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In general, performance of communication system receivers cannot be calculated analytically. The bit error rate (BER) is thus
computed using the Monte Carlo (MC) simulation (Bit Error Counting). It is shown that if we wish to have reliable results with
good precision, the total number of transmitted data must be conversely proportional to the product of the true BER by the
relative error of estimate. Consequently, for small BERs, simulation results take excessively long computing time depending on the
complexity of the receiver. In this paper, we suggest a new means of estimating the BER. This method is based on an estimation, in
an iterative and nonparametric way, of the probability density function (pdf) of the soft decision of the received bit. We will show
that the hard decision is not needed to compute the BER and the total number of transmitted data needed is very small compared
to the classical MC simulation. Consequently, computing time is reduced drastically. Some theoretical results are also given to
prove the convergence of this new method in the sense of mean square error (MSE) criterion. Simulation results of the suggested
BER are given using a simple synchronous CDMA system.
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1. Introduction

The famous Monte Carlo (MC) simulation technique is the
most popular technique used for estimating bit error rate
(BER) of digital communication systems. The MC method is
used when we cannot analytically compute the performance
of communication system receivers. Unfortunately, it is well
known that the drawback of the MC method is its very
high computational cost. If we are studying, for example,
a channel with a BER equal to 10−6, it is shown that if
we hope to have a relative error estimation equal to 10−1,
the number of the incorrect received bits must be at least
equal to 102 and then the total number of transmitted
data must be at least equal to 108 (see [1]). Consequently,
simulation results take excessively long computing time. In
this paper, we suggest a new method to estimate the BER

based on an estimation, in an iterative and nonparametric
way, of the probability density function (pdf) of the soft
decision of the received bit. In this case, the hard decision
is not needed to compute the BER. The total number of
transmitted data needed is very small compared to the
classical MC simulation. Consequently, computing time is
reduced drastically. The paper is organized as follows. In
Section 2, a brief review of the MC simulation method is
given. Section 3 shows how a pdf can be estimated in a
parametric way. Section 4 gives some details about the new
suggested iterative soft BER estimation. The convergence of
this new method in the sense of Mean Square Error (MSE)
criterion is discussed in Section 5. Simulation results are
presented in Section 6. Finally, a brief summary of the results
is given in Section 7.
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2. Monte Carlo Simulation: a Brief Review

In this section, we will give a brief description of the MC
simulation for any digital communication system. Let us
consider any point to point system communication over
any channel transmission (Gaussian, multipath fading, etc.)
with or without channel coding using any transmission tech-
niques (CDMA, MC-CDMA, TDMA, etc.). Let (bi)1≤i≤N ∈
{+1,−1} a set of N independent transmitted bits. Let
(Xi)1≤i≤N be the corresponding soft output at the receiver

such as the decision is taken by using its sign: ̂bi = sgn(Xi).
Let us introduce the following error function defined by

a Bernoulli random variable:

ξ
(

bi
) =

⎧

⎪

⎨

⎪

⎩

1 if ̂bi /= bi,

0 otherwise.
(1)

Let pe be the true BER at the output of the receiver. We
have

pe = Pr
[

̂bi /= bi
] = Pr

[

ξ
(

bi
) = 1

] = E
[

ξ
(

bi
)]

, (2)

where E(·) is the mathematical expectation operator. The
MC method estimates BER using the following average:

p̂e = 1
N

N
∑

i=1

ξ
(

bi
)

. (3)

The estimator error is given by

e = pe − p̂e = 1
N

N
∑

i=1

(pe − ξ(bi)). (4)

The MC estimator is unbiased since E(e) = 0 and
its variance is given by (assuming that the errors are
independent)

σ2
e = E

[

(

pe − p̂e
)2
]

= pe
(

1− pe
)

N
. (5)

Let ε be the relating error of the MC estimator which is
given by

ε = σe
E
(

p̂e
) =

√

1− pe
peN

. (6)

For small BER (pe � 1), we have

ε ≈ 1
√

peN
. (7)

Equation (7) gives the number of transmitted data
needed for a given BER and for a desired precision ε:

N = 1
ε2pe

. (8)

It is clear from (8) that, for example, if we wish to
study a channel with a BER equal to 10−7 with a desired
precision of 10−1, we must transmit at least 109 information
bits. Consequently, simulation results take excessively long
computing time depending on the complexity of the receiver.
So, small BER values require large samples length N . That is
why, in the following sections, we will suggest a new method
to estimate the BER based on nonparametric pdf of soft
output decision X .

3. Nonparametric Probability Density
Function Estimation

Let fX(x) be the pdf of the soft output decision X at the
receiver. Let us note that all the received soft output decision
(Xi)1≤i≤N are random variables having the same pdf, fX(x).
Xi is the corresponding soft output at the receiver such as

the hard decision is taken by using its sign: ̂bi = sgn(Xi).
The (bi)1≤i≤N are assumed to be independent and identically
distributed with P[bi = ±1] = 1/2. The BER is then given by

pe = P
[

̂bi /= bi
]

,

= P
[

(X > 0),
(

bi = −1
)]

+ P
[

(X < 0),
(

bi = +1
)]

,

= P
[

X > 0 | bi = −1
]

P
[

bi = −1
]

+ P
[

X < 0 | bi = +1
]

P
[

bi = +1
]

,

= P
[

X > 0 | bi = −1
]

,

= P
[

X < 0 | bi = +1
]

,

(9)

then,

pe =
∫ 0

−∞
f bi=+1
X (x)dx

=
∫ +∞

0
f bi=−1
X (x)dx

= 1
2

∫ 0

−∞
f bi=+1
X (x)dx +

1
2

∫ +∞

0
f bi=−1
X (x)dx,

(10)

where f bi=+1
X (·) (resp., f bi=−1

X (·)) is the conditional pdf of X
such as bi = +1 (resp., bi = −1).

Equation (10) clearly shows that an alternative method
for estimating the BER is to transmit, for example, a sequence
of N bits equal to +1, estimate the pdf of the soft output of
the receiver and then calculate the BER by computing the
appropriate integral given by (10).

However, in a practical situation, the nature of the
pdf of the observed random variable X depends on both
the type of receiver and the channel model; Gaussian
function for a simple additive white Gaussian noise (AWGN)
channel, a mixture of Gaussian functions for an AWGN
CDMA receiver, or other distributions used for Rayleigh,
Nakagami, or Rice fading channels. In the case of advanced
receivers using iterative techniques or nonlinear filters such
as turbo codes for multiple input multiple output (MIMO)
systems [2], it is very difficult to find the right parametric
model for the received distribution. That is why, for any
communication systems, we suggest using nonparametric
methods to estimate the pdf of the observed data, X . In
fact, the most popular nonparametric pdf estimations are the
Kernel method [3, 4] or the orthogonal series estimators such
as the Fourier series [5]. Recent suggestions for methods can
be found in [6, 7] with applications for shape classification
and speech coding. In this paper, we will focus on the use of
the Kernel method and its use for estimating the BER.
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The Kernel estimator is defined as

̂fX ,N (x) = 1
NhN

N
∑

i=1

K
(

x − Xi

hN

)

, (11)

where (Xi)1≤i≤N are random variables having the same pdf,
fX(x). Xi is the soft output at the receiver right before the
hard decision. hN is the smoothing parameter which depends
on the length of the observed samples, N . K(·) is any pdf
(called the kernel) assumed to be an even and regular (i.e.,
square integrated) function with unit variance and zero
mean.

The choice of the smoothing parameter hN is very
important. It is shown in [6, 7] that if hN tends towards

0 when N tends towards +∞, the estimator ̂fX ,N (x) is

asymptotically unbiased (i.e., for all x, E[ ̂fX ,N (x)] → fX(x)).
It is also shown that if hN → 0 and NhN → +∞ when
N → +∞, then the MSE of the Kernel estimator tends to
zero, that is, for all x:

lim
N→+∞

E
[

(

̂fX ,N (x)− fX(x)
)2] = 0. (12)

Moreover, the optimal smoothing parameter hN is com-
puted in the minimum of the Integrated Mean Squared Error
(IMSE) sense. An approximation of the IMSE is given by the
following formula: (see [8])

IMSE ≈ M(K)
NhN

+
J
(

fX
)

h4
N

4
, (13)

where M(K) = ∫ +∞
−∞K2(x)dx, J( fX) = ∫ +∞

−∞( f ′′X (x))2dx and
f ′′X (x) is the second derivative of the pdf fX(x). The optimal
smoothing value, h∗N , is then given by minimising the IMSE.
We then obtain

h∗N = N−1/5(J
(

fX
))−1/5

(M(K))+1/5. (14)

Equation (14) shows that we must compute J( fX) which
unfortunately depends on the unknown pdf, fX . In the rest of
this paper, we suggest the use of the most popular Gaussian
kernel: K(x) = (1/

√
2π) exp(−x2/2). In this case, using (11),

we have (proof is given in Appendix A)

J
(

̂fX ,N
) = 1

N2h5
N

√
2

N
∑

i=1

N
∑

j=1

K

(

Xi − Xj√
2hN

)[(

Xi − Xj

2hN

)4

+
3
4

]

.

(15)

Let us note that we can easily show that for a zero mean
and unit variance Gaussian kernel, we have

M(K) =
∫ +∞

−∞
K2(x)dx = 1

2
√
π
. (16)

4. Soft BER Estimation

To find the optimal smoothing parameter h∗N , we must
resolve (14) using at the same time (15) and (16). Direct
resolution seems to be very difficult. That is why we suggest
resolving this equation in an iterative way; we begin by an

initial value of hN (h(0)
N = 1/N1/5), then, for each iteration

k: compute J( ̂fX ,N ) using (15) with the previous h(k−1)
N and

then compute the new value of h(k)
N by using (14). Once the

optimal smoothing parameter is calculated, the pdf ̂fX ,N (x),
if needed, can be estimated by using (11). To estimate the
BER of our system, we must evaluate the expression of

(10): p̂e =
∫ 0
−∞ ̂fX ,N (x)dx. We can show that for the chosen

Gaussian kernel, a soft BER estimation can be given by the
following expression (see proof in Appendix B):

p̂e,N = 1
N

N
∑

i=1

Q
(

Xi

hN

)

, (17)

where Q(·) denotes the complementary unit
cumulative Gaussian distribution, that is, Q(x) =
∫ +∞
x (1/

√
2π) exp(−t2/2)dt. The erfc function can also

be used as follows: Q(x) = 1/2 erfc(x/
√

2).
Let us now summarize the new suggested algorithm

which estimates the soft BER of any communication system:
Soft BER algorithm: Let (Xi)1≤i≤N be the received soft out-

put decision (corresponding to an N transmitted sequence
bits equal to +1, so as the estimated pdf will be the
conditional one of X such as b = +1).

(1) Initialization. h(0)
N = 1/N1/5.

(2) For each iteration k: (k = 1, 2, . . .)

(i) Compute J( ̂f (k)
X ,N ) using h(k−1)

N (15).

(ii) Compute h(k)
N using J( ̂f (k)

X ,N ) and M(K) ((14)
and (16)).

(iii) STOP iteration criterion: |h(k)
N − h(k−1)

N | <
threshold ≈ 10−3.

(3) Soft BER computation: (see (17)).

5. Some Theoretical Studies

In this section we shall give some theoretical studies. The
following theorem will show that the suggested soft BER
estimator is asymptotically unbiased. Proof of this theorem
is given in Appendix C.

Theorem 5.1. Assume that fX is a second derivative pdf
function, that hN → 0 as N → +∞. Then p̂e,N is
asymptotically unbiased, that is,

lim
N→+∞

E
[

p̂e,N
] = pe. (18)

The following theorem shows that the variance of the
suggested estimator also tends to zero. Proof of this theorem
is given in Appendix D.

Theorem 5.2. Assume that fX is a second derivative pdf
function, that hN → 0 as N → +∞. Then, the variance of
p̂e,N tends to zero as N tends to +∞, that is,

lim
N→+∞

E
[

(

p̂e,N − E
[

p̂e,N
])2
]

= 0. (19)
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Using Theorems 5.1 and 5.2, it is easy to show (see
Appendix E) that the suggested estimator is pointwise consis-
tent, that is, the MSE tends to zero as the number of samples
N tends to +∞. This result can be given by the following
corollary.

Corollary 5.3. Assume that fX is a second derivative pdf
function, that hN → 0 as N → +∞. Then, the MSE of p̂e,N

tends to zero as N tends to +∞, that is,

lim
N→+∞

E
[(

p̂e,N − pe
)2] = 0. (20)

In the following, some remarks are given.

(1) Asymptotic normality: Using the central limit theo-
rem, we can show that the sequence of BER estimator
p̂e,N = (1/N)

∑N
i=1Q(Xi/hN ) is asymptotically normal,

that is,

∀c ∈ R, lim
N→+∞

P
[

p̂e,N − E
[

p̂e,N
]

σ
[

p̂e,N
] ≤ c

]

=
∫ c

−∞
1√
2π

exp
(

− y2

2

)

dy.

(21)

(2) Boostrap: As ̂fX ,N (x) is constructed by the Kernel
estimator (11) for a given observation X1,X2, . . . ,XN ,
with kernel K and bandwidth hN , then it is easy to
find new independent realizations from this estima-

tor. It is not necessary to explicitly compute ̂fX ,N (x)
in the simulation procedure. New realizations Y can
be drawn as follows:

(i) uniformly choose an index i with replacement
from the set {1, . . . ,N};

(ii) generate a random variable ε having K as a pdf;

(iii) Set Y = Xi + εh∗N .

These new realizations can be used to improve the accuracy
of the estimator and therefore reduce the variance of the
estimator.

6. Simulation Results

Let us consider a simple example in order to verify that
our suggested BER estimator works well. In this section,
we shall consider a synchronous CDMA system with K
users employing normalized spreading codes s1, s2, . . . , sk ∈
{−1/

√
SF, +1/

√
SF}SF

of length SF chips, through an AWGN
channel using binary phase-shift keying (BPSK), where SF is
the spreading factor. The received signal is the superposition
of the data signals of K users given by

r =
K
∑

k=1

Akbksk + n, (22)

where,
r ∈ RSF is the received signal (SF = spreading factor);

sk ∈ {+1/
√

SF,−1/
√

SF}SF
is the spreading code for the

kth user;
bk ∈ {+1,−1} is the transmitted binary information

symbol of the kth user;
Ak is the received amplitude of the kth user;
n ∈ RSF is an additive white Gaussian noise with

zero mean and a covariance matrix equal to σ2ISF, (n ∼
N (0, σ2ISF)).

It is seen [9] that a sufficient statistic for demodulating
the data bits of the K users is given by the K-vector y whose
kth component is the output of a filter matched to sk, that is,

yk = sk r, k = 1, . . . ,K. (23)

Using (22) and (23), we can show that the output of the
kth matched filter is given by

yk = Akbk +
∑

j /= k

Ajbjρj,k + ñk, (24)

where ρj,k is the normalized cross-correlation between the
spreading codes sj and sk, ñk is the output additive Gaussian
noise (ñk ∼ N (0, σ2)).

Note that the quantity (24) consists of three terms:
the required bit information of the kth user, Akbk; a
term

∑

j /= kAjbjρj,k which is the multiple access interference
(MAI) at the output of the matched filter due to the presence
of other users sharing the same channel; and a term ñk, due
to the output of the background noise through the matched
filter. Let us note that the additive noise, MAI +ñk, at the
output of the kth matched filter is a mixture of 2K−1 Gaussian
distribution.

Several multiuser detection methods are given in [9].
Here, we shall focus on the conventional detector which is
given by

̂bk = sign
(

yk
)

. (25)

We can show, using (24), that the true bit error rate of
the kth user for the conventional detector is given by the
following formula:

BERk

= 1
2K−1

∑

b−k∈{±1}K−1

Q

(

Ak −
∑

j /= kAjbjρj,k

σ

)

,
(26)

where b−k = (b1, b2, . . . , bk−1, bk+1, . . . , bK ) ∈ {−1, +1}K−1.
For numerical results, we focus, for example, on K =

2 users with SF = 7. The two spreading codes are
chosen as s1 = (+1, +1, +1, +1,−1,−1,−1)/

√
7 and s2 =

(−1,−1, +1, +1,−1,−1,−1)/
√

7. We have found that the
cross-correlation value of these two codes is equal to ρ1,2 =
0.4286. Figure 1 (resp., 2) gives the conditional pdf such as
b1 = +1 of the output of matched filter for user k = 1 and for
a SNR = 6 dB (resp., SNR = 10 dB).

Figure 3 gives performance of the conventional CDMA
detector based on the true bit error rate (see (26)) compared
with the method suggested in this paper and based on soft
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Figure 1: Conditional pdf such as b1 = +1 of the output of matched
filter for user k = 1 and for an SNR = 6 dB.
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Figure 2: Conditional pdf such as b1 = +1 of the output of matched
filter for user k = 1 and for a SNR = 10 dB.

BER algorithm given in Section 4. For this last simulation,
we have taken a database of length of N = 1.000 samples.
The figure shows that for SNR = 10 dB, 1000 samples are
sufficient to have a good precision of the bit error rate. For
SNR = 10 dB, the true BER is equal to 3.0 10−3, therefore,
the MC simulation needs at least 30 000 samples for similar
precision.

Other Receiver. In this section, instead of using a simple
standard receiver, we shall consider a second example using
an MMSE receiver which is an advanced technique using
multiuser detection (see [9]). In this case, the output of the
MMSE receiver is given by

z =My, (27)

1086420

SNR = Eb1/N0 (dB)

Single user BER
True BER of MF detector
New soft BER estimator

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E

R

Figure 3: Soft BER algorithm and true BER comparison for
synchronous CDMA system.

where y = [y1, . . . , yK ] is the K-dimensional vector of
matched filter outputs (yk is given by (24)). The MMSE filter
is given by

M = [R + σ2A−2]−1
, (28)

where R is the normalized cross-correlation matrix (Ri, j =
si s j = ρi, j), A = diag{A1, . . . ,AK} and σ2 is the variance of
the additive white Gaussian noise.

The estimated bit for the kth user (1 ≤ k ≤ K) is then
given by

̂bk = sign
(

zk
) = sign

((

My
)

k

)

. (29)

We can show, using (27) and the fact that y = Sr (where
S = [s1, . . . , sK] is the N×K matrix of signature vectors), that
the true bit error rate of the kth user for the MMSE receiver
is given by the following formula:

BERk

= 1
2K−1

∑

b−k∈{±1}K−1

Q

(

(MR)k,kAk −
∑

j /= k(MR)k, jAjbj

σ
√

(MRM)k,k

)

,

(30)

where b−k = (b1, b2, . . . , bk−1, bk+1, . . . , bK ) ∈ {−1, +1}K−1.
For numerical results, we focus on K = 2 users with

the same spreading codes chosen for the first simulation
(conventional detector). Let us note that the conditional pdf
such as b1 = +1 of the output of MMSE filter for each user is
a mixture of 2K−1 Gaussian distribution.

Figure 4 gives performance of the MMSE receiver based
on the true bit error rate (see (30)) compared with the
method suggested in this paper and based on soft BER
algorithm given in Section 4. For this last simulation, we have
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Figure 4: Soft BER algorithm and true BER comparison for
synchronous MMSE-CDMA receiver.

taken a database of length of N = 3.000 samples. The figure
shows that for SNR = 6 dB, 3000 samples are sufficient to
have a good precision of the bit error rate. For such SNR, the
true BER is equal to 5.0 10−3, therefore, the MC simulation
needs at least 50 000 samples for similar precision. Let us also
note that for SNR = 8 dB, Figure 4 shows that the true BER
is equal to 6.0 10−4. In this case, the MC simulation needs
at least 170 000 samples for a good precision. The soft BER
estimation, by using only 3000 samples, gives a value of the
BER with an error of 0.2 dB.

7. Conclusions

In this paper, we have suggested a new iterative soft bit error
rate estimation for the study of any digital communication
system performance. This method is based on the use of
nonparametric pdf estimation of the soft decision of the
received bit. Small length of transmitted data, compared
to the MC method, is needed for the BER estimation.
Convergence of this method in the MSE criterion has
been proven. Some simulation results have been given in
synchronous CDMA system case with both conventional
detector and MMSE multiuser receiver.

Appendices

A. Proof of (15)

Proof. Using the definition of J( fX), we have

J
(

̂fX ,N
) =

∫ +∞

−∞

(

f ′′X ,N (x)
)2
dx. (A.1)

For Gaussian Kernel K, we have,K ′′(x) = (x2−1)K(x). Then,
using (11), we have

J
(

̂fX ,N
) = 1

N2h6
N

N
∑

i=1

N
∑

j=1

∫ +∞

−∞

[(

x − Xi

hN

)2

− 1

]

×
[(

x − Xj

hN

)2

− 1

]

× K

(

x − Xi

hN

)

K

(

x − Xj

hN

)

dx,

= 1
N2h6

N

N
∑

i=1

N
∑

j=1

∫ +∞

−∞

[(

x − Xi

hN

)2

− 1

]

×
[(

x − Xj

hN

)2

− 1

]

× K

(

2x − (Xi + Xj
)

√
2hN

)

K

(

Xi − Xj√
2hN

)

dx.

(A.2)

Let us use the following change of variable: t = [2x−(Xi+
Xj)]/

√
2hN and let us note ai, j = (Xi − Xj)/2hN . we have

[(

x − Xj

hN

)2

− 1

][(

x − Xj

hN

)2

− 1

]

= t4

4
+ t2

(

2a2
i, j − 1

)

+
(

a2
i, j − 1

)2
.

(A.3)

Using both (A.2) and (A.3), we obtain

J
(

̂fX ,N
) = 1

N2h5
N

√
2

N
∑

i=1

N
∑

j=1

K
(√

2ai, j
)

×
∫ +∞

−∞

[

t4

4
+ t2

(

2a2
i, j − 1

)

+
(

a2
i, j − 1

)2
]

K(t)dt.

(A.4)

For a zero mean and unit variance Gaussian Kernel, the
second and fourth moment are, respectively, equal to 1 and
3, that is,

∫

t2K(t)dt = 1 and
∫

t4K(t)dt = 3. Therefore, (A.4)
becomes

J( ̂fX ,N ) = 1
N2h5

N

√
2

N
∑

i=1

N
∑

j=1

K
(√

2ai, j
)

(

a4
i, j +

3
4

)

. (A.5)

B. Proof of (17)

Proof. We must evaluate the expression of (10) in the case

where ̂fX ,N is estimated by Kernel method (see (11)). Then,

p̂e,N =
∫ 0

−∞
̂fX ,N (x)dx,

=
∫ 0

−∞
1

NhN

N
∑

i=1

K
(

x − Xi

hN

)

dx.

(B.1)
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By using the following change of variable, t = (x − Xi)/hN ,
we have

p̂e,N =
∫ 0

−∞
1

NhN

N
∑

i=1

K
(

x − Xi

hN

)

dx

=
N
∑

i=1

∫ (−Xi/hN )

−∞
1
N
K(t)dt

= 1
N

N
∑

i=1

∫ (−Xi/hN )

−∞
1√
2π

e−(t2/2)dt

= 1
N

N
∑

i=1

∫ +∞

(Xi/hN )

1√
2π

e−(t2/2)dt

= 1
N

N
∑

i=1

Q
(

Xi

hN

)

.

(B.2)

C. Proof of Theorem 5.1

Proof. Let us first recall that the true BER is given by

pe =
∫ 0

−∞
fX(x)dx. (C.1)

The suggested soft BER estimator is given by

p̂e,N =
∫ 0

−∞
1

NhN

N
∑

i=1

K
(

x − Xi

hN

)

. (C.2)

Then,

E
[

p̂e,N
] =

∫ 0

−∞
1

NhN

N
∑

i=1

E
[

K
(

x − Xi

hN

)]

dx

=
∫ 0

−∞
1

NhN
NE
[

K
(

x − X1

hN

)]

dx

=
∫ 0

−∞
1
hN

(
∫ +∞

−∞
K
(

x − u

hN

)

fX(u)du

)

dx.

(C.3)

Using the following change of variable t = (x−u)/hN , we
have

E
[

p̂e,N
] =

∫ 0

−∞
1
hN

(
∫ +∞

−∞
K(t) fX

(

x − hNt
)

dt

)

hNdx

=
∫ 0

−∞

(
∫ +∞

−∞
K(t) fX

(

x − hNt
)

dt

)

dx.

(C.4)

As fX is assumed to be second derivative pdf function, we
can use Taylor series expansion of fX as follows:

fX
(

x − hNt
) = fX(x)− hNt f

′
X(x) +

h2
Nt

2

2
f ′′X (x) + O

(

h3
Nt

3).

(C.5)

Then, from (C.4), we have

E
[

p̂e,N
] =

∫ 0

−∞

(
∫ +∞

−∞
K(t)

[

fX(x)− hNt f
′
X(x)

+
h2
Nt

2

2
f ′′X (x) + O

(

h3
Nt

3
)

]

dt

)

dx

=
∫ 0

−∞

(

fX(x)
∫ +∞

−∞
K(t)dt − f

′
X(x)hN

∫ +∞

−∞
tK(t)dt

+
h2
N

2
f ′′X (x)

∫ +∞

−∞
t2K(t)dt

)

dx + O(h3
N ).

(C.6)

As K is a zero mean and unit variance Gaussian Kernel,
(C.6) becomes

E
[

p̂e,N
] =

∫ 0

−∞
fX(x)dx +

h2
N

2
f
′
X(0) + O(h3

N ). (C.7)

As hN → 0 when N → +∞, then

lim
N→+∞

E
[

p̂e,N
] =

∫ 0

−∞
fX(x)dx = pe. (C.8)

D. Proof of Theorem 5.2

Proof. Let us first recall that the suggested soft BER estimator
is given by

p̂e,N =
∫ 0

−∞
1

NhN

N
∑

i=1

K
(

x − Xi

hN

)

, (D.1)

then, the variance of this estimator can be computed as

Var
[

p̂e,N
] = Var

[
∫ 0

−∞
1

NhN

N
∑

i=1

K
(

x − Xi

hN

)

]

dx

= 1
N2h2

N

N Var

[
∫ 0

−∞
K
(

x − X1

hN

)

]

dx

= 1
Nh2

N

Var(A),

(D.2)

where A is given by

A =
∫ 0

−∞
K
(

x − X1

hN

)

dx. (D.3)

Let us remark that from (D.1), we have

E[A] = hN E
[

p̂e,N
]

, (D.4)

and then, using (C.7), we have

E[A] = hN pe +
h3
N

2
f
′
X(0) + hNO

(

h3
N

)

. (D.5)
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Now, to determine the analytical expression of (D.2), we
must calculate E[A2]. Using (D.3), we have

E
[

A2] = E

[
∫ 0

−∞
K
(

x − X1

hN

)

dx
∫ 0

−∞
K
(

y − X1

hN

)

dy

]

.

(D.6)

We can easily show that for the chosen Gaussian kernel, we
have

K
(

x − X1

hN

)

K
(

y − X1

hN

)

= K
(

X1 − (x + y/2)

hN/
√

2

)

K
(

x − y√
2hN

)

.

(D.7)

Using (D.6), (D.7), and the following change of variable,
(v,w) = ((x + y/2), x − y), we have (using the fact that K(·)
is a pdf and then

∫

RK(w)dw = 1)

E
[

A2] = E

[
∫ 0

−∞

∫ 0

−∞
K
(

X1 − (x + y/2)

hN/
√

2

)

K
(

x − y√
2hN

)

dx dy

]

= E

[
∫ +∞

w=−∞

∫ 0

v=−∞
K
(

X1 − v

hN/
√

2

)

K
(

w√
2hN

)

dv dw

]

= E

[√
2hN

∫ 0

−∞
K
(

X1 − v

hN/
√

2

)

dv

]

.

(D.8)

Then

E
[

A2
] = √2hN

∫

u∈R

(
∫ 0

−∞
K
(

u− x

hN/
√

2

)

dx

)

fX(u)du,

(D.9)

using the following change of variable, t = (u− x)/(hN/
√

2),
we have

E
[

A2
] = h2

N

∫

t∈R

∫ 0

−∞
K(t) fX

(

x +
th√

2

)

dt dx. (D.10)

As fX is assumed to be a second derivative pdf, we can use
Taylor series expansion of fX as follows

fX

(

x +
thN√

2

)

= fX(x) +
thN√

2
f
′
X(x) +

t2h2
N

4
f ′′X (x) + O

(

t3h3
N

)

.

(D.11)

Then, from (D.10) and (D.11), we have (using the fact
that K is a zero mean and unit variance Gaussian kernel)

E
[

A2] = h2
N

∫

t∈R

∫ 0

−∞
K(t) fX(x) +

tK(t)hN√
2

f
′
X(x)

+
t2K(t)h2

N

4
f ′′X (x)dt dx

= h2
N

[
∫ 0

−∞
fX(x)dx +

h2
N

4
f
′
X(0)

]

+ O
(

h5
N

)

= h2
N

[

pe +
h2
N

4
f
′
X(0)

]

+ O
(

h5
N

)

.

(D.12)

Using (D.2), (D.5), and (D.12), we obtain

Var
[

p̂e,N
]

= E
[

A2]− (E[A])2

= 1
Nh2

N

[

h2
N

[

pe +
h2
N

4
f
′
X(0)

]

−
(

hN pe +
h3
N

2
f
′
X(0)

)2]

.

(D.13)

Then,

Var
[

p̂e,N
] = pe

(

1− pe
)

N
+
h2
N

N
f
′
X(0)

(

1
4
− pe

)

− h4
N

4N

(

f
′
X(0)

)2
+

1
N
O
(

h5
N

)

.

(D.14)

As hN → 0 as N → +∞, therefore

lim
N→+∞

Var
[

p̂e,N
] = 0. (D.15)

E. Proof of Corollary 5.3

Proof. We have,

E
[

(

p̂e,N − pe
)2
]

= E
[

(

p̂e,N − E
[

p̂e,N
]

+ E
[

p̂e,N
]− pe

)2
]

= E
[

(

p̂e,N − E
[

p̂e,N
])2
]

+
(

E
[

p̂e,N
]− pe

)2

+ 2E
[(

p̂e,N − E[ p̂e,N ]
)(

E
[

p̂e,N
]− pe

)]

.

(E.1)

By developing the expression E[( p̂e,N−E[ p̂e,N ])(E[ p̂e,N ]−
pe)], it is easy to show that its value is equal to zero. Then, we
have

E
[

(

p̂e,N − pe
)2
]

= E
[

(

p̂e,N − E
[

p̂e,N
])2
]

+
(

E
[

p̂e,N
]− pe

)2
.

(E.2)

As p̂e,N is asymptotically unbiased (E[ p̂e,N ] − pe → 0 as
N → +∞, see Theorem 5.1) and the variance of p̂e,N tends
to 0 as N → +∞ (see Theorem 5.2), then

lim
N→+∞

E
[

(

p̂e,N − pe
)2
]

= 0. (E.3)

This means that p̂e,N is pointwise consistent.
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