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Department of Computing Engineering, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

Correspondence should be addressed to Juan-Carlos Cano, jucano@disca.upv.es

Received 22 July 2009; Revised 18 November 2009; Accepted 15 December 2009

Recommended by Amiya Nayak

Mobile Ad Hoc Network solution testing is typically done using simulation. The simulated code is generally a simplified version
of the real code, and thus code porting to actual operating systems lacks a strong validation. In this work we present Castadiva, a
test-bed architecture that allows validating software solutions for real ad hoc network environments using low-cost, off-the-shelf
devices and open source software. Castadiva is also compatible with the ns-2 simulator, allowing a combined and more complete
evaluation. In this work we present our tool and the results obtained when evaluating videocalls in different scenarios, both static
and dynamic.

Copyright © 2009 Jorge Hortelano et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Mobile ad hoc wireless networks (MANETs) [1] consist of
mobile nodes interconnected by multihop communication
paths. Unlike conventional wireless networks, ad hoc net-
works have no fixed network infrastructure or administrative
support. Nodes belonging to a MANET can either be end-
points of a data interchange or act as routers when the
two end-points are not directly within their radio range.
The topology of the network changes dynamically as mobile
nodes join or depart the network, or when radio links
between nodes become unusable. This means that users have
the freedom to create their own networks, which can be
deployed easily and cheaply. The importance of MANETs
becomes evident by noticing the wide application area that
these embrace. Special situations require communication
networks to be available without any previous infrastructure,
like emergency missions, military operations [2], or ad hoc
meetings. However, a price for all those features is paid in
terms of complex technological solutions.

MANETs require efficient routing protocols to operate
correctly. A routing protocol specifies how nodes commu-
nicate with each other to disseminate routing information,
allowing them to create routes between any two nodes on a
network. Many of the academic papers dealing with ad hoc

and mesh networks [3–6] evaluate protocols assuming vary-
ing degrees of mobility within a bounded area, usually with
all nodes within a few hops of each other, and usually with
nodes sending data at a constant rate. Different protocols
are then evaluated based on the packet drop rate and the
overhead introduced by the routing protocol. The growing
research efforts focusing on this new technology require the
availability of tools that allow researchers to evaluate their
proposals.

Testing and evaluating any of the proposed protocols for
MANETs is a mandatory request to guarantee its success in
a real world application. Researchers in this field have three
options for testing their MANET protocols: using simulation
tools, using emulators, or using test-beds. A simulation
tool is an application which behaves or operates like a
given real system when provided with a set of controlled
inputs. Currently several network simulators exist, including
ns-2 [7], OPNET [8], Seawind [9], and REAL [10]. As
shown in [11], ns-2 is the most extended in the research
community. ns-2 is a discrete event network simulator that
is popular in academia for its extensibility (due to its open
source model). It is typically used for the simulation of
MAC, routing and transport protocols, and is heavily used
in ad hoc networks research. ns-2 supports an array of
popular network protocols, offering simulation results for
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wired and wireless networks alike. Simulation offers four
important advantages. First, it enables experimentation with
large networks. Second, it enables experimentation with con-
figurations that may not be possible with existing technology.
Third, it allows rapid prototyping. Finally, it makes repro-
ducible experiments in a controlled environment possible.
Simulations also have some disadvantages. First, researchers
can not test their own real world implementation of a
protocol in a realistic scenario. Second, simulators typically
do not incorporate realistic models of node mobility and
radio signal propagation [11].

Emulators provide an attractive middle ground between
pure simulators and wireless test-beds, allowing scalable
and repeatable experimentation and using real devices. In
Section 2 we describe different emulators.

A test-bed is a platform for experimentation which allows
for rigorous, transparent, and replicable testing of scientific
theories, computational tools, and other new technologies
[12].

In this work we present Castadiva, a test-bed architecture
that simplifies carrying out realistic experiments; it relies
on low-cost, off-the-shelf wireless routers combined with
a Linux platform. Castadiva allows generating network
topologies, exporting them to real devices and obtaining
the test results. It can also generate different types of traffic
between nodes and offers support for some well-known
ad hoc routing protocols. It relies on a cheap architecture
that includes two different networks: a wired network,
called connection network, that connects the server with
a group of wireless nodes, and a wireless network where
the actual test-bed experiments are made. We developed a
group of tools for administration purposes, with a friendly
user interface design to help the user define the scenario
of the network and the desired traffic connections between
MANET nodes in a simple and straightforward manner. All
of these tools were developed with open source software
and they are freely available for the research community at
http://castadiva.sourceforge.net/.

Castadiva was designed to be completely compatible with
the ns-2 file format, which allows us to compare both in a
simple and straightforward manner. Hence, we relied on ns-
2 to validate our test-bed. We selected a range of both static
and dynamic MANET scenarios and compared the results
obtained using Castadiva with those obtained using ns-2.
We confirmed that Castadiva is a reliable tool that provides
results which are comparable, although not strictly identical,
to those obtained in a realistic MANET.

After validating Castadiva we proceeded to assess the
performance of a real videoconferencing tool in MANET
environments. The application being tested is Ekiga [13],
a platform offering real-time audio/video communication
between users supporting both SIP [14] and H.323 [15]
standards. The metrics analyzed were the packet loss rate and
the end-to-end delay. We also characterized the source traffic
under different conditions since the data rate generated is
dynamically adjusted by Ekiga.

The rest of this work is organized as follows. Related
works are presented in Section 2. Section 3 describes Cas-
tadiva’s architecture. Section 4 presents the implementation

details. Section 5 presents the performance evaluation we
have done to validate our tool, comparing this tool with the
ns-2 when using TCP and UDP traffic. In Section 6 we show
the results obtained with real audio/video traffic in different
scenarios. Finally, in Section 7 we present our concluding
remarks.

2. RelatedWork

The idea of automatic computer-controlled routing in a
mesh network is not new; in fact the main idea dates
back to Baran in the early 1964 [16]. Since then, several
prototypes for generating real ad hoc network experiments
were proposed and can be found in the literature.

ORBIT. An indoor radio grid emulator for controlled
experimentation and an outdoor field trial network for end-
user evaluations in real-world settings [17]. This emulator
needs an expensive noise generator since it emulates higher
node distances, by reducing the signal-to-noise ratio. It also
requires investing a high budget to create the grid of nodes
(each computer is a possible position of the node in a
simulation), as well as extra support servers for data storage.
Thus, deploying the entire infrastructure requires a lot of
room.

mLab. An emulator that strikes a balance between desktop
simulations and outdoor field tests by allowing users to
develop and test ad hoc protocols and applications in
a laboratory environment [18]. This emulator can only
generate network topologies and capture packets.

Carnegie Mellon University Wireless Emulator. Supports real
devices, applications, MAC and PHY layers on a network-
wide scale while maintaining experimental control and
repeatability [19]. The disadvantages of this emulator are
that it does not use commercial off-the-shelf devices, using
a FPGA for digital emulation instead.

MobiEmu. An emulator to test an ad hoc network of any
scale and with any mobility scenario without actually moving
the ad hoc nodes physically [20]. We discarded this emulator
for our test since it relies on expensive clusters to emulate the
scenario.

Seawind. Another emulator designed for performance stud-
ies of real protocols and applications on wireless networks
[9]. It uses an emulated link and router to generate the
network topology and noncommercial off-the-shelf devices,
making it difficult to scale up the network. Also, it can only
emulate one traffic flow.

WHYNET. Is a hybrid wireless testbed environment tar-
geting realistic, scalable, and flexible evaluation of wireless
technologies and applications [21]. These hybrid exper-
imentation modes use physical and simulated elements
(e.g., protocol layers, subnets) in different combinations.
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Table 1: Comparative of existing emulators.

Name GUI Real devices Real code Flexibility
Size of
emulator

Initial budget Scalable Free

Castadiva Yes Routers, PDAs and
computers

Yes Yes
fits in a
desktop

<1000C Yes Yes

MobiEmu No Computers Yes Yes fits in a room >3000C Yes Yes

mLab No No (is almost a
simulator)

No Yes
fits in a
desktop

<1000C Yes Yes

Carnegie Mellon
University Wireless
Emulator

Yes computers, but
needs FPGAs

Yes Yes
fits in a
desktop

>3000C Yes No

ORBIT No Computers Yes Only mobility in
grid.

Huge, needs a
warehouse

>10000C Yes but very expensive No

Seawind Yes Computers No No, only emulate
two nodes

fits in a
desktop

— No No

WHYNET No Hybrid simulator Yes Yes
fits in a
desktop

<1000C Yes (by simulation) No

GUI: a graphical interface for easy use of the emulator. Real Devices: Which devices can be used on the emulation tests? Real Code: Can users introduce real
implementations of application and protocols on its emulations without changing anything, or must they rewrite the code to fit the emulator? Flexibility:
Can any topology be implemented? Size of the Emulator: Can the emulator be deployed on a simple desktop of a lab, or does it need an entire room for its
deployment? Initial Budget: The initial (approx.) inversion for generating a test-bed of 10 nodes. Scalable: Is it easy to increase the number of nodes without
increasing the cost significantly? Free: Can it be used freely by anyone without purchasing?

WHYNET uses a geographically distributed set of physical
wireless testbeds, making results difficult to be replicated by
other researchers.
We developed Castadiva to deploy a cheap architecture
that relies on low-cost devices to generate a test-bed. The
test bed obtained effectively uses low-cost hardware to
achieve a complex, yet reliable wireless network simulation.
Table 1 compares the different emulators available against
Castadiva. As can be observed, only three emulators are
free: Castadiva, MobiEmu, and mLab. mLab is almost a
simulator that does not use real devices. Castadiva can use
any devices with a wireless card, which offers flexibility
when purchasing devices, thus reducing the budget to deploy
the emulator. MobiEmu is more expensive than Castadiva
and does not have a GUI. Castadiva implements a GUI to
guide the users when creating the scenario and the traffic
pattern.

Overall, Castadiva outperforms the other emulators in
terms of (a) variety of devices that can be use as nodes, (b)
initial budged needed to deploy the emulator, and (c) ease
of use provided by the GUI; this means that it makes a clear
contribution to the research community.

3. Castadiva’s Architecture Overview

Castadiva is a test-bed designed to deal with the devel-
opment and the performance evaluation of protocols and
applications for MANETs. The test-bed relies on actual
IEEE 802.11 wireless interfaces for communication among
nodes. Castadiva is composed by a server that runs the main
application, several wireless nodes, two different networks
(wired and wireless), and an application that coordinates all
devices.

Castadiva’s server executes the application and configures
the network devices. Concerning the wireless nodes used,
they can be any sort of computing device, like a laptop, a
PDA, or a wireless router. In our prototype, each node is
a Linksys router to minimize costs. The main requirement
for a node is that it must have a Linux/Unix operating
system installed and two network cards: an Ethernet card
and an IEEE 802.11 card. If the node is a wireless router, the
OpenWRT [22] kernel is an excellent solution. OpenWRT
is an open source operating system available for a wide
range of router manufacturers. This embedded Linux system
natively offers SSH connections, along with the possibility of
running shell scripts. Moreover, a programmer can develop
its own application in a standard Linux distribution and
export it to this operating system. In our case, we developed
some applications in C for traffic generation and control
purposes.

Figure 1 shows a schema of Castadiva’s components. The
main application, developed in Java, controls all devices and
dynamically manages the links among them according to the
desired network scenario. It also manages traffic generation
between pairs of nodes. Since the controlling application
requires communicating with nodes to send control packets,
Castadiva combines two different networks: the coordination
network (wired), that connects the Castadiva core with the
wireless nodes, and the wireless network, where actual tests
run.

The coordination network is a wired network that
connects Castadiva’s core server with the wireless nodes. This
network allows the main application to send configuration
messages to all the nodes without creating any interference
within the wireless network itself. It is based on Fast-
Ethernet technology, to avoid large latencies. Basically,
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Figure 1: Schema of Castadiva’s components.

the coordination network requires a switch connected to
the main server and to all nodes. Through this network
the main application sends instructions to nodes, allowing
them to reconfigure periodically according to the desired
network topology and also to run lightweight traffic-
generating applications available on each wireless node. For
communication purposes, we rely on the SSH protocol [23]
to send instructions through this network. Using a fast
network means that all nodes participating in a test will start
at about the same time, avoiding significant latency effects
and maximizing result accuracy.

The wireless network is composed by Castadiva’s wireless
nodes, and the topology of this network is defined by
the GUI of Castadiva, so that it can change at runtime.
Nodes communicate in ad hoc mode using IEEE 802.11g
technology.

Castadiva’s core has two main functions: (a) to allow
a user to interact with the system so as to define all
the test parameters required, and (b) to coordinate the
wireless nodes during an experiment. By using Castadiva’s
GUI a user can control all of Castadiva’s functionality,
defining the network topology and the traffic flow among
nodes. Castadiva allows fixing the scenario area where nodes
will be deployed. When selecting a node, its location is
highlighted and it can be changed according to the desired
network topology. When all nodes are deployed, the user
can press the Simulate button, and each physical node will
be reprogrammed so as to enforce the chosen network
topology. Figure 2 shows the GUI application of Castadiva.
We describe the whole functionality offered by Castadiva’s
GUI in Section 4.2.

Figure 3 shows our test-bed. One switch connects Cas-
tadiva’s server with all the wireless nodes for coordination
purposes. On the center of the picture the group of wireless
nodes being used is shown. It consists of eleven Linksys

routers (models WRT54G and WRT54GL). The wireless ad
hoc network conformed by these nodes is the one used in
Castadiva’s testbed experiments. The experiments presented
in this work required extending Castadiva to support
traffic injected from outside applications. In particular, we
connected laptops running videoconference software to our
MANET, allowing us to assess the performance of video
conference sessions as experienced by users.

4. Castadiva’s Implementation Details

In this section we detail the requirements of Castadiva on the
server and on the wireless nodes. We describe the software
tools we have developed to connect all the wireless nodes
with the server, and how Castadiva allows emulating connec-
tions among them. We also explain the process of designing
network topologies by using the Scenario Generation tool,
an interactive and user-friendly interface that allows defining
the network’s scenario and the desired traffic connections
among nodes.

Castadiva requires some libraries and services to operate.
The requirements of Castadiva are different for the server
and the wireless nodes. The server must be a standard Linux-
based system and must have a Java Virtual Machine, an SSH
client, and an NFS server installed. Concerning nodes, each
one must be a Linux-based system with an SSH server and
an NFS client; besides, they must have the libgcc library and
have the Iptables toolset installed (see Figure 4).

The connection between Castadiva’s core element
(server) and each node is made using both SSH and NFS
connections. On Castadiva’s server, the user interacts with
the GUI application by defining the network topology
and the traffic and selecting the desired routing protocol.
Then, through SSH, the application sends a start instruction
to each node through the coordination network (wired).
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Figure 2: Scenario definition with Castadiva.

Figure 3: Castadiva’s physical network.

Wireless nodes achieve coordination among themselves by
executing the required binaries, which are stored in a server
folder shared through NFS. This is an easy way to spread
instructions to all nodes, and it also solves storage limitation
problems on nodes. When tests start, a group of files with
the results is created and stored into Castadiva’s server.
Each individual router accesses its own configuration file
by relying on the NFS filesystem. We find that Ethernet
connections are fast enough to export these files to the
routers without significant delays.

The main application parses the results, thus obtaining
the different testbed statistics. Finally, the application dis-
plays results to the user.

Next we present the Castadiva’s implementation, which
can be divided into two parts: the light-weight applications
running on wireless nodes, and the main application.

4.1. Wireless Nodes’ Software. Each node has a set of require-
ments that must be met for successful operation: a Linux-
based operating system, a set of special-purpose scripts, and

some specific applications and connectivity to Castadiva’s
server.

The operating system installed on each router is Open-
WRT. OpenWRT allows executing BASH scripts natively;
besides, it includes Dropbear, a simple SSH server used to
receive instructions from Castadiva’s server. Concerning the
set of Castadiva’s scripts, they are generated automatically by
Castadiva’s main application. Their purpose is to configure
the wireless network topology.

Each node makes use of three applications: Iptables,
TcpFlow, and UdpFlow. The first one is open source and
exists in most Linux distributions, while the other two were
developed by us.

Network topology configuration relies on the Iptables
[24] tool. According to the selected topology, Iptables allows
us to dynamically break the network links between pairs of
nodes. This tool exists for all Linux distributions, including
the OpenWRT embedded system.

To generate traffic we created the UdpFlow and TcpFlow
tools. Both tools are designed to generate a traffic flow
between two nodes, being that each tool creates a single
traffic flow. To create a flow of data we must specify a
source/destination pair, the starting and ending times for this
flow, and the maximum amount of bytes to be sent.

Castadiva also includes routing agents for well-known
routing protocols, such as AODV and OLSR, that are
included with the OpenWRT and initiated according to user
settings.

4.2. The Main Application. Castadiva’s core element, a Java
application running at the server, includes all the control
functions required for testbed experimentation. It is respon-
sible for network topology maintenance, traffic control, as
well as result calculation and presentation. A user can define
the characteristics of wireless nodes. Each node is deployed at
a specific position in a simulated area as chosen by the user.
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Figure 4: Software components for Castadiva.

Once the topology is defined, Castadiva must configure the
wireless nodes according to that topology. The application
communicates with each node through SSH connections
to send the required instructions. The traffic flow between
nodes and the routing protocol used are also set through this
technique. When all the experiments are finished, Castadiva’s
core must calculate the result statistics for the experiment by
gathering all the data obtained and finally show these results
to the user.

Castadiva’s main application was created using Java’s
Swing library. We consider that it is a good solution for visual
design since most basic components are already created and
can be easily modified by the programmer.

Castadiva is designed to be a test-bed where network
scenarios and traffic between nodes are generated so as to
resemble a real MANET. Therefore, it is expected to be an
easy and useful tool for the study of MANETs.

To start a new experiment we only need to define the
network topology in the corresponding window and then
define the traffic flow and the routing protocol used. By
pressing the start button tests begin, and Castadiva returns
the test results automatically at the end of the simulation.
We now offer more details about the services offered by
Castadiva.

4.2.1. Adding Nodes to the Testbed. Before starting an exper-
iment the user needs to define the number of participating
nodes, along with their configuration. Such information
allows Castadiva to access nodes and manipulate them
to generate a scenario. Figure 5 shows an example of the
definition of a node in the system.

All the information is defined automatically when the
user wishes to add a new one, though it can be changed by
the user or can be read from a file. An internal identifier
is required to distinguish a node from others in Castadiva’s
framework. Such identifier is then referenced when defining
the network topology and data connections. The remaining

Figure 5: Node configuration interface.

parameters will be used by Castadiva’s main application
to connect nodes among themselves and with the main
server. The MAC address is required for Castadiva to enforce
topology changes.

All the executable files and scripts are stored in an
NFS directory that is accessible by all nodes. This way
Castadiva makes storage capacity independent of wireless
nodes’ memory.

Castadiva relies on its own tools to generate traffic
between nodes. Such tools run at each node and must be
compiled for all types of CPUs used. Currently, tools are
compiled for MIPS and Intel processors, though the list can
be easily augmented.
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The SSH user and password fields are used by the main
application to connect to each individual router and submit
commands. Also, a Ping button was included to allow testing
the connectivity between the server and the routers.

4.2.2. Ad Hoc Network Scenario Generation. Once all the
nodes are defined, they can be configured to conform
a scenario. Castadiva supports both manual and random
topology generation, and the scenario is set through Cas-
tadiva’s blackboard. The blackboard is a representation of
a virtual environment where nodes are located. Nodes are
differentiated through different colors and labels. If the
adequate option is selected, the radio communication range
is also shown through a circle of the same colour.

Figure 6 shows the topology generation environment. We
can see ten nodes located in a scenario of 850 × 1000 meters
(scenarios bounds are marked with a darker line).

At the right hand we may edit node properties, such
as position and signal range. Castadiva also can activate or
deactivate the RTS/CTS 802.11 option of each node. The
group of buttons appearing below allows starting a new test,
stopping it, and rebooting nodes to reset all values.

At the left hand, Castadiva offers scenario option editing.
We can define the scenario bounds, the test time, node
mobility, and the routing protocol used. The Declare traffic
button allows setting traffic, as shown, later on, and the stop
button halts it.

A status bar provides general information to inform the
user about what is being done, and the horizontal scrolls
allows zooming in and out. Finally, the user may alternate
between two different views: radio ranges or a graph. Every
edge of the graph represents an IEEE 802.11 link connection,
which is a more intuitive view.

4.2.3. Mobility in Castadiva. Castadiva offers the user two
different approaches for emulating mobility: (a) any scenario
from the ns-2 simulator could be directly used within
Castadiva, and (b) the user can take advantage of the GUI
to select their own mobility model. We already included the
random way point mobility model [25]. This behavior is
similar to the one provided by the “setdest” tool embedded in
the ns-2 simulator: if a user picks a value greater than zero in
the speed option, each node acquires a random movement
with a speed between zero and the inserted value. When a
node arrives to a destination point, it waits for a selected
pause time and then select a new random destination point
to move to. Castadiva allows users to easily add new mobility
models implementations.

For the emulation of mobility, Castadiva generates all
node movements required for the test before it starts. In
particular it generates, for each node, a mobility vector
according to the selected user option in the GUI or imports
it from an ns-2 scenario. Also, Castadiva calculates the
variation of the topology continuously in time. Therefore,
our emulator obtains the new topology of the network,
updating the wireless links on each real device whenever
necessary. The granularity used to upgrade the wireless
links is of one second, but it can be changed. Since the
real devices do no experience real mobility, we emulate

the wireless links connectivity between nodes using the
Iptables tool. This tool allows each node of Castadiva to only
receive packets from nodes that are within range according
to the emulated topology, and thus it blocks the reception
of packets when nodes are out of range. All Iptables rules
are stored into script files. These scripts will be loaded
on each node through NFS when the simulation starts.
Figure 7 shows the file loaded by AP1. We can see in this
figure different Iptables rules interleaved with sleep rules.
The sleep time allows enforcing Iptables’ rules at suitable
times. Hence, each rule is loaded only when the emulation
requires a node to change its connectivity state towards other
node. For example, Algorithm 1 shows what is the behaviour
of Castadiva when a node (with MAC 00:14:BF:3C:39:EC)
goes out of range at second 15 and comes back into range
at second 35.

Castadiva also allows a user to see all node positions at a
certain instant of time. When a simulation finishes, the user
can activate the Show option and pick an instant of time.
Immediately Castadiva shows the network topology at that
time. This option is useful to do a later evaluation of the
changes occurred in the network topology when mobility
was activated.

4.2.4. Network Traffic Declaration. Castadiva’s traffic gen-
eration tool allows defining different types of traffic flows
between pairs of nodes. With that purpose Castadiva pro-
vides a table where each row defines a connection. Traffic
parameters for each connection can be set depending on
the type of protocol selected, and invalid values are marked
in red. Examples of parameters are packet size, packets per
second, start time, end time, and maximum number of packets
sent. Figure 8 shows a usage example of this tool, where rows
define seven traffic connections. It contains some helpful
buttons that allow making row operations (delete, order by
starting time, or copy). Traffic settings are exportable to ns-2
format also.

When an experiment finishes, Castadiva fills this table
with results, including the average throughput, in the case of
TCP traffic, or the percentage of packets received in the case
of UDP traffic.

4.2.5. Random Test Generator. Sometimes it is useful to
automate the testbed evaluation process varying different
parameters. With that purpose Castadiva includes function-
ality to generate random tests, where a user can define traffic
and automatically test with different numbers of nodes and
randomly generated network topologies. This is achieved
through the Random test window shown in Figure 9.

The user must specify the bounds of the scenario and
the routing protocol used. The minimum and maximum
number of nodes for testing must also be defined, along with
the increase granularity (e.g., with a node interval between
4 and 10 nodes and a granularity of 2, Castadiva executes
four tests with 4, 6, 8, and 10 nodes). Castadiva allows also
to specify how many times each test will be repeated.

At the top left the current scenario generated is displayed,
though it cannot be modified. Again, all the tests can be
stored in either Castadiva’s orns-2’s format.
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sleep 15
iptables -I INPUT -m mac –mac-source 00:14:BF:3C:39:EC -j DROP
sleep 20
iptables -D INPUT -m mac –mac-source 00:14:BF:3C:39:EC -j DROP

Algorithm 1: Iptables rules to emulate when a node goes out of range between seconds 15 and 35.

Figure 9: Random test window.

4.2.6. Compatibility with the ns-2 Simulator. Castadiva can
also import/export scenarios to/from ns-2, making it com-
patible with the most widely used MANET simulator. This
characteristic offers the possibility of comparing results and
reaching more meaningful conclusions.

4.2.7. Castadiva Extensions for External Traffic Injection. Such
functionality allows external nodes to generate real traffic of
any kind and redirect it to specific nodes of Castadiva. For
this reason Castadiva also incorporates an extra component
that allows attaching a laptop or a computer to a node.
Figure 10 shows an example of this functionality.

This way we can use laptops to generate any flow of traffic
and redirect it to specific nodes of Castadiva. For example,
you can use real applications like Ekiga to launch a video-
conference and study the behaviour of H.323, SIP, and video
streaming protocols in MANETs.

Figure 11 shows an example of two laptops connected to
Castadiva. Both laptops have a webcam and run the Ekiga
application to generate a videocall. Castadiva redirects all
traffic related to this video-conference through the emulated
MANET, from the entry to the output point.

5. Validation of Castadiva

In this section we validate the functionality and accuracy
of Castadiva in different MANET scenarios. We divide our
tests in two groups: first, we compare Castadiva with the
ns-2 simulator using both TCP and UDP traffic in a static
scenario; second, we then proceed with a similar analysis in a
mobile scenario.

5.1. Evaluation of Castadiva with a Static Scenario. To
validate the functionality of the proposed tool, and to test its

effectiveness, we have chosen a representative scenario where
nodes are located in a way such that the maximum number
of hops between nodes is of four. The topology used in our
evaluation is shown in Figure 12.

The scenario is defined in a 1000 m × 700 m area, and
the test time is of 100 seconds. The selected scenario was
generated by ns-2 and imported to Castadiva.

Since Castadiva is completely compatible with the ns-2
file format for scenarios, we were able to compare both in a
simple and straightforward manner.

We set the wireless nodes’ range to 250 meters. In terms
of traffic, we define both UDP and TCP connections between
each participating node and node 6. For TCP connections,
the maximum transfer size is of 100 MB. UDP flows generate
55 packets per second, and packet size is fixed at 512 bytes.

In our first evaluation no routing protocol is being used.
Figure 13 shows the results obtained in these tests. We can see
that, as expected, wireless nodes that are out-of-range from
node 6 are not able to communicate with it. This shows that
both network topology and traffic definitions of Castadiva
are being enforced correctly.

On both tests we observe that Castadiva has a lower
throughput than ns-2. We must take into account that the
shared wireless media is prone to both transmission errors
and contention among stations, which is due to the wireless
devices being placed physically close to each other. In the case
of ns-2, only contention effects are simulated, which explains
the observed discrepancy.

We now repeat the previous experiment with routing and
forwarding enabled. We pick the Optimum routing option,
so that Castadiva is responsible for calculating the best route
to reach a destination node and modifying the routing tables
of nodes to enforce the chosen topology. Figure 14 shows the
results for this test.
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Figure 10: External traffic declaration.
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Figure 11: Example of how to add external traffic injection.
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Figure 12: Scenario used for evaluation purposes.

UDP tests show that traffic from nodes AP7, AP8, and
AP9 is now able to reach the destination, while node AP10
remains isolated as intended. Notice that, for the former
nodes, the packet loss ratio increases slightly with the
number of hops to destination. With ns-2 we do not observe
this behaviour for the reasons referred above.

Results with TCP traffic show that the throughput for
nodes 1 to 5 is reduced compared to the previous experiment
(Figure 13), which is due to competing traffic from AP7,
AP8, and AP9. For these nodes throughput decreases with
increasing number of hops, as expected. With ns-2 we
observe that both AP8 and AP9 suffer from starvation; one
of the reasons for this behaviour is that, with Castadiva, all
nodes share a same medium and so packet collisions between
out-of-range nodes do not occur.

Figure 15(a) shows how the effect of collisions as the
number of hops increases in a 802.11 g wireless network.
We make different tests, varying the load from 256 kb/s to
3 Mb/s. As can be seen, the number of hops makes the packet
loss increase. This behaviour is normal in a wireless network
due to interferences among devices but in Castadiva it can
be aggravate by the fact that all devices are close to one
another. To better study how the proximity of the devices
of Castadiva affects performance, Figure 15(b) compares the
capacity offered by Castadiva with respect to other capacity
models proposed in the literature for different scenarios.
We select the following scenarios: (a) a grid topology [26],
(b) a random topology [26], and (c) a chain topology
[27]. We observe that, as expected, the capacity of the
network obtained in Castadiva is lower than the other
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Figure 13: Performance comparison between Castadiva and ns-2
in a static scenario using CBR/UDP traffic (a) and FTP/TCP traffic
(b). (routing disabled).

ones since all devices of Castadiva interfere with each
other. Solutions such as ORBIT try to cope with this
problem by mitigating the effect of the noise among nodes;
however, it introduces new problems into the emulation
as limiting the network topology and limiting the trans-
mission range of all nodes, which is also far from the
real behaviour of a MANET. Castadiva makes a trade-
off between accuracy and price, offering a cheap and
portable platform that is good enough for almost all
tests.

In terms of the control network (wired), we observe
that the bandwidth consumption of the SSH protocol over
Ethernet is far from approaching saturation, and that latency
is low enough to allow adequate coordination of all nodes.
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Figure 14: Performance comparison between Castadiva with ns-2
in a static scenario. Using CBR/UDP traffic (a) and FTP/TCP traffic
(b). Routing enabled.

5.2. Evaluation of Castadiva with a Mobile Scenario. We now
define a mobile scenario with an area of 1000 m× 700 m and
simulation time of 500 seconds and we set the wireless nodes’
range to 250 meters. In terms of traffic, we define both UDP
and TCP connections between each participating node and
node AP7. For TCP connections, the maximum transfer size
is of 1000 MB. UDP flows generate 4 packets per second, and
packet size is fixed at 512 bytes. In the first test, each node
has a maximum speed of 5 m/s and no routing protocol is
used.

Figure 16 shows a node-by-node comparison between
Castadiva and ns-2 for both UDP and TCP traffic. The
selected scenario was generated by ns-2 and imported to
Castadiva to have the same mobility pattern.
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Figure 15: Packet loss due to the proximity of the devices in an
emulation (a) and capacity of an ad hoc network compared with
Castadiva (b).

The figure shows that the obtained results are quite
similar, which validates Castadiva’s implementation. Since
we have not selected any routing protocol, transmissions are
successful only when the destination is a 1-hop neighbour.
We also observe that Castadiva has, in general, a lower
throughput/delivery rate than ns-2. When Castadiva is used,
the shared wireless media is prone to both transmission
errors and contentions among stations. In the case of ns-
2, only contention effects are simulated, which explains the
observed discrepancy for UDP traffic. In the case of TCP
traffic, results are more heterogeneous since it is a stateful,
bandwidth-greedy protocol prone to present nonlinearities,
specially in mobile ad hoc network environments. In terms
of routing, we picked the OLSR routing protocol since its
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Figure 16: Result comparison of Castadiva with ns-2 without rout-
ing.

Table 2: Default OLSR parameter values.

Parameter Value used

HELLO INTERVAL 2 s

REFRESH INTERVAL 2 s

TC INTERVAL 5 s

MID INTERVAL TC INTERVAL

HNA INTERVAL TC INTERVAL

implementation is available for both testing environments
(simulated and real), being quite similar.

Concerning OLSR-related parameters choices, we use the
values proposed in the RFC, shown in Table 2 for the reader’s
convenience.
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Figure 17: Result comparison of Castadiva with ns-2 for UDP (a)
and TCP (b) traffic with routing.

Figure 17 shows the similitude between Castadiva and
ns-2 for both UDP and TCP traffic. In these tests, nodes
virtually situated more than 1-hop away are also able to send
traffic to the destination node thanks to the routing protocol.
Similarly to the test without a routing protocol, Castadiva has
a lower throughput/delivering rate than ns-2, for the same
reasons explained before. In the case of TCP traffic, results
are more heterogeneous as in the test without routing.

We now evaluate the impact of node speed. To do that
we vary the degree of mobility in different scenarios, testing
with maximum node speeds of 0, 5, 10, 15, and 20 m/s. As
for the previous test, each scenario was generated by ns-2
and imported to Castadiva to have exactly the same mobility
patterns. Figure 18 shows the results obtained in this test.
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Figure 18: Comparison of Castadiva and ns-2 at different node
speeds with both UDP (a) and TCP (b) traffic. (routing disabled).

On both tests we observe that Castadiva has a lower
throughput than ns-2. For TCP we observe that the difference
between Castadiva and ns-2 is more significant than for UDP.
To discover the reason of this, we study a controlled scenario
with only two nodes and measure the arrival time of each
packet. With this experiment we obtain the mean delay to do
a rerouting when the OLSR performs a topology update. In
ns-2 it is of five seconds. However, our nodes have a mean
delay of almost eight seconds. This three-second difference
causes TCP agents in ns-2 to achieve a higher throughput.

We now repeat the previous experiment with routing and
forwarding enabled. Figure 19 shows the average percentage
of packets received for maximum node speeds of 0, 5, 10, 15,
and 20 m/s using the OLSR protocol.
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Figure 19: Comparison of Castadiva and ns-2 using OLSR at
different node speeds with both UDP (a) and TCP (b) traffic.

Again we observe important similarities between Cas-
tadiva and ns-2’s results. For both UDP and TCP traffic the
behaviour of these platforms is quite similar. With Castadiva
we achieve slightly less throughput than with ns-2 for the
reasons explained in Section 5.1. Tests show that the average
percentage of UDP packets received is increased when a
routing protocol is used, since it allows nodes AP9 and AP10
to reach their destinations. When studying the behaviour
of the network using TCP traffic instead we observe that
the average throughput is not increased because, in both
simulations, the network is saturated. When looking at the
overall trend, though, we find that there is a high degree of
resemblance between both.
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Figure 20: Topology for evaluating video traffic delivery.

6. Assessing the Performance of
Videoconferencing inMANETS with
Castadiva

We now describe the performance results obtained when
transmitting real-time video traffic through Castadiva. We
test with several different scenarios where the purpose is to
stress the application and evaluate the impact of the number
of hops in the quality of the received video stream. We
are going to employ two different kinds of video streams:
a standard videocall, where the video sequence is almost
static, and a more dynamic videocall, where we will point the
webcams towards a screen displaying a movie.

Similarly to the previous section, we will perform tests in
both static and mobile scenarios.

6.1. Static Scenario Evaluation. Initially we evaluate the
performance of a videocall in a static MANET for reference.

The scenario is defined in a 1500 m × 1800 m area, and
the test time is of 5000 seconds. We set the wireless nodes’
range to 250 meters. To monitor the video traffic we use the
tcpdump application [28].

To generate the video traffic we have two laptops with a
webcam attached and running Ekiga, an open source VoIP,
and videocall application for Linux.

We generate an emulated MANET topology where all
nodes are aligned according to a chain topology. Figure 20
shows the topology used when eleven nodes are deployed.
In each laptop we redirect all traffic sent to the other
laptop through the wireless routers located at both edges of
the simulation (AP1 and AP11 in this scenario). We also
configure Castadiva to route all video traffic through our
testbed.

Each node runs the OLSR daemon to obtain consistent
routing tables. We initially used the values proposed in its
RFC, but the results obtained in static environments were
not good since the OLSR was unable to find the routes or the
routes were lost too quickly due to the network congestion.



EURASIP Journal on Wireless Communications and Networking 15

Table 3: OpenWRT parameters values for the OLSR protocol.

Parameter Used values

HELLO INTERVAL 5 s

HELLO VALIDITY 15 s

TC INTERVAL 2 s

TC VALIDITY 15 s

MID INTERVAL 15 s

MID VALIDITY 300 s

HNA INTERVAL 15 s

HNA VALIDITY 300 s

Therefore, instead of using the default RFC parameters, we
used the default configuration of OLSR implemented in
the OpenWRT system, that are considered optimum for a
standard mesh network. Table 3 shows these values.

The effects we want to study are the variations in terms
of throughput, delay and jitter when varying the numbers of
hops in the network.

6.1.1. Evaluating the Performance with a Standard Videocall.
We now present the results obtained when using Castadiva
to evaluate a standard videocall between two users. Based
on traffic traces at source and destination, we measured the
throughput and the interpacket delay (jitter).

Figure 21(a) shows the mean throughput obtained for
the generated data rate at different number of hops. As we
increase the number of hops, we appreciate that the average
throughput is decreased to less than a twentieth compared to
the one hop scenario (from around of 700 Kb/s to close to
30 Kb/s). Figure 21(b) shows how the packet loss increases
when we vary the number of intermediate hops between
sender and receiver. In a scenario with more than 9 hops the
packet loss rate is significant for the videocall. In particular,
for a scenario of 10 hops, the videocall experiences a 10% of
packet loss.

Figure 22 shows the cumulative distribution function for
the interpacket generation interval and interpacket arrival
interval in two scenarios where source and destination are
one and twelve hops away, respectively. In the scenario
with one hop, the smallest network possible, we can
appreciate the differences between the minimum interpacket
generation time at the source (around 0.01 millisecond)
and the minimum interpacket arrival time at the receiver
(around 0.1 millisecond). Also, 50% of the packets have an
interpacket generation time of less than 0.03 millisecond,
but the interpacket arrival time is typically of more than 1
millisecond.

In the scenario with ten hops, if we compare the
interpacket arrival time with the one obtained in the one
hop scenario, we can appreciate an increase of more than
2 milliseconds. This is caused by the forwarding time
of the additional nodes on the path. This is expected
since these packets, usually generated back-to-back by the
videoconferencing application, experience significant jitter
when traversing an ad hoc network with a high number of
hops.
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Figure 21: Average data rate generated (a) and packet loss ratio (b)
for different numbers of hops.

6.1.2. Evaluating the Performance of a Movie Transmission. In
the previous section our experiments relied on a standard
videocall. The characteristics of such videoconference—
low degrees of video motion—do not impose significant
demands in terms of network bandwidth. Therefore, we
repeat our experiments with a higher motion video. With
that purpose we pointed both webcams (each vinculated to
a communication endpoint) to a screen showing a movie.
Such strategy also allows running long experiments without
the intervention of users. By repeating our experiments
and taking long sampling periods we were also able to
obtain meaningful values for the end-to-end delay, and so
we include them in this section, as well as the measured
throughput and jitter for comparison against the previous
test. Figure 23 shows the working area used in these tests
where we can observe both webcams pointing to a screen
showing a film.

Figure 24 shows two frames obtained in the test for
different hops, where we can see the quality of the video
received in both scenarios. In the scenario with one hop,
there is no significant delay between the real video sequence
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Figure 22: Cumulative distribution function for the interpacket
generation interval and interpacket arrival interval in a scenario
with one hop (b) and ten hops (a).

and the decoded one because the path is too short. In a
scenario with ten hops, though we can verify the poor perfor-
mance obtained by comparing the received and transmitted
sequences, we also appreciate a delay of the received image
compared to the real image (notice that both webcams aim
at a same target for comparison purposes).

Figure 25(b) shows the mean throughput obtained for
the generated data rate obtained for a different number of
hops. In a scenario with one hop, we have a mean data rate
above 500 Kb/s. In a scenario with 13 hops, the mean value
of the generated data rate decreases to less than 100 Kb/s due
to Ekiga’s bandwidth throttling mechanism. We also evaluate
the packet loss in each scenario. Figure 25(b) shows how the
packet loss increases when we vary the intermediate hops
between sender and receiver. If we compare this graphic with

Figure 23: Testing a videocall when both webcams point to screen
with a movie.

(a)

(b)

Figure 24: Screenshot of the videocall with a scenario of one hop
(b) and ten hops (a).

the one obtained in the evaluation of a real videoconference,
we can observe that now the packet loss rate increases more
significantly. In fact, for more than 6 hops, the packet loss
rate surpasses 10%.

Figure 26 shows the cumulative distribution function for
the interpacket generation and arrival times in a scenario
with one hop and in a scenario with ten hops. Notice that
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Figure 25: Cumulative distribution function for the throughput in
a scenario with different hops (b) and packet loss rate in different
scenarios (a).

high delay values are quite prone to occur in this case, often
introducing significant jitter (above 100 milliseconds).

6.1.3. Evaluating the Round-Trip Time of the Different
Scenarios. We also evaluated the impact of increasing the
number of hops on delay by using ping sessions and
measuring the impact on round-trip time while maintaining
videoconference sessions active. We generate a ping session
between the two laptops in the chain scenario described
earlier, varying the number of hops from one to ten. We
obtain the average time of the ping session used to send a
packet and receive the answer. To obtain the one-way delay,
we divided the results obtained by two.

Figure 27 shows the average delay and the standard
deviation for each scenario. As expected, delay increases
almost linearly with the number of hops between sender
and receiver. Of special interest is the increase in terms of
standard deviation, which can be quite problematic for real-
time video transmission.
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Figure 26: Cumulative distribution function for the interpacket
generation interval and interpacket arrival interval in a scenario
with one hop (a) and ten hops (b).

6.2. Dynamic Scenario. In this section we evaluate different
scenarios with a dynamic topology. We change the nodes’
mobility by testing with the following speed values: 3, 6,
9, 12, 15 meters per second. The scenario is defined in a
1500 m × 900 m area, and the test time is of 5000 seconds.
We set the wireless nodes’ range to 250 meters. To generate
the video traffic we have two laptops with a webcam attached
running Ekiga. In this test, as for the static scenario, we
also differentiate between two types of scenarios: a standard
videocall and a videocall where the webcams point to a movie
being displayed.

Regarding to OLSR, and according to [29, 30], we need
to tune up the protocol for use in mobile scenarios. The new
configuration of the protocol is shown in Table 4.
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Figure 27: Evaluation of the ping sessions in different scenarios.

Table 4: OLSR values used for the mobility scenarios.

Parameter Used Values

ELLO INTERVAL 2 s

HELLO VALIDITY 6 s

TC INTERVAL 5 s

TC VALIDITY 15 s

MID INTERVAL 5 s

MID VALIDITY 15 s

HNA INTERVAL 5 s

HNA VALIDITY 30 s

Table 5: Percentage of the simulation time when exists a route
between both laptops.

Mobility % time with route

3 m/s 64.72

6 m/s 65.32

9 m/s 85.70

12 m/s 91.77

15 m/s 93.74

Since, for these tests, we picked a particular OLSR
configuration, the first step is to measure the total amount
of time that the route between both laptops is established.
For this test we emulate 20 random scenarios for each speed,
and we measure with a ping if the route has established or
not.

Table 5 shows total percentage of time the route is
established.

The percentage of time without route is directly related to
the amount of time that OLSR needs to obtain a route when
the topology is changing plus the time when the network is
split, and there is no possible route between the two laptops.

6.2.1. Evaluating the Performance with a Standard Videocall.
As in Section 6.1, we first evaluate the behaviour of a
standard videocall in a MANET. Since the number of hops
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Figure 28: Throughput and packet losses with a standard videocall
in a scenario with mobility.

is variable in each simulation due to mobility, in this case
we study the variation of the throughput with different node
speeds as well as the packet losses since the protocol is based
on UDP.

Figure 28 shows the results obtained in this set of tests.
As we can observe, higher mobility translates into better
performance of the network and less percentage of packets
lost. This is due to a the higher route availability, as shown
in Table 5. Higher speeds avoid lengthy network partitioning
effects, which are translated as a better service with a higher
average throughput.

6.2.2. Evaluating the Performance of a Movie Transmission.
In this section we also measure the throughput obtained by
the videoconferencing participants when streaming a movie
being displayed.

Figure 29 shows the throughput obtained and the packet
losses in a scenario where the webcams point to a screen
displaying a movie. As we can see, the throughput is higher
than that in the previous test: if the webcams capture
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Figure 29: Throughput and packet losses with a movie in a scenario
with mobility.

a movie, the video is more complex than the nearly static
image of a standard videocall.

If we compare this figure with the one shown when
evaluating a standard videocall, we can see a similar trend.
The last test shows a higher throughput, as the transmitted
video generates a higher data rate. Packet losses are decreased
as in the standard videocall because (1) we have a higher
throughput when a route is established due the type of
video captured, (2) Ekiga’s bandwidth throttling mechanism
decreases the packet injected when a route is lost, and (3)
on average we have the same time periods without routes
between the two laptops as in the previous tests. Jointly,
these factors explain why the total percentage of packets lost
is reduced at higher node speeds (within the speed range
tested).

7. Conclusions

In this work we present Castadiva, a novel architecture to
improve research in the MANETs field by allowing to make

real testbed experiments in a simple and straightforward
manner.

Castadiva combines the convenience and productivity of
Java with the power of the Linux kernel and accompanying
tools to emulate an ad hoc network environment. The system
was designed to simplify the tasks of scenario generation
and starting traffic flows among independent, IEEE 802.11-
based, wireless nodes. One of its key advantages is that it is
fully compatible with the ns-2 simulator.

The architectural design of Castadiva differentiates wire-
less nodes, used for the actual experiments, from the core
application, which has management and control purposes.
This core application provides an easy interface to define
network topologies and traffic flows between nodes. Those
definitions are then translated into run-time instructions
sent to testbed nodes when experiments are on-going. We
observed that the use of SSH protocols and Fast Ethernet
connectivity allows nodes to synchronize the start of an
experiment with high accuracy, being all instructions read
at once; afterwards, the testbed relies on individual clocks to
synchronize instructions throughout the remaining time of
an experiment.

An important issue when designing Castadiva was that
of ns-2 compatibility. Castadiva is compatible with the file
format used by the ns-2 simulator. In the validation section,
we compared the results obtained with Castadiva and the
ns-2 network simulator. By using both TCP and UDP data
traffic, and under a variety of static and dynamic MANETs
scenarios, we show that Castadiva is able to offer confident
results while using cheap wireless off-the-shelf devices.

Castadiva was also extended to allow injecting traffic
from external applications. Such functionality enabled us to
assess the performance of videoconferencing in an emulated
ad hoc network using a real application such as Ekiga. We
studied the behavior of a videocall in both static and dynamic
scenarios. For the static scenario we change the number of
hops between caller and receiver from one to ten. We also
vary the characteristics of the video being transmitted. The
results obtained in the video evaluation show that, for a
large number of hops, delay times are quite high, typically
provoking annoyance to the videocall users. Packet losses also
become problematic when source and destination are more
than six hops away. Additionally, our experiments showed
that the OLSR routing protocol is prone to suffer from
instability if the hop count is high, despite altering the default
parameter values to more efficient ones.

Concerning the mobile scenario, the tests performed
show that, on average, a MANET can be used to support
a videocall with mobility, being the quality of the video
decreased and having a percentage of time without service
between 7% and 36% of the total time, depending on the
nodes’ speed. In general, we can assert that higher degrees of
mobility are better to avoid nodes becoming isolated for long
periods of time.

To summarize, this work shows that the advantages of
using Castadiva with respect to other MANET test-beds
are that (1) it is a very low-cost test-bed since each node
costs about 50$, (2) it is fully compatible with the ns-2
simulator, allowing to compare results between both in a
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straightforward manner, and (3) it does not occupy a lot of
physical space.

Castadiva is free software developed under the GNU
GPL licence and can be downloaded at http://castadiva
.sourceforge.net/.
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