3 GPP Long Term
Evolution (LTE) [2]). In OFDMA, subcarriers are grouped
into sets, each of which is assigned to a different user.
Interleaved, random, or clustered assignment schemes can
be used for this purpose. Such a system, however, relies on
the knowledge of propagating channel state information
(CSI). Explicitly, in many mobile wireless communication
systems, transmission is impaired by both delay and Doppler
spreads [3–10], resulting in inside- and out-of-band
interferences.

Channel estimation in OFDMA uplinks is challenging,
however, since different channel responses for the individual
user need to be tracked simultaneously at the base station
(BS). OFDMA systems with adaptive resource allocation
are even more critical since the uplink channels have to

be estimated over the whole frequency band. In conven-
tional pilot-aided approaches wherein the pilot symbols
are frequency-division multiplexed (FDM) with the data
symbols [3–8, 10–15]; however, channel estimation can
only be performed within each subband of individual user
separately since each user is only assigned a subset of the
whole frequency band. This may be a great disadvantage
for OFDMA systems with adaptive resource allocation.
In addition, extra bandwidth is required for transmitting
known pilot symbols. In recent years, an alternative and
promising approach, referred to as superimposed training
(ST), has been widely studied in [9, 16–24]. In the idea of
ST, additional periodic training sequences are arithmetically
added to information sequence in time or frequency domain,
and the channel transfer function can thus be estimated by
using the first-order statistics. The advantage of the scheme
is that there is no loss in information rate and thus enables
higher bandwidth efficiency. In this scheme, however, the
information sequences are viewed as interference to channel
estimation since pilot symbols are superimposed at a low
power to the information sequences at the transmitter. To
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Figure 1: System model.

circumvent the problem, it was recommended in [16–22,
24] that a periodic impulse train of the period larger than
the channel order is superimposed in time-domain, and
the channel is thus estimated by averaging the estimations
of multiple training periods to reduce the information
sequence interference. For a multicarrier systems, that is,
SISO/OFDM system, [19] suggested a similar scheme that
superimposes the periodic impulse training sequences on
time-domain modulated signals, while for single-carrier
systems, a novel block transmission method is proposed in
frequency domain in [23], where an information sequence
dependent component is added to the superimposed training
so as to remove the effect of the information sequence on the
channel estimation at receiver. In [24], an iterative approach
is provided where the information sequence is exploited to
enhance the channel estimation performance. These above-
mentioned schemes, however, are restricted to the case that
the channel is linearly time-invariant (LTI), and cannot be
extended to the linearly time-varying (LTV) channel since
the variation of channel coefficients may degrade the simple
average-based solution extensively. A combined approach
is developed in [9, 11] to solve the problem of channel
estimation of LTV channels. However, it is only suitable for
single-carrier transmission. In addition, some useful power
is wasted in ST which could have otherwise been allocated to
the information sequence. This lowers the effective signal-
to-noise ratio (SNR) for information sequence and affects
the symbol error rate (SER) at receiver. This may be a
great disadvantage to wireless communication systems with
a limited transmission power. On the other hand, the
interference to information sequence recovery due to the
embedded training sequences may degrade the SER perfor-
mance severely at receiver. Previous papers merely focus on
the information sequence interference suppression; whereas

few researches are contributed to the superimposed training
effect cancellation for information sequence recovery.

In this paper, we propose a new ST-based channel esti-
mator that can overcome the aforementioned shortcomings
in estimating LTV channel for OFDMA uplink systems. In
contrast to the previous works, the main contributions of
this paper are twofold. First, we extend conventional LTI-
based ST schemes [16–24] to the case where the channel
coefficient is linearly time-varying. By resorting to the
truncated Fourier bases (DFBs) to model the LTV channel,
we adopt a two-step approach to estimate the time-varying
channel coefficients over multiple OFDMA symbols. Unlike
conventional FDM training strategy [12–15] where channel
estimation can only be performed within each subband of
individual user separately, the LTV uplink channel transfer
functions over the whole frequency band can be estimated
directly by using specifically designed superimposed train-
ing. Furthermore, we present a performance analysis of the
channel estimator. We demonstrate by simulation that the
estimation variance, unlike that of conventional ST-based
schemes of LTI channel [16–22, 24], approaches to a fixed
lower bound as the training length increases. Second, an
iterative symbol detection algorithm is adopted to mitigate
the superimposed training effects on information sequences
recovery. In simulations presented in this paper, we compare
the results of our approaches with that of the FDM training
approaches [12–15] as latter serves as a “benchmark” in
related works. It is shown that the proposed algorithm
outperforms FDM trainings, and the demodulator exhibits a
nearly indistinguishable SER performance from that of [14].

The rest of the paper is organized as follows. Section 2
presents the channel and system models. In Section 3, we
estimate the LTV channel coefficients by using the proposed
channel estimator. In Section 4, we present the closed-form
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expression of the channel estimation variances of Section 3.
An iterative symbol detector is provided in Section 5.
Section 6 reports on some simulation experiments carried
out in order to test the validity of theoretic results, and we
conclude the paper with Section 7.

Notation 1. The letter t represents the time-domain variable,
and k is the frequency-domain variable. Bold letters denote
the matrices and column-vectors, and the superscripts [•]T

and [•]H represent the transpose and conjugate transpose
operations, respectively. IK denotes the identity matrix of
size K , and [•]k,t denotes the (k, t) element of the specified
matrix.

2. Channel and SystemModel

Consider an OFDMA uplink system with N active users
sharing a bandwidth of Z as shown in Figure 1. Although
there are many subcarrier assignment protocols, in this
paper, we assume that a consecutive set of subcarriers is
assigned to a user. This assumption is especially feasible
when adaptive modulation and coding (AMC) protocol is
employed rather than partial usage of subchannels (PUSCs)
protocol [12–15]. The ith symbol of nth user is denoted by

Sn(i)

= [0, . . . , sn(i, 0), . . . , sn(i, k), . . . , sn(i,K − 1), 0, . . . , 0]T ,

n = 1, . . . ,N ,
(1)

where sn(i, k), k = 0, . . . ,K − 1 is the transmitted data
symbol, K is the subcarrier number allocated to the nth user,
B = NK is the OFDM symbol-size.

At transmit terminals, an inverse fast Fourier transform
(IFFT) is used as a modulator. The modulated outputs are
given by

Xn(i) = [xn(i, 0), . . . , xn(i, t), . . . , xn(i,B − 1)]T

= F−1Sn(i),
(2)

where F−1 is the IFFT matrix with [F−1]k,t = e j2πkt/B and j2 =
−1 . Then, Xn(i) is concatenated by a cyclic-prefix (CP) of
length L, propagated through respective channel. At receiver,
the received signals, discarding CP, can be written as

y(i, t) =
N∑

n=1

Xn(i)⊗ h(t) + v(t)

=
N∑

n=1

L−1∑

l=0

hl(t)xn(i, t − l) + v(i, t), t = 1, . . . ,B,

(3)

where h(t) = [h0(t), . . . ,hL−1(t), 0, . . . , 0]T is the B × 1
impulse response vector of the propagating channel with the
channel coefficients hl(t), l = 0, . . . ,L−1 being the functions
of time variable t. The notation ⊗ represents the cyclic
convolution, and v(i, t) is the additive noise with variance Ev.

As mentioned in [3], the coefficients of the time- and
frequency-selective channel can be modeled as Fourier basis
expansions. Thereafter, this model was intensively investi-
gated and applied in block transmission, channel estimation,
and equalization (e.g., [4–8]). In this paper, we extend the
block-by-block process [4–8] to the case where multiple
OFDMA symbols are utilized. Consider a time interval or
segment {t : (l − 1)Ω ≤ t ≤ lΩ}, the channel coefficients in
(3) can be approximated by truncated discrete Fourier bases
(DFBs) within the segment as

hl(t) ≈
Q∑

q=0

hl,qe
( j2π(q−Q/2)t/Ω),

(l − 1)Ω ≤ t ≤ lΩ, l = 1, 2, . . . ,

(4)

where hl,q is a constant coefficient, l = 0, . . . ,L − 1 is the
multipath delay, Q represents the basis expansion order that
is generally defined as Q ≥ 2 fdΩ/ fs [3–8], Ω > B is the
segment length, and l is the segment index. Unlike [4–8],
the approximation frame Ω covers multiple OFDM symbols,
denoted by i = 1, . . . , I , where I = Ω/B′ and B′ = B + L .

Stacking the received signals in (3) to form a vector and
then performing FFT operation, we obtain the demodulated
signals as

U(i) = [u(i, 0), . . . ,u(i, k), . . . ,u(i,B − 1)]T

= F
[
y(i, 0), . . . , y(i, t), . . . , y(i,B − 1)

]T
.

(5)

From (3)-(4) and the duality of time and frequency, the FFT
demodulated outputs in (5) can be written as

u(i, k) = FFT

⎧
⎨
⎩

N∑

n=1

L−1∑

l=0

hl(t)xn(i, t − l) + v(i, t)

⎫
⎬
⎭

=
N∑

n=1

L−1∑

l=0

FFT{hl(t)} ⊗ FFT{xn(i, t)} + v(i, k)

=
N∑

n=1

L−1∑

l=0

FFT

⎧
⎨
⎩

Q∑

q=0

hl,qe
j2π(q−Q/2)t/Ω

⎫
⎬
⎭⊗Sn(i)+v(i, k),

(6)

where FFT{·} represents the FFT vector of the specified
function with a length B, and v(i, k) is the frequency-domain
noise. Note that the vectors FFT{hl(t)} in (6) should be
computed corresponding to the variations of the propagating
channel during an OFDM symbol time interval. Specifically,
the variation of LTV channel is associated with the OFDM
symbol-size as well as the Doppler frequency or mobile
velocity.

In this paper, we focus on the slowly time-varying chan-
nel estimation. Following the slowly time-varying assump-
tion where the time-varying channel coefficients can be
approximated as LTI during one OFDM symbol period but
vary significantly across multiple symbols [25]. Accordingly,
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the channel transfer function during an OFDMA symbol can
be approximated as

�l(t) =
Q∑

q=0

hl,qe
j2π(q−Q/2)t/Ω

≈
Q∑

q=0

hl,qe
j2π(q−Q/2)ti/Ω, t = (i− 1)B′, . . . , iB′,

(7)

where ti = (l−1)Ω+(i−1)B′+B/2 is the mid-sample of the
ith OFDMA symbol. In (7), the LTV channel coefficients are
in fact approximated by the mid-values of the LTV channel
model (4) at the ith symbol. Since the proposed channel
estimation will be performed within one single frame Ω , we
omit the frame index l and thus have ti = (i− 1)B′ +B/2 for
simplification.

Accordingly, the vectors FFT{hl(t)} in (6) are thus
computed as δ-sequences, and the FFT demodulated signals
at the subcarrier k of the ith OFDMA symbol can be
rewritten as

u(i, k)

=
N∑

n=1

L−1∑

l=0

⎡
⎣

Q∑

q=0

hl,qe j2π(q−Q/2)ti/Ω

⎤
⎦e− j2πkl/K sn(i, k) + v(i, k)

=
N∑

n=1

L−1∑

l=0

�l(i)e− j2πkl/K sn(i, k) + v(i, k),

(8)

where �l(i) =
∑Q

q=0hl,qe
j2π(q−Q/2)ti/Ω.

In conventional FDM training schemes [12–14] where
each user is only assigned a subset of the whole subcarriers,
the channel estimation, however, cannot be performed over
the whole frequency band. This may be a great disadvantage
for OFDMA systems with adaptive resource allocation.

3. Superimposed Training-Based Solution

In this section, we propose an ST-based two-step approach
to estimate the channel transfer functions over the whole
frequency band and, meanwhile, overcome the above-
mentioned shortcoming of conventional ST-based schemes
in estimating LTV channels.

3.1. Channel Estimation over One OFDMA Symbol. In this
paper, the new ST strategy in estimating LTV channel of
OFDMA uplink system is illustrated in Figure 2. Accordingly,
the transmitted symbol in (2) can be rewritten by

Sn(i) = [
pn(i, 0), . . . , pn(i, (n− 1)K − 1), sn(i, 0)

+ pn(i, (n− 1)K), . . . , sn(i,K − 1)

+pn(i,nK − 1), pn(i,nK), . . . , pn(i,B − 1)
]T

n = 1, . . . ,N ,

(9)

where pn(i, k), k = 0, . . . ,B − 1 is the superimposed pilots
of nth user. By (8), we notice that the signal at receiver
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Figure 2: Superimposed training sequences of different users are
distributed over the whole frequency band of OFDMA uplink
system.

end is overlapped across different users. To circumvent this
problem, we adopt the training scheme as

pn(i, k) =
√

Epe(− j2πk(n−1)L/B), k = 0, . . . ,B − 1, (10)

where Ep is the fixed power of the pilot symbols.
Note that the pilot symbols in (10) are complex exponen-

tial functions superimposed over the whole subcarriers, the
corresponding time-domain signals of various users are in

fact a δ-sequence as pn(i, t) =
√

EpBδ(t − (n − 1)L), n =
1, . . . ,N , that follows a disjoint set with an interval L.
Therefore, using the specifically designed training sequence
(10), the training signals of various users are decoupled. The
sequence (10), however, possibly leads to high signal peaks
at the instant samples t = (n − 1)L, n = 1, . . . ,N. One of
the simple ways to suppress the above undesired signal peaks
may refer to the scrambling procedure [25] (details will not
be addressed here since it is beyond the scope of this paper).

Substituting the specifically designed pilot sequence (10)
into (8), we have

u(i, k) =
N∑

n=1

L−1∑

l=0

�l(i)e− j2πkl/B pn(i, k)

+
N∑

n=1

L−1∑

l=0

�l(i)e− j2πkl/Bsn(i, k) + v(i, k)

=
√

Ep

N∑

n=1

L−1∑

l=0

�l(i)e−2πkl/Be− j2πk(n−1)l/B + w(i, k)

=
√

Ep

NL−1∑

κ=0

λκ(i)e− j2πκl/B + w(m)(i, k),

(11)

where w(i, k) = ∑N
n=1

∑L−1
l=0 hl(i)e

− j2πkl/Bsn(i, k) + v(i, k).
In (11), the channel transfer functions are in fact incor-
porated into a single vector following the relationship
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λ(n−1)L+l(i) = �l(i), l = 0, . . . ,L − 1, n = 1, . . . ,N. By (10)-
(11), we have the IFFT demodulated signals

xn(i, t) = [
F−1Sn(i)

]
t,1

= x′n(i, t) +
√

EpBδ(t − (n− 1)L), n = 1, . . . ,N ,

(12)

where x′n(i, t) is the IFFT modulated signals of the infor-
mation sequences sn(i, k) . The received signals (3) in time-
domain can be thus obtained as

y(i, t) =
N∑

n=1

L−1∑

l=0

�l(i)
√

EpBδ(t − (n− 1)L− l)

+
N∑

n=1

L−1∑

l=0

�l(i)x′n(i, t − l) + v(i, t)

= λ(n−1)L+l(i)
√

EpBδ(t − (n− 1)L− l)

+ εn,l(i, t) + v(i, t), n = 1, . . . ,N ,

(13)

where εn,l(i) =
∑N

n=1

∑L−1
l=0 �l(i)x′n(i, t − l) is the interference

to channel estimation due to the information sequence.
Consequently, the channel estimation can be performed in
time-domain as

λ̂(n−1)L+l(i) = �̂l(i)

= �l(i) +

∑N

n=1

∑L−1

κ=0
�κ(i)xn(i, (n− 1)L− κ)

√
EpB

+
v(i, (n− 1)L− l)√

EpB
, i = 1, . . . , I.

(14)

3.2. Channel Estimation over Multiple OFDMA Symbols.
From (14), we note that the information sequence inter-
ference vector (the second entry of (14)) can hardly be
neglected unless using a large pilot power Ep. The conven-
tional ST trainings stated in [16–22, 24] employ averaging
the channel estimates over multiple OFDM symbols (or
training periods) to suppress the information sequence
interference in the case that the channel is linearly time-
invariant during the record length. This arithmetical average
operation in [16–22, 24], however, is no longer feasible
to the channel assumed in this paper wherein the channel
coefficients are time-varying over multiple OFDMA symbols.

In this section, we develop a weighted average approach
to suppress the abovementioned information sequence inter-
ference over multiple OFDMA symbols, and thus overcom-
ing the shortcoming of conventional ST-based schemes for
linearly time-varying channel estimation.

We take the LTV channel coefficient estimation of each
OFDMA symbol �̂l(i), i = 1, . . . , I (14) as a temporal result,

and then form a vector �̂l = [�̂l(1), . . . , �̂l(I)]
T
. Following the

channel model in (7), we have

�̂l = ηhl,q =

⎡
⎢⎢⎢⎣

e j2π(0−Q/2)t1/Ω · · · e j2π(Q−Q/2)t1/Ω

...
. . .

...

e j2π(0−Q/2)t1/Ω · · · e j2π(Q−Q/2)t1/Ω

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

hl,0
...

hl,Q

⎤
⎥⎥⎥⎦,

n = 1, . . . ,N , l = 0, . . . ,L− 1,
(15)

where hl,q = [hl,0, . . . ,hl,Q]T is the complex exponential
coefficients modeling the LTV channel, and η is a I × (Q + 1)
matrix with [η]q,i = e j2π(q−Q/2)ti/Ω. Thus, when I ≥ Q + 1,
the matrix η is of full column rank, and the basis exponential
model coefficients can be estimated by

hl,q = η+�̂l, l = 0, . . . ,L− 1. (16)

Substituting ti = (i − 1)B′ + B/2 into the matrix η, we have
the pseudoinverse matrix

[
η+]

i,q = e− j2π(q−Q/2)((i−1)B′+B/2)/Ω/I. (17)

By (16)-(17), the modeling coefficients are estimated over the
whole frame OFDMA symbols and can be rewritten by

ĥl,q =
I∑

i=1

e− j2π(q−Q/2)ti/Ω�̂l(i)/I. (18)

In fact, (18) is estimated over multiple OFDMA symbols
with a weighted average function of e− j2π(q−Q/2)ti/Ω/I . Similar
to the average procedure of LTI case [16–22, 24], it is thus
anticipated that the weighted average estimation may also
exhibit a considerable performance improvement for the
time-varying channels over a long frame Ω .

Compared with the conventional STs that are generally
limited to the case of LTI channels [16–22, 24], the proposed
weighted average approach can be performed to estimate
the LTV channels of OFDMA uplink systems. In fact, the
proposed channel estimation is composed of two steps: first,
with specially designed training signals in (10), we estimate
the channel coefficients during each OFDMA symbol as
temporal results. Second, the temporal channel estimates are
further enhanced over multiple OFDMA symbols by using
a weighted average procedure. That is, not only the target
symbol, but also the OFDMA symbols over the whole frame
are invoked for channel estimation.

On the other hand, the proposed ST-based approach can
be utilized to estimate the uplink channel over the whole
frequency band, thus overcome the shortcoming of FDM
training methods [12–14] where channel estimation can
only be performed within each subband of individual user,
separately.

4. Channel Estimation Analysis

In this section, we analyze the performance of the proposed
channel estimator in Section 3 and derive a closed-form
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expression of the channel estimation variance which can be,
in turn, used for superimposed training power allocation.
Before going further, we make the following assumptions.

(H1) The information sequence Sn(i) is equi-powered,
finite-alphabet, i.i.d., with zero-mean and variance
Es, and uncorrelated with additive noise {vn(i, t)}.

(H2) The LTV channel coefficients �l are i.i.d. complex
Gaussian variables.

The interference vector caused by the information
sequence in (13)-(14) can be rewritten as

ε(i) = [
ε1,0(i), . . . , ε1,L−1(i), . . . , εN ,0(i), . . . , εN ,L−1(i)

]T

= 1√
EpB

⎡
⎣

N∑

n=1

L−1∑

κ=0

�κ(i)x′n(i,B − κ), . . . ,

N∑

n=1

L−1∑

κ=0

�κ(i)x′n(i, (N − 1)L + L− κ)

⎤
⎦
T

.

(19)

The additive noise vector is also given by

υ(i)

= [υ(i, 0), . . . , υ(i,NL− 1)]T

= 1√
EpB

[v(i, 0), . . . , v(i, (n− 1)L + l), . . . , v(i,NL− 1)]
T

.

(20)

By (H1), v(i, t) is also independent of εn,l(i). We first calculate
the variance of v(i, t) in (20) by

var(υ(i, t)) = 1
BEp

E
[
|v(i, t)|2

]
= σ2

v

BEp
. (21)

We also note that the estimation error εn,l(i) =∑N
n=1

∑L−1
κ=0�κ(i)xn(i, (n− 1)L− κ) is approximately Gaussian

distributed for large symbol-size B. The estimation variance
due to the information sequence interference, therefore, can
be obtained as

var
(
εn,l(i)

) = E
[∣∣εn,l(i)

∣∣2
]
= 1

BEp

L−1∑

l=0

|�l(i)|2Es. (22)

Since (22) depends upon the channel transfer functions
(equivalently, the channel impulse response), we define the
normalized variance as

nvar
(
εn,l(i)

) = 1
∣∣∣�(i)

∣∣∣
2 var

(
εn,l(i)

)
, (23)

where |�(i)|2 = ∑L−1
l=0 |�l(i)|2/L. Following the definition of

(23), we obtain the normalized variance as

nvar
(
εn,l(i)

) = var
(
εn,l(i)

)
∣∣∣�(i)

∣∣∣
2 =

Es

∑L−1

l=0
|�l(i)|2

BEp

∣∣∣�(i)
∣∣∣

2 = L

B

Es

Ep
.

(24)

From (24), we can find that the estimation variance due to
the information interference is directly proportional to the
information-to-pilot power ratio Es/Ep, thereby resulting in
an inaccurate solution for the general case that Ep � Es.

We then analyze the estimation performance (16)–(18)
over multiple OFDMA symbols. Neglecting the modeling
error, we use hl,q to evaluate the channel estimation variance.
Define

εn,l =
[
εn,l(1), . . . , εn,l(I)

]T

υ = [υ(1), . . . , υ(I)]T .
(25)

By (H1)-(H2), the MSE of the weighted average estimator is
given by

MSE(ave)

def= E
{∥∥∥hl,q − ĥl,q

∥∥∥
2
}

= E
{∥∥η+(εn,l + υ

)∥∥2
}

= tr
{
η+E

{
εn,l

(
εn,l

)H}(
η+)H

}
+tr

{
η+E

{
υ(υ)H

}(
η+)H

}

= 1
I

I∑

i=1

{
var(υ(i)) + var

(
εn,l(i)

)}
tr
[
ηHη

]−1
.

(26)

Note that the column vectors of the matrix η in (15) are
in fact the FFT vectors of a I × I matrix, we thus have
ηHη = II(Q+1) and tr[ηHη]

−1 = (Q + 1)/I. Substituting (21)-
(22) into (26), we then obtain the variance of the weighted

average estimation ĥl,q associated with εn,l(i), i = 1, . . . , I as

ρl,q = (Q + 1)Es

BI2Ep

I∑

i=1

L−1∑

l=0

|�l(i)|2 = (Q + 1)Es

ΩIEp

I∑

i=1

L−1∑

l=0

|�l(i)|2.

(27)

By analogy, the variance of the additive noise υ(i), i =
1, . . . , I can be also derived as

E
[
|υ|2

]
= (Q + 1)Ev

BIEp
= (Q + 1)Ev

ΩEp
. (28)

Combining the variances in (27) and (28), we have the
weighted average estimation variances

MSE(ave) = (Q + 1)Es

ΩIEp

I∑

i=1

L−1∑

l=0

|�l(i)|2 +
(Q + 1)Ev

ΩEp
. (29)

In (29), the last term is due to the additive noise. In general,
since the LTV channel model satisfies (Q + 1)/Ω � 1, the
additive noise is greatly suppressed by the weighted average
procedure. On the other hand, estimation variance due to
the information sequence interference (the first term in (29))
may be the dominant component of the channel estimation
error, especially for high SNR. Similar to (23), we derive the
normalized variance of information sequence interference by
removing the channel gain by

nvar
(
ρl,q

)
= 1

∣∣∣�
∣∣∣

2 var
(
ρl,q

)
, (30)
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where |�|2 = ∑I
i=1

∑L−1
l=0 |�l(i)|2/LI. From (29) and (30), it

follows that

nvar
(
ρl,q

)
=

(Q + 1)Es

∑I

i=1

∑L−1

l=0
|�l(i)|2

BEpI2
∣∣∣�

∣∣∣
2

= L(Q + 1)Es

ΩEp

B′

B
≈ L(Q + 1)

Ω

Es

Ep
.

(31)

From (31), the normalized variance is directly proportional
to the information-pilot power ratio Es/Ep and the ratio
of the unknown parameter number L(Q + 1) over the
frame length Ω. In particular, with the specifically designed
training sequence (10), the closed-form estimation variance
(31) may provide a guideline for signal power allocation
at transmitter, for example, for a given threshold of the
estimation variance φ (channel gain has been normalized),
the minimum training power Ep should at least satisfy the
approximated constraint as Ep ≥ φΩEs/NL(Q + 1) .

Compared with the variances of channel estimation
over one OFDMA symbol as in (22)–(24), the estimation
variances (29)–(31) of the weighted average estimator (15)–
(18) are significantly reduced owing to the fact that Ω/B(Q+
1) � 1. Theoretically, the weighted average operation can
be considered as an effective approach in estimating LTV
channel, where the information sequence interference can
be effectively suppressed over multiple OFDMA symbols. As
stated in the conventional ST-based schemes [16–22, 24],
channel estimation performance can be improved along with
the increment of the recorded frame length Ω, that is, the
estimation variance approaches to zero as Ω → ∞. This
can be easily comprehended that larger frame length Ω
means more observation samples, and hence lowers the MSE
level. From the LTV channel model (4), however, we note
that as the frame length Ω is increased, the corresponding
truncated DFB requires a larger order Q to model the LTV
channel (maintain a tight channel model), and the least
order should be satisfied Q/2 ≥ fdΩ/ fs, where fd and fs are
the Doppler frequency and sampling rate, respectively [1–
8]. Consequently, as the frame length Ω increases, the LTV
channel estimation variance (31) approaches to only a fixed
lower-bound associate with the system Doppler frequency
as well as the information-pilot power ratio. This is quite
different from the ST trainings in estimating LTI channels
[16–22, 24].

5. Iterative Symbol Detector

Unlike the FDM trainings [10, 12–15, 25], the pilot sequences
in (10) are superimposed on the information sequences and
thus produce interferences on the information sequences
recovery. The existing ST approaches [9, 11, 16–22, 24]
merely focus on the information sequence interference
suppression; whereas few researches are contributed to the
ST effect cancellation for information sequence recovery. In
this section, we provide a new iterative symbol detector to
cancel the residual training effects on symbol recovery.

As in the symbol detection of conventional ST-based
approach, the contribution of the training sequences is firstly

removed at OFDMA uplink receiver before recovering the
data symbols

)U(i) = U(i)−
N∑

n=1

Ĥ(i)Pn(i) = H(i)S(i) + Ξ(i) + v(i), (32)

where Ĥ(i) is an M × M matrix with the diagonal
elements being the estimated channel frequency-domain
transfer function, that is, diag(Ĥ(i)) = [Ĥ(i, 0), . . . , Ĥ(i, k),
. . . , Ĥ(i,B−1)]T (with Ĥ(i, k) =∑L−1

l=0 �̂l(i)e− j2πkl/B ) and the
remaining entries being zeros. Ξ(i) = [H(i)− Ĥ(i)]P(i) is the
residual error of the superimposed pilots.

Note that Ξ(i) is distributed over the whole frequency
tone; whereas owing to the specifically designed training
signals in (10), the time-domain received signals affected by
the residual error are concentrated only during a sequence of
sample periods y(i, (n−1)L+κ), κ = 0, . . . ,L−1, n = 1, . . . ,N.
In order to mitigate the residual error, a natural idea is to
reconstruct the above time-domain signals of t = (n−1)L+κ,
κ = 0, . . . ,L − 1, n = 1, . . . ,N. In our proposed iterative
method, we carry out the following steps.

Step 1. By (32), we perform zero-forcing equalization by

Ŝ(i) =
[
Ŝ1(i), . . . , ŜN(i)

]T =
(
Ĥ(i)

)†
)U(i). (33)

The information symbols, owing to the finite alphabet set
property, can be recovered by a hard detector as

ŝn(i, k) = arg min
sn(i,k)∈Θ

[∥∥ŝn(i, k)− sn(i, k)
∥∥2
]

, (34)

where Θ is the finite alphabet set from which the transmitted
data takes, for example, 4-PSK and 8-PSK signals, and so
forth.

Step 2. Reconstruct the time-domain received signal vectors
with the estimated channel coefficients in (16) and data
sequences in (34), respectively, we obtain

Ŷ(i) = [
ŷ(i, 0), . . . , ŷ(i, t), . . . , ŷ(i,B − 1)

]T = F−1)U(i).
(35)

Step 3. Replace the contaminated signals y(i, (n−1)L+κ) by
the reconstructed signals ŷ(i, (n−1)L+κ) in (35), the received
signal vector is then updated by

Ŷ(i) = [
ŷ(i, 0), ŷ(i, 1), . . . , ŷ(i, (n− 1)L + κ), . . . ,

ŷ(i, (N−1)L+L−1), y(i,NL), . . . , y(i,B−1)
]T
.
(36)

Step 4. Using the updated signals in (36), we detect the infor-
mation symbols by (32)–(36) in the forthcoming iteration.

Step 5. Repeat the Steps 1–4 until the increment changes of
the improved SER performance over successive iterations are
below a given threshold.
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When the SER of the initial hard detector in (34) is
lower than a certain threshold, the reconstructed signals
in the current iteration should approach to the original
signals )y(i, (n − 1)L + κ) more than that of the previous
iteration, that is, | ŷcur(i, (n − 1)L + κ) − ỹ(i, (n − 1)L +
κ)| < | ŷpre(i, (n − 1)L + κ) − ỹ(i, (n − 1)L + κ)|, where
ỹ(i, t) is the pure IFFT modulated information signals of
U(i) = ∑N

n=1H(i)Sn(i), ŷcur(i, (n − 1)L + κ) and ŷpre(i, (n −
1)L + κ), κ = 0, . . . ,L − 1 are the reconstructed signals
by (36) in the current and previous iterations, respectively.
Additionally, the iteration index depends crucially on the
size of the reconstructed signals over one OFDMA symbol
period, that is, τ = NL/B. Base on experiment studies,
the proposed iterative method should satisfy the constraint
of τ ≤ 0.2. Commonly, such constraint for practical
implementation can be satisfied freely by simply adjusting
the total frequency bandwidth and the number of active
users.

Obviously, the SER performance degradation owing to
the residual effect of superimposed training is guaranteed
with the proposed iterative approach. Compared with con-
ventional ST methods [9, 11, 16–22, 24], the iterative scheme
offers an alternative to enhance the channel estimation
performance by using a large training power Ep while
without sacrificing SER performance degradation.

6. Simulation Results and Discussion

In this section, we present the numerical examples to validate
our analytical results. We assume the OFDMA uplink system
with B = 512 and all subcarriers are equally divided into
N = 4 subband that assigned to four users. The transmitted
data symbol sn(i, k) is QPSK signals with symbol rate fs =
107/second. The channel is assumed with L = 10, and the
coefficients hn,l(t) are generated as low-pass, Gaussian, and
zero-mean random processes and correlated in time with
the correlation functions according to Jakes’ mode rn(τ) =
μ2
nJ0(2π fnτ), n = 1, . . . , 4, where fn is the Doppler frequency

associated with the nth user. CP length is chosen to be 15
to avoid intersymbol interferences. The additive noise is a
Gaussian and white random process with a zero mean.

We run simulations with the Doppler frequency fn =
300 Hz that corresponds to the maximum mobility speed of
162 km/h as the users operate at carrier frequency of 2 GHz.
In order to model the LTV channel, the frame is designed
as Ω = B′ × 256 = (B + CP − length) × 256 = 136192,
that is, each frame consists of 256 OFDMA symbols. During
the frame, the channel variation is fnΩ/ fs = 4.1. Notice that
the channel variation during an OFDM symbol is fnB/ fs =
0.0154, and thus can be neglected. Over the total frame Ω,
we utilize the truncated DFB of order Q = 10 to model
the LTV channel coefficients. The LTV channel modeled
by the truncated DFB, however, exhibits modeling errors
at the outmost samples. A possible explanation is that as
the Fourier basis expansions are truncated in (4), an effect
similar to the Gibbs phenomenon, together with spectral
leakages, may lead to modeling inaccuracy at the beginning
and the end of the frame [3, 5, 7–9]. To circumvent the
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Figure 3: MSE versus SNR, with the LTV channel of fn = 300 Hz
and Ω = 13.62 milliseconds under the different IPR and system
unknowns NL.

problem, the frames are designed to be partially overlap, for
example, (l − 1)Ω − γB′ ≤ t ≤ lΩ, l = 2, 3, . . . , where γ is
a positive integer. By the frame-overlap, the LTV channel at
the beginning and the end of the frame can be modeled and
estimated accurately from the neighboring frames.

To evaluate the proposed channel estimator, we resort to
the MSE of channel estimation to measure the estimation
performance, which is defined as

MSE

=
Ω/B′∑

i=1

MSE(i)
Ω/B′

= B′

Ω

Ω/B′∑

i=1

E

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑B−1

t=0

∑L−1

l=0

∣∣∣∣hl(i, t)−
∑Q

q=0
ĥl,qe j2π(q−Q/2)t/Ω

∣∣∣∣
2

BL|hl(i, t)|2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

,

(37)

where MSE(i) denotes the MSE of the ith OFDMA symbol.

6.1. Channel Estimation. We firstly examine the ST-based
weighted channel estimation scheme under different IPR to
verify the channel estimation variance analysis in Figure 3.
From Figure 3, the curve of the MSE are almost independent
of the additive white Gaussian noises, especially as SNR >
5 dB since the additive noise has been greatly suppressed
by the weighted average procedure. In addition, the results
shown in Figure 3 are consistent with the closed-form
estimation variance as formulated in (29)–(31), wherein
the estimation variances are directly proportional to the
unknown parameter L(Q + 1) and inversely proportional to
information-to-pilot power ratio Es/Ep, respectively.

Then, we compare the developed channel estimator
with the conventional ST-based method under the different
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Figure 4: MSE versus frame length under the different Doppler
frequencies, with Ω = 13.62 milliseconds, Ep = 0.01Es,NL = 40,
and SNR = 20 dB.

Doppler frequencies. It shows clearly in Figure 4 that our
estimation approach achieves indistinguishable performance
with the conventional ST-based scheme in estimating the LTI
channel of fn = 0 Hz, and the MSE level is significantly
reduced as the average length increases. However, the short-
coming of conventional ST appears when the channel being
estimated is linearly time-varying. Comparatively, by using
the weighted average procedure, our proposed approach
performs well for the LTV channel estimation of different
Doppler frequencies, that is, fn = 100 Hz/300 Hz. On the
other hand, we also observe that as the frame-length Ω
increases, the MSE approaches to a constant (lower-bound)
that associated with the Doppler frequency. The theoretical
analysis has been proved by Section 4.

Figure 5 displays the comparison between the proposed
algorithm and the channel estimator [14]; wherein the
uplink channel over the whole frequency band is recon-
structed with the aid of estimated subband channel transfer
functions. Owing to the time-variation of channel coeffi-
cients between OFDMA symbols, channel estimation per-
formed in [14] is required in each separate OFDMA symbol.
Since the total number of known pilots should be larger
than or at least equal to the total channel unknowns NL =
40, 64 pilot tones (with 16 pilot symbols in each subband
of individual user) are utilized within one OFDMA symbol.
Correspondingly, 12.5% of total bandwidth is wasted in
transmitting the pilot symbols. Comparatively, the proposed
ST-based channel estimation approach, without entailing
any additional bandwidth or constraint, outperforms the
FDM training-based estimator [14] by using a small pilot
power of Ep = 0.02Es. Furthermore, the iterative method
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Figure 5: Comparison between the proposed estimation algorithm
and that of [14] with of fd = 300 Hz.
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Figure 6: SER versus SNR for different demodulator with Ep =
0.01Es of fd = 300 Hz.

developed in [24] can be directly employed herein to further
improve the estimation performance of our algorithm.

6.2. Symbol Detection. As aforementioned, symbol detection
in demodulator of ST-based schemes [9, 11, 16–22, 24]
is affected by the residual contribution of embedded pilot
symbols. Herein, we carry out simulation experiments to
assess the effectiveness of the proposed iterative symbol
detector.

Figure 6 illustrates the SER performance versus SNR with
IPR as Ep = 0.01Es. As shown in Figure 6, although the
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channel estimator achieves well estimation performance in
estimating the LTV channel coefficients, the conventional
demodulator still exhibits a poor SER performance owing
to the effects of the residual error of embedded training
sequences. In contrast, by the proposed iterative mitigation
procedure, the demodulator achieves a considerable gain
than that of conventional ST-based method. It thus confirms
that the above-mentioned residual interference can be effec-
tively mitigated with the developed iterative approach. As
a comparison, we also list the SER performance based on
the FDM training scheme [14] where information sequences
and pilot symbols are of frequency-division multiplexed
and the symbol detection can be thus performed without
additional pilot interference. We observe that the perfor-
mance of two demodulators is in general indistinguishable
(15 dB∼25 dB), which confirms that the effects of the above-
mentioned residual training on information sequence recov-
ery have been effectively cancelled by the proposed iterative
approach.

Figure 7 depicts the SER performance under different
reconstructed signal-size over one OFDMA symbol period,
that is, τ = NL/B. As stated in Section 5, the minimum
iterations utilized to achieve a steady SER performance
depend crucially on the above constraint τ . It observed that
when τ = NL/B ≤ 10%, a significant SER performance
improvement is achieved in the very first iterations (the
first 2∼3 iterations). Meanwhile, the iterations required
to achieve the steady-state solution of SER performance
increase along with the increment of τ. For the situation that
NL/B > 20%, the iterative cancellation may not convergent
and the SER still keeps at a high level. Therefore, τ ≤
0.2 can be approximately considered as the upper-bound
for the implementation of the proposed iterative detection
approach.

6.3. Complexity Analysis. The description of the proposed
channel estimation method in Section 3 shows that the
overall complexity comes from the complex matrix pseu-
doinverse operation in (16). Note that (16) can be deduced
into a weighted average process in (18). Thus, compared to
the ST-based estimator within one OFDMA symbol (13),
only (Q+I+1) additional complex multiplication and (Q+I)
complex additions are required to obtain the accurate time-
domain CSI hl(t) of uplink OFDMA systems.

7. Conclusion

In this paper, we have developed a new method for estimating
the LTV channels of uplink OFDMA systems by using
superimposed training. We extend conventional LTI-based
ST schemes to the case where the channel coefficient is
linearly time-varying. By resorting to the truncated Fourier
bases (DFBs) to model the LTV channel, we adopt a two-step
approach to estimate the time-varying channel coefficients
over multiple OFDMA symbols. We also present a per-
formance analysis of the channel estimation approach and
derive a closed-form expression for the channel estimation
variances. It is shown that the estimation variances, unlike
conventional superimposed training, approach to a fixed
lower-bound that can only be reduced by increasing the
pilot power. In addition, an iterative symbol detector was
presented to mitigate the superimposed training effects on
information sequence recovery, thereby offering an alter-
native to enhance the channel estimation performance by
using a large training power while without sacrificing SER
performance degradation. Compared with the existing FDM
training schemes, the new estimator can estimate the channel
transfer function over the whole frequency band without a
loss of rate, and thus enables a higher efficiency with the
advantage for system adaptive resource allocation.
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