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Physical layer security is an emerging security area that achieves perfect secrecy data transmission between intended network
nodes, while malicious nodes that eavesdrop the communication obtain zero information. The so-called secrecy capacity can be
improved using friendly jammers that introduce extra interference to the eavesdroppers. We investigate the interaction between
the source that transmits the useful data and friendly jammers who assist the source by “masking” the eavesdropper. To obtain
distributed solution, we introduce a game theoretic approach. The game is defined such that the source pays the jammers to
interfere the eavesdropper, therefore, increasing the secrecy capacity. The friendly jammers charge the source with a certain price
for the jamming, and there is a tradeoff for the price. If too low, the profit of the jammers is low; and if too high, the source
would not buy the “service” (jamming power) or would buy it from other jammers. To analyze the game outcome, we investigate
a Stackelburg type of game and construct a distributed algorithm. Our analysis and simulation results show the effectiveness of
friendly jamming and the tradeoff for setting the price. The distributed game solution is shown to have similar performances to
those of the centralized one.
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1. Introduction

The future communication systems will be decentralized
and adhoc, therefore allowing various types of network
mobile terminals to join and leave. This aspect makes
the whole system vulnerable and susceptible to attacks.
Anyone within communication range can listen and possibly
extract information. While these days we have numerous
cryptographic methods with high level security, there is no
system with perfect security on physical layer. Therefore,
the physical layer security is regaining a new attention.
The main goal of this paper is to design a decentralized
system that will protect the broadcasted data and make
it impossible for the eavesdropper to receive the packets
even if it knows the encoding/decoding schemes used by
the transmitter/receiver. In approaches where physical layer
security is applied, the main objective is to maximize the
rate of reliable information from the source to the intended

destination, while all malicious nodes are kept as ignorant of
that information as possible. This maximum reliable rate is
known as secrecy capacity.

This line of work was pioneered by Wyner, who defined
the wiretap channel and established the possibility to create
almost perfect secure communication links without relying
on private (secret) keys [1]. Wyner showed that when
the eavesdropper channel is a degraded version of the
main channel, the source and the destination can exchange
perfectly secure messages at a nonzero rate. The main
idea proposed by him is to exploit the additive noise
impairing the eavesdropper by using a stochastic encoder
that maps each message to many codewords according to
an appropriate probability distribution. With this scheme,
a maximal equivocation (i.e., uncertainty) is induced at the
eavesdropper. In other words, a maximal level of secrecy is
obtained. By ensuring that the equivocation rate is arbitrarily
close to the message rate, one can achieve perfect secrecy
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Figure 1: System model for the proposed physical layer security
game.

in the sense that the eavesdropper is now limited to learn
almost nothing about the source-destination messages from
its observations. Follow-up work by Leung-Yan-Cheong and
Hellman characterized the secrecy capacity of the additive
white Gaussian noise (AWGN) wiretap channel [2]. In their
landmark paper, Csiszar and Korner generalized Wyner’s
approach by considering the transmission of confidential
messages over broadcast channels [3]. Recently, there have
been considerable efforts on generalizing these studies to the
wireless channel and multiuser scenarios (see [2, 4–11] and
references therein). Jamming [12–14] has been studied for
a long time to analyze the hostile behaviors of malicious
nodes. Recently, jamming has been employed to physical
layer security to reduce the eavesdropper’s ability to decode
the source’s information [15]. In other words, the jamming
is friendly in this context. Moreover, the friendly helper can
assist the secrecy by sending codewords, and bring further
gains relative to unstructured Gaussian noise [15–17].

Game theory [18] is a formal framework with a set
of mathematical tools to study some complex interactions
among interdependent rational players. During the past
decade, there has been a surge in research activities that
employ game theory to model and analyze modern dis-
tributed communication systems. Most of these works [19–
22] concentrate on the distributed resource allocation for
wireless networks. As far as the authors’ knowledge, the game
theory has not yet been used in the physical layer security.

In this paper, we investigate the interaction between the
source and its friendly jammers using game theory. Although
the friendly jammers help the source by reducing the data
rate that is “leaking” from the source to the malicious node,
at the same time they also reduce the useful data rate from
the source to the destination. Using well chosen amounts of
power from the friendly jammers, the secrecy capacity can
be maximized. In the game that we define here, the source
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Figure 2: Secrecy capacity versus the power of the single jammer.

pays the jammers to interfere the malicious eavesdropper,
and therefore, to increase the secrecy capacity. The friendly
jammers charge the source with a certain price for their
service of jamming the eavesdropper. One could notice that
there is a tradeoff for the proposed price. If the price of a
certain jammer is too low, its profit is also low; if its price
is too high, the source will buy from the other jammers.
In modeling the outcome of the above games our analysis
uses the Stackelberg type of game. Initially, the existence of
equilibrium will be studied. Then, a distributed algorithm
will be proposed and its convergence will be investigated. The
outcome of the distributed algorithm will be compared to
the centralized genie aided solution. Some implementation
concerns are also discussed. From the simulation results, we
can see the efficiency of friendly jamming and tradeoff for
setting the price, the source prefers buying service from only
one jammer, and the centralized scheme and the proposed
game scheme have similar performance.

The rest of the paper is organized as follows. In Section 2,
the system model of physical layer security with friendly
jamming users is described. In Section 3, the game models
are formulated, and the outcomes as well as properties of the
game are analyzed. Simulation results are shown in Section 4,
and conclusions are drawn in Section 5.

2. SystemModel

We consider a network with a source, a destination, a
malicious eavesdropper node, and J friendly jammer nodes
as shown in Figure 1. The malicious node tries to eavesdrop
the transmitted data coming from the source node. When
the eavesdropper channel from the source to the malicious
node is a degraded version of the main source-destination
channel, the source and destination can exchange perfectly
secure messages at a nonzero rate. By transmitting a message
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at a rate higher than the rate of the malicious node, the
malicious node can learn almost nothing about the messages
from its observations. The maximum rate of secrecy infor-
mation from the source to its intended destination is defined
by the term secrecy capacity.

Suppose the source transmits with power P0. The channel
gains from the source to the destination and from the source
to the malicious node are Gsd and Gsm, respectively. Each
friendly jammer i, i = 1, . . . , J , transmits with power Pi and
the channel gains from it to the destination and the malicious
node are Gid and Gim, respectively. We denote by J the set
of indices {1, 2, . . . , J}. If the path loss model is used, the
channel gain is given by the distance to the negative power of
the path loss coefficient. The thermal noise for each channel
is σ2 and the bandwidth is W . The channel capacity for the
source to the destination is

C1 =W log2

(
1 +

P0Gsd

σ2 +
∑

i∈J PiGid

)
. (1)

The channel capacity from the source to the malicious node
is

C2 =W log2

(
1 +

P0Gsm

σ2 +
∑

i∈J PiGim

)
. (2)

The secrecy capacity is

Cs = (C1 − C2)+, (3)

where (·)+ = max(·, 0). Both C1 and C2 are decreasing and
convex functions of jamming power Pi. However, Cs = C1 −
C2 might not be a monotonous and convex function.( Minus
of two convex functions is not a convex function anymore.)
This is because the jamming power might decrease C1 faster
thanC2. As a result,Cs might increase in some region of value
Pi. When Pi further increases, both C1 and C2 approach zero.
As a result, Cs approaches zero. So, the questions are whether
or not Cs can be increased, and how to control the jamming
power in a distributed manner so as to achieve the maximal
Cs. We will try to solve the problems in the following section
using a game theoretical approach.

3. Game for Physical Layer Security

In this section, we study how to use game theory to analyze
the physical layer security. First, we define the game between
the source and friendly jammers. Next, we optimize the
source and jammer sides, respectively. Then, we prove some
properties of the proposed game. Furthermore, a comparison
with the centralized scheme is constructed. Finally, we
discuss some implementation concerns.

3.1. Game Definition. The source can be modeled as a
buyer who wants to optimize its secrecy capacity minus cost
by modifying the “service” (jamming power Pi) from the
friendly jammers, that is,
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Source’s Game: max Us = max(aCs −M), (4)

s.t. Pi ≤ Pmax, (5)

where a is the gain per unit capacity, Pmax is the maximal
power that a jammer can provide, and M is the cost to pay
for the other friendly jamming nodes. Here

M =
∑
i∈J

piPi, (6)

where pi is the price per unit power for the friendly jammer,
Pi is the friendly jammer’s power, and J is the set of
friendly jammers. From (4) we note that the source will not
participate in the game if C1 < C2, or in other words, the
secrecy capacity is zero. For each jammer, Ui(pi,Pi(pi)) is the
utility function of the price and power bought by the source.
For the jammer’s (seller’s) utility, in this paper we define the
following utility:

Ui = piP
ci
i , (7)

where ci ≥ 1 is a constant to balance from the payment
piPi from the source and the transmission cost Pi. With
different values of ci, jammers have different strategies for
asking the price pi. Notice that Pi is also a function of the
vector of prices (p1, . . . pN ), since the power that the source
will buy also depends on the price that the friendly jammers
ask. Hence, for each friendly jammer, the optimization
problem is

Friendly Jammer’s Game: max
pi

Ui. (8)

In the next two subsections, we analyze the optimal
strategies for the source and friendly jammers to maximize
their own utilities.
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3.2. Source (Buyer) Side Analysis. Introducing A =
P0Gsd/σ2, B = P0Gsm/σ2, ui = Gid/σ2, and vi = Gim/σ2, i ∈
J, we have

Us=aW

(
log

(
1+

A

1+
∑

j∈J ujPj

)
−log

(
1+

B

1+
∑

j∈J vjPj

))+

−
∑
j∈J

pjPj .

(9)

For the source (buyer) size, we analyze the case C1 > C2.
By differentiating (4), we have

∂Us

∂Pi
= − aWAui/ ln 2(

1 + A +
∑

j∈J ujPj

)(
1 +

∑
j∈J ujPj

)

+
aWBvi/ ln 2(

1 + B +
∑

j∈J vjPj

)(
1 +

∑
j∈J vjPj

) − pi = 0.

(10)

Rearranging the above equation, we have

P4
i + Fi,3P

3
i + Fi,2

(
pi
)
P2
i + Fi,1

(
pi
)
Pi + Fi,0

(
pi
) = 0, (11)

where

Fi,3 = (2 + 2αi + A)2 +
(
2 + 2βi + B

)2,

Fi,2
(
pi
) = (2 + 2αi + A)

(
2 + 2βi + B

)
uivi

+
Li
v2
i

+
Ki

u2
i

− aW

piuivi

(
B

vi
− A

ui

)
,

Fi,1
(
pi
) = LiCi + KiDi

u2
i v

2
i

+
aW(ADi − BCi)

piu
2
i v

2
i

,

Fi,0
(
pi
) = KiLi

u2
i v

2
i

+
aW(AuiLi − BviKi)

piu
2
i v

2
i

,

αi =
∑
j /= i

GjdPj ,

βi =
∑
j /= i

GjmPj ,

Ki = (1 + αi)(1 + αi + A),

Li =
(
1 + βi

)(
1 + βi + B

)
,

Ci = ui(2 + 2αi + A),

Di = vi
(
2 + 2βi + B

)
.

(12)

The solutions of the quartic equation (11) can be expressed
in closed form but this is not the primary goal here. It is
important that the solution we are interested in is given by
the following function:

P∗i = P∗i

(
pi,A,B,

{
uj

}
,
{
vj
}

,
{
Pj

}
j /= i

)
. (13)
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Note that 0 ≤ Pi ≤ Pmax. Since Pi satisfies the polynomial
function, we can have the optimal strategy as

P∗i = min[max(Pi, 0),Pmax]. (14)

Because of the complexity of the closed form solution
of the quartic equation in (14), we also consider two special
cases: low interference case and high interference case.

3.2.1. Interference at the Destination Is Much Smaller than
the Noise. Remember the definitions: A = P0Gsd/σ2, B =
P0Gsm/σ2, ui = Gid/σ2, and vi = Gim/σ2. Imagine a situation
in which all jammers are close to the malicious node and far
from the destination node. In that case the interference from
the jammers to the destination is very small in comparison
to the additive noise and therefore we have

Us ≈ aW

(
log(1 + A)− log

(
1 +

B

1 +
∑

j∈J vjPj

))+

−
∑
j∈J

pjPj .

(15)

Then

∂Us

∂Pi
= aWBvi/ ln 2(

1 + B +
∑

j∈J vjPj

)(
1 +

∑
j∈J vjPj

) − pi = 0.

(16)

Rearranging we get

P2
i +

2 + 2βi + B

vi
Pi +

(
1 + βi

)(
1 + B + βi

)
v2
i

− aWB

pivi ln 2
= 0.

(17)
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Solving the above equation we obtain a closed-form solution

P∗i = −
2 + 2βi + B

2vi
,

+

√√√√(2 + 2βi + B
)2

4v2
i

−
(
1 + βi

)(
1 + B + βi

)
v2
i

+
aWB

pivi ln 2
,

= qi +

√
wi +

zi
pi

,

(18)

where

qi = −
2 + 2βi + B

2vi

wi =
(
2 + 2βi + B

)2

4v2
i

−
(
1 + βi

)(
1 + B + βi

)
v2
i

zi = aWB

vi ln 2
.

(19)

Finally, by comparing P∗i with the power under the
boundary conditions (Pi = 0, Pi = Pmax, and Cs = 0), the
optimal P∗i in the low SNR region can be obtained.

3.2.2. One Jammer with Interference That Is Much Higher
than the Noise but Much Smaller than the Received Power
at the Destination and the Malicious Node. In this case the
interference from the jammer is much higher than the
additive noise but much smaller than the power of the
received signal at the destination and the malicious node. In
other words, that means 1 � u1P1 � A and 1 � v1P1 � B.
Therefore the utility function of the source is given by

Us ≈ aW
(

log
(

1 +
A

u1P1

)
− log

(
1 +

B

v1P1

))
− p1P1

≈ aWA

u1P1
− aWB

v1P1
− p1P1.

(20)

If (B/v1) − (A/u1) ≤ 0, Us is a decreasing function of
P1. As a result, Ps is optimized when P1 = 0, that is, the
jammer would not participate the game. On the other hand,
if (B/v1)−(A/u1) > 0, in order to find the maximizing powers
we have to calculate

∂Us

∂Pi
= −aWA

u1P
2
1

+
aWB

v1P
2
1
− p1 = 0. (21)

Hence

P∗1 =
√

aW

p1

(
B

v1
− A

u1

)
=
√

D1

p1
. (22)

From this equation we get the optimal closed-form solution
P∗i , and similarly by comparing P∗1 with the power under the
boundary conditions (P1 = 0, P1 = Pmax, and Cs = 0), we
can obtain the optimal solution for the this special case.

3.3. Friendly Jammer (Seller) Side Analysis. In this subsec-
tion, we study how the friendly jammers can set the optimal
price to maximize its utility. By differentiating the utility in
(7) and setting it to zero, we have

∂Ui

∂pi
= (P∗i )ci + pici

(
P∗i
)ci−1 ∂P∗i

∂pi
= 0. (23)

This is equivalent to

(
P∗i
)ci−1

(
P∗i + pici · ∂P

∗
i

∂pi

)
= 0. (24)

This happens either if P∗i = 0 or if

P∗i + pici · ∂P
∗
i

∂pi
= 0. (25)

From the closed form solution of P∗i the solution of p∗i will
be a function given as

p∗i = p∗i
(
σ2;Gsd;Gsm; {Gid}; {Gim}

)
. (26)

Notice that p∗i should be positive. Otherwise, the friendly
jammer would not play.

3.4. Properties. In this subsection, we prove some properties
of the proposed game. First, we prove that the power is
monotonous function of the price under the two extreme
cases. The properties can help for the proof of equilibrium
existence in the later part of this subsection.

Property 1. Under the two special cases, the optimal power
consumption P∗i for friendly jammer i is monotonous with its
price pi, when the other friendly jammers prices are fixed. The
proof is straightforward from (18) and (22).

We investigate the following analysis of the relation
between the price and the power. We find out that the
friendly jammer power Pi bought from the source is convex
in its own price pi under some conditions. To prove this we
need to check whether the second derivative ∂2Pi/∂p

2
i < 0.
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In the first special case in which the interference is small

∂P∗i
∂pi

= − zi

2p2
i

√
wi +

(
zi/pi

) ,

∂2P∗i
∂p2

i

= zi

p3
i

(
wi +

(
zi/pi

))1/2

(
1− 1

4
((
piwi/zi

)
+ 1
)
)
.

(27)

The above equation is greater than zero when pi is small. This
means when the interference is small and the price is small,
the power is convex as a function of the price.

In the second special case in which the interference is
severe

∂P∗i
∂pi

= −1
2

√
D1p

−3/2
1 ,

∂2P∗i
∂p2

i

= 3
4

√
D1p

−5/2
1 > 0.

(28)

This means when the interference is severe, the power is a
convex function of the price.

Next, we investigate the equilibrium of the proposed
game. At the equilibrium, no user can improve its utility by
changing its own strategy only. We first define the Stackelberg
equilibrium as follows.

Definition 1. PSE
i and pSEi are the Stackelberg equilibrium of

the proposed game, if when pi is fixed,

Us

({
PSE
i

})
= sup

Pmax≥{PSE
i }≥0, ∀i

Us({Pi}), ∀i ∈ J (29)

and when Pi is fixed,

Ui

(
pSEi
)
= sup

pi
Ui
(
pi
)
, ∀i ∈ J. (30)

Finally, from the analysis in the previous two subsections,
we can show the following property for the proposed game.

Property 2. The pair of {P∗i }Ni=1 in (14) and {p∗i }Ni=1 in (26)
is the Stackelberg equilibrium for the proposed game.

Notice that there might be multiple roots in (11), as a
result, there might be multiple Stackelberg equilibria. In the
simulation results shown in later section, we will show that
the proposed scheme can still achieve the equilibria with
better performances than those of the no-jammer case.

3.5. Distributed Algorithm and Convergence. In this subsec-
tion, we study how the distributed game can converge to
the Stackelberg equilibrium defined in the above subsection.
After rearranging (23), we have

pi = Ii
(
p
) = −

(
P∗i
)

ci
(
∂P∗i /∂pi

) , (31)

where p = [p1, . . . , pN ]T and Ii(p) is the price update
function. Notice that P∗i is a function of p. The information
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for the update can be obtained from the source node. This is
similar to the distributed power control [25]. The update of
the friendly jammers’ prices can be written in a vector form
as

Distributed Algorithm: p(t + 1) = I
(
p(t)

)
, (32)

where I = [I1, . . . , IN ]T , and the iteration is from time t to
time t+1. Next we show that the convergence of the proposed
scheme by proving that the price update function in (32) is a
standard function [23] defined as follows.

Definition 2. A function I(p) is standard, if for all p ≥ 0, the
following properties are satisfied
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(1) Positivity: p > 0.

(2) Monotonicity: if p ≥ p′, then I(p) ≥ I(p
′
), or I(p) ≤

I(p
′
).

(3) Scalability: for all η > 1, ηI(p) ≥ I(ηp).

In [23], it has been proved that the price will converge to
the fixed point (i.e., the Stackelberg equilibrium in our case)
from any feasible initial price vector. The positivity is very
easy to prove. If the price pi goes up, the source would buy
less from the ith friendly jammer. As a result, (∂P∗i /∂pi) in
(23) is negative, and we prove positivity pi = Ii(p) > 0.

The monotonicity and scalability can only be shown in
the two special cases. For the low interference case, from (18)
it is obvious that

Ii
(
p
) = −

(
P∗i
)

ci
(
∂P∗i /∂pi

)

=
2
√
wip

2
i + zi pi

(
qi pi +

√
wip

2
i + zi pi

)
cizi

(33)

which is monotonically increasing in pi. For scalability, we
have

Ii
(
ηp
)

ηIi
(
p
) =

√
wip

2
i +
(
zi pi/η

)(
qi pi +

√
wip

2
i +
(
zi pi/η

))
√
wip

2
i + zi pi

(
qi pi +

√
wip

2
i + zi pi

) < 1,

(34)

since η > 1.
For the large interference case, from (22) we have

Ii
(
p
) = −

(
P∗i
)

ci
(
∂P∗i /∂pi

) = 2pi
ci

(35)

which is monotonically increasing in pi and scalable.
For more general cases, the analysis is tractable. In the

simulation section later, we employ the general simulation
setups. The simulation results show that the proposed
scheme can converge and outperform the no-jammer case.

3.6. Centralized Scheme. Traditionally, the centralized
scheme is employed assuming that all channel information
is known. The objective is to optimize the secrecy capacity
under the constraints of maximal jamming power.

max
Pi

Cs=max

⎡
⎣W log2

⎛
⎝ 1+

(
P0Gsd/

(
σ2 +

∑
i∈J PiGid

))
1+
(
P0Gsm/

(
σ2 +

∑
i∈J PiGim

))
⎞
⎠, 0

⎤
⎦.

s.t. 0 ≤ Pi ≤ Pmax, ∀i.
(36)

The centralized solution is found by maximizing the
secrecy capacity only. If we do not consider the constraint,
we have

∂Cs

∂Pi
= − AWui

(1 + αi + uiPi)(1 + A + αi + uiPi)

+
BWvi(

1 + βi + uiPi
)(

1 + B + βi + uiPi
) = 0.

(37)
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Figure 8: Power versus the location of the second jammer.

Rearranging we get

P2
i +

Au2
i

(
2 + B + 2βi

)− Bv2
i (2 + A + 2αi)

Au3
i − Bv3

i

Pi

+
Aui

(
1 + βi

)(
1 + B + βi

)− Bvi(1 + αi)(1 + A + αi)

Au3
i − Bv3

i

= 0.
(38)

Using the KKT condition theorem [24], the final solution
would be obtained by comparing the boundary conditions
(i.e., Pi = 0, Pi = Pmax, and Cs = 0).

Notice that our proposed algorithm is distributive,
in the sense that only the pricing information needs to
be exchanged. In the simulation results, we compare the
proposed game theoretical approach with this centralized
scheme.

Finally, from the simulation results in the next section, we
see that the distributed solution and the centralized solution
are asymptotically the same if a is sufficiently large (the
source cares more about the secrecy capacity than for the
payment, i.e., the source is sufficiently rich).

3.7. Implementation Discussion. There are several implemen-
tation concerns for the proposed scheme. First, the channel
information from the source to the malicious eavesdropper
might not be known or accurately known. Under this
condition, the secrecy capacity formula should be rewritten
considering the uncertainty. If the direction of arrival is
known, multiple antenna techniques can be employed such
as in [11]. Second, the proposed scheme needs to iteratively
update the price and power information. A natural question
arises if the distributed scheme has less signalling than the
centralized scheme. The comparison is similar to distributed
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and centralized power control in the literature [23, 25].
Since the channel condition is continuously changing, the
distributed solution only needs to update the difference of
the parameters such as power and price to be adaptive, while
the centralized scheme requires all channel information in
each time period. As a result, the distributed solution has
a clear advantage and dominates the current and future
wireless network designs. For example, the power control for
cellular networks, the open loop power control is done only
once during the link initialization, while the close loop power
control (distributed power allocation such as [23]) is per-
formed 1500 times for UMTS and 800 times for CDMA2000.

Finally, for the multisource multidestination case, there are
two possible choices to solve the problem. First, we can use
clustering method to divide the network into sub-networks,
and then employ the single-source-destination pair and
multiple-friendly-jammer solution proposed in this paper.
If we believe that the jamming power can be useful for
multiple eavesdroppers, some techniques such as double
auction could be investigated. The detailed discussion is
beyond the scope of this paper and would be considered in
our future research.

4. Simulation Results

The simulation is set up as follows. The source and friendly
jammer have power of 0.02, the bandwidth is 1, the
noise level is 10−8, the propagation loss factor is 3, and
AWGN channel is assumed. The source, destination, and
eavesdropper are located at the coordinates (0,0), (100,0),
and (50,50), respectively. Here we select a = 2 for the friendly
jammer utility in (7).

For single friendly jammer case, we show the simulation
with the friendly jammer at the location of (50,75) and
(10,75). In Figure 2, we show the secrecy capacity as a
function of the jamming power. We can see that with the
increase of the jamming power, the secrecy capacity first
increases and then decreases. This is because the jamming
power has different effects on C1 and C2. So there is an
optimal point for the jamming power. Also the optimal point
depends on the location of the friendly jammer, and the
friendly jammer close to the eavesdropper is more effective
to improve the secrecy capacity. Moreover, notice that the
curve is neither convex nor concave. Figure 3 shows how the
amount of the power bought by the source from the jammer
depends on the requested price. We can see that the power
is reduced if the price goes high. At some point, the source
would stop buying the power. So there is a tradeoff for setting
the price, that is, if the price too high, the source would buy
less power or even stop buying.

For the two-jammer case, we set up the following
simulations. Malicious node is located at (50,90), the first
friendly jammer is located at (50,50), and the second friendly
jammer is located at (50,75). In Figures 4, 5 and 6, the
source’s utility Us, the first jammer’s utility U1, and the
second jammer’s utility U2 as function of both users’ price,
are shown respectively. We can see that the source would buy
service from only one of the friendly jammers. If the friendly
jammer asks too low price, the jammer’s utility is very low.
On the other hand, if the jammer asks too high price, it risks
the situation in which the source would buy the service from
the other friendly jammer. There is an optimal price for each
friendly jammer to ask, and the source would always select
the one that can provide the best performance improvement.

Next, we set up a simulation of mobility. The first friendly
jammer is fixed at (50,50), while the second friendly jammer
moves from (−50,75) to (100,75). In Figure 7, we show the
source utilities of the centralized scheme and the proposed
game. We can see that the centralized scheme serves as
a performance upper bound. The game result is not far
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away from the upper bound, while the game solution can
be implemented in a distributed manner. The performance
game is trivial when the friendly jammer 2 is close to the
malicious eavesdropper from (20,75) to (70,75). In Figure 8,
we show the jammers’ power as a function of jammer
2’s location. We can see that depending on the jammers’
location, the source switches between two jammers for the
best performance. Moreover, the source also buys the optimal
amount of jamming power: when the jammer is close to
the malicious eavesdropper, the source would buy less power
since the jammer is more effective to improve the secrecy
capacity. In Figure 9, we show the corresponding friendly
jammers’ utilities of the proposed game.

Finally, we show the effect of parameter a for the friendly
jammer utility in (7). When a is large, the friendly jammer’s
utility reduces quick if the source does not buy the service. As
a result, the friendly jammer would not ask arbitrary price,
and performance gap to the optima solution is small. In
Figure 10, we show the secrecy capacity as a function of a
when the second jammer is located at (0,75). We can see that
the performance gap is shrinking when a is increasing. Notice
that for the condition in which the game almost converges to
the optimal solution, most value of a > 1 will achieve good
solution, for example, the second friendly jammer located at
(50,75).

5. Conclusions

Physical layer security is an emerging security technique
that is an alternative for traditional cryptographic-based
protocols to achieve perfect secrecy capacity as eavesdroppers
obtain zero information. Jamming has been shown in the
literature to effectively improve secrecy capacity. In this
paper, we investigate the interaction between the source
and friendly jammers using the game theory in order to
have a distributed solution. The source pays the friendly
jammers to interfere the malicious eavesdropper such that
the secrecy capacity is increased, and therefore the security
of the network. The friendly jammers charge the source with
a price for the jamming. To analyze the game outcome, we
investigate the Stackelburg game and construct a distributed
algorithm. Some properties such as equilibrium and conver-
gence are analyzed. From the simulation results, we conclude
the following. First, there is a tradeoff for the price: If the
price is too low, the profit is low; and if the price is too
high, the source would not buy or buy from other jammers.
Second, for the multiple jammer case, the source would buy
service from only one jammer. Third, the centralized scheme
and distributed scheme have similar performance, especially
when a is sufficiently large. Overall, the proposed game
theoretical scheme can achieve a comparable performance
with distributed implementation.

Acknowledgments

This work was supported by NSF CNS-0910461 and NSF
CNS-0905556 and was supported by the Research Council
of Norway through the project entitled “Mobile-to-Mobile
Communication Systems (M2M).”

References

[1] A. D. Wyner, “The wire-tap channel,” Bell System Technical
Journal, vol. 54, no. 8, pp. 1355–1387, 1975.

[2] S. K. Leung-Yan-Cheong and M. E. Hellman, “The Gaussian
wiretap channel,” IEEE Transactions on Information Theory,
vol. 24, pp. 451–456, 1978.

[3] I. Csiszar and J. Korner, “Broadcast channels with confidential
messages,” IEEE Transactions on Information Theory, vol. 24,
no. 3, pp. 339–348, 1978.

[4] A. O. Hero III, “Secure space-time communication,” IEEE
Transactions on Information Theory, vol. 49, no. 12, pp. 3235–
3249+3351, 2003.

[5] Z. Li, W. Trappe, and R. Yates, “Secret communication via
multi-antenna transmission,” in Proceedings of the 41st Annual
Conference on Information Sciences and Systems (CISS ’07), pp.
905–910, Baltimore, Md, USA, March 2007.

[6] R. Negi and S. Goelm, “Secret communication using artificial
noise,” in Proceedings of IEEE Vehicular Technology Conference,
vol. 3, pp. 1906–1910, September 2005.

[7] P. Parada and R. Blahut, “Secrecy capacity of SIMO and
slow fading channels,” in Proceedings of IEEE International
Symposium on Information Theory (ISIT ’05), pp. 2152–2155,
Adelaide, South Australia, September 2005.

[8] S. Shafiee and S. Ulukus, “Achievable rates in Gaussian MISO
channels with secrecy constraints,” in Proceedings of IEEE
International Symposium on Information Theory, pp. 2466–
2470, Nice, France, June 2007.

[9] Y. Liang, H. V. Poor, and S. Shamai, “Secure communication
over fading channels,” IEEE Transactions on Information
Theory, vol. 54, no. 6, pp. 2470–2492, 2008.

[10] P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity
of fading channels,” IEEE Transactions on Information Theory,
vol. 54, no. 10, pp. 4687–4698, 2008.

[11] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Secure
collaborative beamforming,” in Proceedings of Allerton Confer-
ence on Communication, Control, and Computing, Allerton, Ill,
USA, October 2008.
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