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power control, including it instead in the constraint set of the joint optimization problem. Apart from the mathematical framework
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backhaul networks with fixed nodes. Impressive convergence results indicate that the distributed RPCD algorithm calculates the
optimum solution in one decomposition step only.
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1. Introduction

Nowadays, there is an increased interest in communication
via wireless mesh networks such as ad-hoc, sensor, or wireless
mesh backhauling networks [1, 2]. In wireless networks the
link capacities are variable quantities and can be adjusted by
the resource allocation such as scheduling, and power allo-
cation to fully exploit network performance. Hence, for effi-
cient data transmission an integrated routing, time schedul-
ing and power control optimization strategy are required.
This strategy has to take different transmission constraints
into account, for example, maximum available power level
or limited buffer size at nodes. The inherent decentralized
nature of wireless mesh networks mandates that distributed
algorithms should be developed to implement the joint
routing, scheduling, and power control optimization. The
first step towards a distributed implementation is to break up
this problem into manageable subproblems and solve these

subproblems by iterative algorithms. Cruz and Santhanam
[3] have addressed the problem of finding an optimal link
scheduling and power control policy while minimizing total
average power consumption. Their algorithm is designed for
single-path routing only, does not consider buffer limitations
and has a worst case exponential complexity. In [4], Li
and Ephremedis solve at first power control and scheduling
jointly. They use the obtained power values to calculate
a routing distance that in turn is used by Bellman-Ford
routing. However, the proposed separation is performed by
not considering the combinational structure of the entire
routing, scheduling and power control problem. Although
less computationally intensive, the algorithm ends up in
a suboptimal solution. It further fully neglects multiple
path routing as well as buffer restrictions. Xiao et al.
proposed in [5] the dual decomposition as a promising
decomposition approach. By dual decomposition the overall
problem is split into two subproblems while the master
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dual problem coordinates them. In this paper we con-
sider joint routing, time-scheduling, and power control
for single frequency wireless mesh networks. The wireless
transmissions are arranged in time-slots. However, we take
into account that simultaneously active transmissions suffer
from multiple access interference. Dual decomposition is
a universal approach to solve such optimization problems
[5, 6], but it does not consider the specific combinational
structures of optimization problems. By contrast, we propose
a novel method that explicitly exploits the combinational
structure of a joint routing, time-scheduling, and power
control problem by means of an active constraint method.
The formulation of the optimization problem is yet generally
valid, so that the method proposed here is applicable to a
plurality of wireless networks. The proposed approach meets
the following requirements: (1) less iterations to an optimum
solution, (2) distributed implementation, (3) multiple path
routing, and (4) per hop error performance. In particular,
the approach is as follows. We separate scheduling from
routing and power allocation by including it in the constraint
set of a Simultaneous Routing and Power Control (SRPC)
problem. For scheduling, several well known approximations
such as Greedy-based approaches exist [7, Section 3.7], that
we can leverage on. The constraints we use in the SRPC
problem are induced by a precalculated colored graph of the
network that, in turn, reflects the scheduling decisions of any
arbitrary scheduler. Consequently, the main contribution is
to introduce a Routing and Power Control Decomposition
(RPCD) method to solve the simultaneous routing and
power control problem while meeting the above-mentioned
requirements. The clever bits of the RPCD are manifold.
(1) We rewrite the SRPC problem to an equivalent problem
by applying the active constraint method. (2) We decouple
the equivalent problem by solving a (convex) network
and a (convex) power assignment problem separately. (3)
Iterations are performed by switching between the two
subproblems for which network and power variables act
as interchanging variables. Apart from the mathematical
framework we introduce the RPCD algorithm and prove its
convergence to a KKT-point of the joint routing and power
control problem. We compare the RPCD algorithm with
dual decomposition as state-of-art approach with respect
to the number of iterations needed to calculate the KKT-
point. This verification is performed by applying both
algorithms to a wireless cellular mesh backhauling network
[1, 2]. The backhauling network describes a “regular” cellular
network. This models the situation where, in order to save
infrastructure expenses of laying cable or fiber to each node
(base station), we try to extend the range of a given source
node with wired backhaul connection by using several other
nodes. These intermediate nodes have no wired connection
and can only communicate with the backhaul via the source
node by wireless mesh communications. The simulation set-
up correctly models mobile radio channel characteristics
such as path-loss and slow fading. The comparison indicates
that the RPCD approach requires only one decomposition
step to calculate the optimum solution as opposed to
dual decomposition. This paper is organized as follows.
In Section 2 we describe the network model used for

the wireless data network. In Section 3 we formulate the
optimization problem and define the standard interference
function. The RPCD algorithm for solving the joint routing
and power control problem is presented in Section 4. We
extend the RPCD algorithm in Section 5 by introducing
distributed algorithms for solving the routing and power
assignment problem. Finally, in Section 6 we apply the
algorithm to a wireless backhaul network and present the
simulation results. We conclude the paper in Section 7.

2. NetworkModel

The transmission problem we are facing is to transmit
messages indexed by m each of size Sm in bits via a multiple
hop wireless network. Each message has its source node sm
and its destination node dm /= sm. Let M be an index set for
the set of messages with m ∈ M. With multiple path routing
each message is transmitted via several paths from its source
node to its destination node. Thus, nodes can send parts
of messages to many receivers and receive parts of messages
from many transmitters. We denote the nodes by v ∈ V with
V be a finite set of nodes. At any time, each of these nodes
v ∈ V can map any parts of messages m ∈ M onto a single
link e for transmission. The set of all links is denoted by E.
A wireless communication link corresponds to an edge e =
(u, v) between two nodes u, v and is described by the ordered
pair (u, v) ∈ V×V such that u transmits information directly
to v. Moreover, we assume that (v, v) /∈E for all v ∈ V . We
have that G := (V ,E) is a directed graph with node set V
and edge set E. For an arbitrary node v ∈ V , denote by
E+(v) := {e ∈ E | e = (v,w) ∈ E} and E−(v) := {e ∈
E | e = (w, v) ∈ E} the set of outgoing and incoming
edges within E at the node v, respectively. A link represents
a wireless resource characterized by a given bandwidth, time
duration, space fraction, or by a given code assignment. We
assume a time-slotted single frequency network for which
the time is divided into equal slots of length τ while all
nodes occupy the same frequency band of bandwidth B.
Time slots are indexed by t ∈ T , with T as an index set.
We take time scheduling into account by assuming that there
is a given coloring of the nodes such that adjacent nodes
do not have the same color (half-duplex constraint) [4].
That is, we are given a number C and a function coV :
V → {1, . . . ,C} such that coV (v) /= coV (w) for all nodes
v,w ∈ V with (v,w) ∈ E. Here, C is at least as large as
the chromatic number of G. Computing such a coloring can
be done by a Greedy approach [7]. To take delay constraints
into account we introduce tmax as the maximum number
of time slots, a message is allowed to use for transmission
from its source to its destination, that is, T := {1, . . . , tmax}.
The interference model we consider includes multiple access
interference caused by simultaneously active transmissions
that can not be perfectly separated by, for example, code- or
space division multiple access (CDMA/SDMA) techniques.
Thus, let Ee,t be the set of edges interfering edge e at time
t. The signal attenuation from node u to node v is Gt(u, v)
and it remains unchanged within the duration of a time
slot t. We further assume perfect knowledge of Gt(u, v) at
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the corresponding senders. Let T(e) be the transmitting
node and let R(e) be the receiving node of edge e. Hence,
Gt(T(l),R(e)) denotes the attenuation a signal suffers that is
transmitted from T(l) but received by node R(e). For link
e such a signal represents multiple-access interference that
is caused by link l. Furthermore, with pe,t as the (transmit)
power to be allocated to link e at time slot t, the received
signal power at node R(e) from the transmitter T(e) is given
by Gt(T(e),R(e))pe,t. We define the signal-to-interference-
plus-noise ratio (SINR) of edge e ∈ E at time slot t ∈ T
as

SINRe,t =
Gt(T(e),R(e))pe,t

∑
l∈Ee,t , l /= e Gt(T(l),R(e))pl,t + σ2

e
(1)

with σ2
e as an additive noise power of edge e. If we only

assume thermal noise to be the same for all edges, we
have σ2

e = BN0 with noise spectral density N0. For the
optimization problems to be introduced later we have the
following design variables. As network flow variables we have
ce,m,t ∈ R as the part of the message m sent along edge e in
time slot t (in bits), and bv,m,t ∈ R as the part of the message
m stored in a buffer at node v directly before the start of
time slot t (in bits). Communication variable pe,t ∈ R is the
transmit power allocated to edge e at time slot t to transmit
the total traffic on edge e (in Watt). If we stack the different
variables to vectors we obtain c = (ce,m,t), b = (bv,m,t), and
p = (pe,t). We further use the following parameters. Let
Sm ∈ R+ be the size of message m (in bits) and Bv ∈ R+

be the maximum total buffer size at node v (in bits). Power
constraints are Pmax

v ∈ R+ as the maximum transmission
power of a node (in Watt) assumed to be the same for all
nodes and Pmax

e ∈ R+ as the maximum transmission power
per edge (in Watt).

3. Optimization Problem

3.1. Problem Description. Let us consider an operation of
a wireless data network with the objective to minimize a
convex cost function f (p, c, b) (or to maximize a concave
utility function). The design variables b, c, and p are subject
to some constraints. For instance, with (e ∈ E,m ∈ M, v ∈
V , t ∈ T) we require the power constraints

pe,t ≥ 0, (2)

pe,t ≤ Pmax
e , (3)

∑

e∈E+(v)

pe,t ≤ Pmax
v (4)

forming the polyhedral set

Cp := {p | p fulfills (2), (3), and (4)
}
. (5)

Since we isolated coloring from the joint routing and power
control, we have to take the precalculated colored network
graph in the flow constraints into account. Similar to
power constraints, we require that flow constraints form
a polyhedral set Cc. For example, if we assume that given

source nodes sm have to transmit messages of sizes Sm to
destinations dm in a given time tmax, the polyhedral set Cc

is defined by the equalities and inequalities

ce,m,t ≥ 0 (e ∈ E,m ∈M, t ∈ T), (6)

bv,m,t ≥ 0 (v ∈ V ,m ∈M, t ∈ T), (7)

bv,m,t ≤ Bv,m (v ∈ V ,m ∈M, t ∈ T), (8)

bsm,m,1 = Sm (m ∈M), (9)

bv,m,1 = 0 (v ∈ V \ {sm},m ∈M), (10)

bdm,m,tmax = Sm (m ∈M), (11)

bv,m,tmax = 0 (v ∈ V \ {dm},m ∈M), (12)

ce,m,t = 0 (m ∈M, coE(e) /= coT(t)), (13)

bv,m,t+1 − bv,m,t =
∑

e∈E−(v)

ce,m,t −
∑

e∈E+(v)

ce,m,t,

(m ∈M, v ∈ V , t ∈ T \ {tmax}).
(14)

Equations (7) and (8) avoid buffer overload while (9) and
(10) initialize buffer values. To account for delay constraints
(11) and (12) ensure that messages reach their destinations
completely at tmax at last . Coloring is ensured by (13) and
(14) is a modified Kirchhoff ’s Law [6]. The SRPC problem
under consideration is now as follows

minimize f
(

p, c, b
)

subject to (b, c) ∈ Cc

p ∈ Cp

∑

m∈M
ce,m,t ≤ Re,t

(
p
)

e ∈ E+(v), t ∈ T.

(15)

By the last constraints, we assume that at any time t ∈ T
each node v ∈ V can map all part of messages m ∈ M
onto a single link e ∈ E for transmission [5]. Furthermore,
we assume that the amount of information (in bits) we can
transmit on a single wireless link e at time slot t is bounded
from above by a maximum mutual information bound
Re,t(p) that itself depends on the power setting. The last
constraints of (15) are the only constraints coupling network
flow variables (b, c) with communication variables p. Thus,
we call them coupling constraints [5], and they represent the
most challenging constraints of the SRPC problem. All the
other constraints are either constraints for the network flow
variables or for the communication variables only. Assuming
time-invariant channel conditions within the duration of a
single time slot t, function Re,t(p) describes the amount of
information of edge e and can be expressed with (1) by the
well-known Shannon formula

Re,t
(

p
) = B · τ · log2

(

1 +
1
Ωe

SINRe,t

)

(e ∈ E, t ∈ T).

(16)

For each edge e, the factor Ωe ∈ R+
0 represents any

implementation margin relative to the maximum mutual
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information given by the Shannon formula [8]. In practice,
achieving this mutual information requires adaptive mod-
ulation and coding. To accomplish the description of the
optimization problem under consideration, we like to list
some commonly used examples of cost (utility) functions.
Examples are

(1) minimization of total transmitted power

f
(

p
) =

∑

e∈E, t∈T
pe,t, (17)

(2) maximization of total network throughput

f (c) =
∑

v∈V
gv(c) (18)

with gv(c) representing any linear combination of
flows that egress node v,

(3) any linear combination of items (1) and (2).

A comprehensive overview on commonly used cost functions
for wireless data networks is given in [5].

3.2. Standard Interference Function. In the following we give
an interpretation of the coupling constraints (

∑
m∈M ce,m,t ≤

Re,t(p)) of the SRPC problem (15). We define for e ∈ E and
t ∈ T

Je,t
(

p, c
)

:=
Ωe

(
2((
∑

m∈M ce,m,t)/B·τ) − 1
)

Gt(T(e),R(e))

×
⎛

⎝
∑

l∈Ee,t , l /= e

Gt(T(l),R(e))pl,t + σ2
e

⎞

⎠

(19)

to be a standard interference function in p [9]. To clarify the
meaning of a standard interference function, we restate the
definition given in [9]. Here, � and �mean componentwise
inequality.

If we insert (1) into (16) and solve the coupling
constraints in (15) for power values, we obtain rewritten
coupling constraints as

p � J
(

p, c
)
. (20)

Definition 1. For given values ĉ, J(p, ĉ) is a standard inter-
ference function if for all p ≥ 0 the following properties are
satisfied.

(i) Positivity: J(p, ĉ) � 0.

(ii) Monotonicity: if p � p′ then J(p, ĉ) � J(p′, ĉ).

(iii) Scalability: For all α > 1, αJ(p, ĉ) � J(αp, ĉ)

The positivity property ensures positive power values of
the joint routing and power control problem (15). If
any transmit power level is decreased, the monotonicity
guarantees the decrease of the interference on the other links
in the network, ensuring the maintenance of the same or
even the achievement of a lower interference level for all

links. The scalability property implies that if p � J(p, ĉ) then
αp � αJ(p, ĉ) � J(αp, ĉ) for α > 1.

Interestingly, (20) represents a Quality-of-Service (QoS)
constraint, that is, a lower bound on the (implicitly defined)
SINR. By reusing the coupling constraints again (15) and
solving (16) for SINR we require

SINRe,t ≥ Ωe

(
2((
∑

m∈M ce,m,t)/B·τ) − 1
)

(e ∈ E,m ∈M, t ∈ T).

(21)

SINR is the main indicator for the transmission quality.
Hence, given a modulation and coding scheme a specific per-
hop error performance implies a respective Ωe. In turn, by
varying Ωe we vary the transmission quality.

Note that for given values ĉe,m,t ≥ 0, we can use a fixed
point iteration algorithm to find a unique power vector p∗ ∈
RE×T with

p∗ = J
(

p∗, ĉ
)
. (22)

This power iteration represents a standard power control
algorithm as introduced in [9]. The power iteration used
herein to solve (15) will be described in detail in Section 5.1.
With coupling constraints (20) of problem (15) we can make
use of the properties of the standard interference function
[9], arriving at the following theorem.

Theorem 1. Suppose that σ2
e > 0 (e ∈ E), that the objective

function f : (p, b, c) → f (p, b, c) is monotone in p, and that
we want to solve the optimization problem

minimize f
(

p, c, b
)

subject to (b, c) ∈ Cc

p ∈ Cp

p � J
(

p, c
)
.

(23)

Suppose there exists a feasible point of this optimization
problem, then there exists a feasible point with the same or
better objective function value for which all the constraints (20)
are active, that is, equality holds in all of them. Especially,
for every optimum objective function value there exists an
optimum variable setting such that all constraints in (20) are
active. If f is strictly monotone in p, then all constraints (20)
are active at each optimal solution of this problem.

Proof. See Appendix A.

Theorem 1 is an extension of the results found in [9].
In contrast to [9] we do not assume that f is just a sum
of powers, instead it can be an arbitrary function being
monotone in power values. Moreover, the objective as well
as the coupling constraints depend on the flow variables c
and buffers b, a case not considered in [9].

4. RPCD-Algorithm

In this section we present the RPCD-Algorithm for solving
the SRPC problem (15). In contrast to universal approaches,
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Figure 1: RPCD Algorithm.

like the dual decomposition method, we fully exploit our
knowledge of active constraints of the joint optimization
problem.

Based on Theorem 1 we can formulate an equivalent
optimization problem but we avoid the extension of the
utility function as usually done by applying dual or penalty
approaches. We further keep the constraints and we only
have to exchange the common network and power variables.

The main idea of the RPCD-Algorithm is to decouple
the SRPC problem into two convex subproblems and to find
the optimum solution of the SRPC problem by iteratively
toggling between the two subproblems (Figure 1).

4.1. RPCD-Principle. Let us consider again problem (15).
Due to Theorem 1 we know that all coupling constraints
(20) of the SRPC problem are active at least at one optimum
solution. By means of this observation, we can rewrite the
SRPC problem to an equivalent problem as follows. Activity
(equality) means that

p = J
(

p, c
)
. (24)

We now substitute (24) into the objective of the SRPC
problem (15) and obtain an equivalent problem with the
rewritten cost function as

minimize f
(

J
(

p, c
)
, c, b

)

subject to (b, c) ∈ Cc,

p ∈ Cp,

p � J
(

p, c
)
.

(25)

In the following we use (25) and decompose the SRPC
problem into two convex subproblems.

In particular, by assuming feasible power variables, a
routing problem with fixed link capacities is formulated
and the optimum flow variables for the routing problem
are calculated. Equivalently, we can assume fixed routing
variables and formulate a power control problem to calculate
optimum power values [10].

The two subproblems are as follows.

4.1.1. Network Flow (Routing) Subproblem. We assume feasi-
ble power variables p̂ ∈ Cp. With (25) we need to solve the
optimization problem

minimize f
(

J
(

p̂, c
)
, c, b

)

subject to (b, c) ∈ Cc,

∑

m∈M
ce,m,t ≤ Re,t

(
p̂
)
,

(26)

where c, b are the optimization variables.
We have the following lemma.

Lemma 1. (1) If f is a continuously differentiable and
monotone function in p and in c, then the objective of (26)
is a continuously differentiable and monotone function in c.

(2) Let σ2
e > 0 (e ∈ E). Suppose that f is twice continuously

differentiable, that f (·, b, c) is a convex andmonotone function
in p for all (b, c) ∈ Cc and that f (p, b, ·) is a convex function
in c for all p ∈ Cp, for all b. Assume that at least one of the
following holds:

(a) f (·, b, c) is strictly convex in p for all (b, c) ∈ Cc,

(b) f (p, b, ·) is strictly convex in c for all p ∈ Cp, for all b,

(c) f (·, b, c) is strictly monotone in p for all (b, c) ∈ Cc.

Then, the objective of (26) is strictly convex in c and the
solution to (26) is unique and continuous on p̂

Proof. See Appendix B

4.1.2. Power Control Subproblem. We assume feasible net-

work variables ĉ, b̂ ∈ Cc. We need to solve the optimization
problem

minimize f
(

p, ĉ, b̂
)

p ∈ Cp,

p � J
(

p, ĉ
)
,

(27)

where p are the optimization variables.
We have the following lemma.

Lemma 2. Suppose that f is strictly monotone in p and (27) is
feasible. Then, we have:

(1) problem (27) has a unique solution,

(2) the solution for (27) depends continuously on (b̂, ĉ).

Proof. See Appendix C

4.2. RPCD Algorithm. As a consequence of the discussion
above, we can replace the SRPC problem (15) by two
simple subproblems, coupled to each other via fixed variables
(power and network variables). The algorithmic scheme
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Input: All parameters for problem (15).
(1) Choose p̂(0) ∈ Cp sufficiently large so that problem (26)

is feasible;

(2) Choose b̂(0), ĉ(0) arbitrarily;
(3) i := 0;

(4) while stopping criterion for (b̂(i), ĉ(i), p̂(i)) not fulfilled
do

(5) Set p̂ := p̂(i) and solve problem (26).

(6) Denote the result by (b̂(i+1), ĉ(i+1)).

(7) Set (b̂, ĉ) := (b̂(i+1), ĉ(i+1)) and solve problem (27).
Denote the result by p̂(i+1).

(8) i := i + 1.
(9) endw

Output: (b̂(i), ĉ(i), p̂(i))

Algorithm 1: RPCD.

used is exemplified as RPCD algorithm and described in
Algorithm 1.

Convergence of the RPCD algorithm is given by the
following theorem.

Theorem 2. Let us consider Lemmas 1 and 2. Under these
assumptions and under the assumption that (15) is convex, the
RPCD algorithm is well defined and provides a sequence of iter-

ates (b̂(i), ĉ(i), p̂(i))i such that each subsequence of this sequence
converges to an optimal point of (15). Moreover, there exists
at least one converging subsequence. Additionally, the sequence

( f (b̂(i), ĉ(i), p̂(i)))i converges monotonically decreasing.

Proof. See Appendix D

Note that both subproblems, (26) and (27), are convex
and represent standard problems for which many efficient
(distributed) algorithms exist. Particularly, we have to solve
a flow problem with fixed capacities (fixed power values)
[11] while computing optimum power values can be done
by means of standard power control algorithms [9].

5. Distributed RPCD

Generally, we can apply centralized as well as distributed
implementation for the RPCD algorithm. In this paper we
concentrate on distributed algorithm exclusively. For the
interested reader, a detailed survey about the centralized and
distributed algorithms and their advantages and disadvan-
tages can be found in [12].

Herein, for the distributed approach locally available
information is required and we restrict the internode
communication between neighbor nodes only.

As we illustrated in the Figure 2, each node executes the
distributed RPCD algorithm in advance before a time slot
begins. The algorithm allocates the resources optimally, for
given network and power variables ĉ and p̂.

In the following, as introduced in Section 4.1, we con-
sider again the two subproblems, routing (26) and power

Transmission

Resource
allocation

TTI TTI

TTITTI

RPCD
start

RPCD
end

RPCD
start

RPCD
end

t

t

. . .

Figure 2: Time Alignment of RPCD with respect to transmission.

control (27), and present distributed algorithms for solving
them.

5.1. Distributed Power Control. Let us consider again the
power control subproblem (27), which is part of the RPCD
algorithm.

minimize f
(

p, ĉ, b̂
)

p ∈ Cp,

p � J
(

p, ĉ
)
.

(28)

Assume given network variables ĉ, b̂ and that the stan-
dard interference function J(p, ĉ)is feasible, that is, if the
power vector p ∈ R+ satisfies the coupling constraints
(20), then we can use the following fixed point iteration to
compute the optimum power settings

p(n) := J
(

p(n−1), ĉ
)

n = 0, 1, 2, . . . . (29)

However, in practical systems we have p ∈ Cp taking
power limitations into account. Given the original interfer-
ence function J and considering the maximum power vector
Pmax
e in (3) we define

JPmax
e
(

p, ĉ
)

:= (min
{

J
(

p, ĉ
)
,Pmax

e

})
(e ∈ E+(v), t ∈ T).

(30)

It has been proven in [9] that JPmax
e is a standard interference

function fulfilling Definition 1.
To include the constraint on the output power of a node,

we define

Gv,t :=
⎧
⎨

⎩

(
pe,t
)
e∈E+(v) |

∑

e∈E+(v)

pe,t ≤ Pmax
v

⎫
⎬

⎭
(31)

and denote by proje,t
Gv,t

a projection operator that maps
computed power values into the polyhedral set Cp at each
iteration step of the power iteration (29).

This projection allows us to consider only feasible power
values during the course of the iteration.

By coupling the constrained interference function JPmax
e

with this projection on a polyhedral set, we define a new
interference function I for given network variables ĉ

Ie,t
(

p, ĉ
)

:= proje,t
Gv,t

(
JPmax

e
(

p, ĉ
))

(e ∈ E+(v), t ∈ T).

(32)
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It can be easily shown that for all p � 0 the interference
function I(p, ĉ) satisfies all properties given by Definition 1
and, hence, is also a standard interference function.

For each time step t ∈ T we can now write the standard
constrained power iteration as

p(n) := I
(

p(n−1), ĉ
)

n = 0, 1, 2, . . . . (33)

The power iteration (33) we call distributed power control
algorithm.

Obviously, (33) is defined in terms of (32), (31), and
(19). Due to (19), the information required to update
the power values at starting node for a link e ∈ E is
the interference caused by the interfering transmissions
measured at the end node for a link e ∈ E. Moreover, the
projections introduced to consider the power constraints are
local only. Hence, (33) represents a distributed power control
algorithm [9].

We use (33) to find a unique vector p∗ ∈ RE×T with

p∗ = I
(

p∗, ĉ
)
. (34)

If I(p, ĉ) is feasible, then for any initial vector p, the iteration
(33) converges to a unique fixed point p∗.

Due to Theorems 1 and 2, this unique fixed point of (34)
is a solution of the SRPC problem (15). If the SRPC problem
is (strictly) convex, the fixed point is the global (unique)
solution for the power setting of the joint routing and power
control problem.

5.2. Distributed Routing. In the following we present a
distributed algorithm for solving the routing subproblem
(26) with given power values p̂

minimize f
(

J
(

p̂, c
)
, c, b

)

subject to (b, c) ∈ Cc,

∑

m∈M
ce,m,t ≤ Re,t

(
p̂
)
.

(35)

The key to a distributed algorithm is to apply a decom-
position method by means of formulating the dual problem
of the optimization problem (26). Therefore we exploit the
separable structure of the routing problem (26) via the dual
decomposition method (see, e.g., [5, 13]). For solving the
dual problem, we propose to apply the common approach
of using the subgradient method [14].

To form the dual routing problem we rewrite the original
routing problem (26) using the Lagrange function [6]. We
introduce the Lagrange multipliers for the most involving
constraints, which are the coupling constraints of the SRPC
problem (15)

∑

m∈M
ce,m,t ≤ Re,t

(
p̂
)

(36)

and the flow conservation constraints, that is, modified
Kirchhoff ’s Law (14)

bv,m,t+1 = bv,m,t +
∑

e∈E−(v)

ce,m,t −
∑

e∈E+(v)

ce,m,t,

(m ∈M, v ∈ V , t ∈ T \ {tmax}).
(37)

This results in the partial Lagrangian of (26) given as

L
(

c, b, λ,μ
) =

∑

e

∑

t

Ωe

(
2((
∑

m∈M ce,m,t)/B·τ) − 1
)

Gt(T(e),R(e))

·

⎛

⎜
⎝

∑

j∈Ee,t j /= e

Gt
(
T
(
j
)
,R(e)

)
pj,t + σ2

e

⎞

⎟
⎠

+
∑

e

∑

t

μe,t ·
(
∑

m

ce,m,t − Re,t
(

p̂
)
)

+
∑

v

∑

m

tmax−1∑

t

λv,m,t

·
⎛

⎝bv,m,t+1 − bv,m,t −
∑

e∈E−(v)

ce,m,t +
∑

e∈E+(v)

ce,m,t

⎞

⎠

(38)

and the Lagrange multipliers are denoted by λ ∈
R|V |×|M|×|T|−1 and μ ∈ RE×T .

The Lagrangian dual function is

V
(
λ,μ
) = inf

c, b
L
(

c, b, λ,μ
)

subject to (b, c) ∈ Cc.
(39)

Given the Lagrange dual function we can formulate the
dual problem by [6]

D = sup
λ,μ

V
(
λ,μ
)

subject to λ is arbitrary

μ ≥ 0.

(40)

We need to solve the dual problem (40) in order to
obtain the best lower bound on c∗, b∗ from the Lagrange
dual function (39). Since the Lagrangian dual function is
convex, the dual problem is a convex optimization problem
[5]. Moreover, Slater’s condition (see, e.g., [6, 13]) holds and
thus, strong duality holds. This means, the optimal value of
the original routing problem (26) and the dual optimal value
from (39) are equal and we can solve the primal problem (26)
by its dual (40).

The algorithm to solve (39) and (40) is a two stage
optimization algorithm. It solves (39) and (40) separately by
using the subgradient method [6, 14] and toggling between
the two subproblems until a convergence criterion is met.

For the computation of the dual function (39) we use the
projected subgradient method [6, 14], which is an algorithm
for minimizing a nondifferentiable convex function with the
main feature of enabling distributed implementation.
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As a first step we have to calculate the subgradients with
the respect to the variables c and b, for variables λ and μ.
These subgradients are given by

gradL
bv,m,t

= ∂L
(

c, b, λ,μ
)

∂bv,m,t
= λv,m,t−1 − λv,m,t , (41)

gradL
ce,m,t

= ∂L
(

c, b, λ,μ
)

∂ce,m,t

=
Ωe ·

(∑
j∈Ee,t , j /= e Gt

(
T
(
j
)
,R(e)

)
pj,t + σ2

e

)
· ln 2

Gt(T(e),R(e)) · B · τ

·
(

2(
∑

m∈M ce,m,t)/B·τ
)

+ μe,t + λv+(e),m,t − λv−(e),m,t,

(42)

where v+(e) denotes the node v ∈ V that represents the
starting point for one or more links e ∈ E. Analog to v+(e),
we denote with v−(e) the node v ∈ V that represents the end
point for one or more links e ∈ E.

The subgradient updates on the variables c (e ∈ E,m ∈
M, t ∈ T) and b (v ∈ V ,m ∈M, t ∈ T) are

c(n+1)
e,m,t =

[
c(n)
e,m,t − αngradL(n)

ce,m,t

]+
,

b(n+1)
v,m,t =

[
b(n)
v,m,t − βngradL(n)

bv,m,t

]+
.

(43)

Note that the projection on the nonnegative orthant by
[ ]+ results due to the network constraints ce,m,t ≥ 0 (e ∈
E,m ∈M, t ∈ T) and bv,m,t ≥ 0 (v ∈ V ,m ∈M, t ∈ T).

Furthermore, αn and βn represent the subgradient step
sizes and have to satisfy (shown for α)

lim
n→∞αn = 0,

∞∑

n=1

αn = ∞ (44)

to ensure convergence. By n = 1, 2, . . . we denote the iteration
step.

Finally, we have to solve the dual problem. For this, we
compute the subgradients of the Lagrangian dual function
V(λ,μ) due to the dual optimization variables λv,m,t and μe,t

that are given by

gradL
λv,m,t

= ∂

∂λv,m,t
inf
c,b

L
(

c, b, λ,μ
)

= bv,m,t+1 − bv,m,t

−
∑

e∈E−(v)

ce,m,t +
∑

e∈E+(v)

ce,m,t,

gradL
μe,t
= ∂

∂μe,t
inf
c, b

L
(

c, b, λ,μ
)

=
∑

m

ce,m,t − Re,t
(

p̂
)
.

(45)

Applying subgradient update we obtain for variables
λ(v ∈ V ,m ∈M, t ∈ T) and μ(e ∈ E, t ∈ T)

λ(n+1)
v,m,t =

(
λ(n)
v,m,t + δngradL(n)

λv,m,t

)
,

μ(n+1)
e,t =

[
μ(n)
v,m,t + εngradL(n)

μe,t

]+
.

(46)

Source node

Figure 3: Wireless Mesh Backhaul Network.

Note that the projection on the nonnegative orthant by [ ]+

results due to the constraints μe,t ≥ 0 (e ∈ E, t ∈ T).
Furthermore, δn and εn represent the subgradient step

sizes, both satisfying the conditions in (44) with n = 1, 2, . . .
denoting the iteration step.

As one can see by considering (33), (41), (42), (45), (39),
(46), and (41) two types of information are necessary. First,
that the information required for the computation to take
place at each and every node is the interference caused by
the interfering transmissions measured at the receiving node.
Second, by (42) Lagrange multipliers from neighbor nodes,
for example, v−(e) and v+(e) are required.

The distributed routing algorithm tries to achieve an
optimum coordination between the network variables c and
b on the one hand and the dual variables λ and μ on the
other hand. For the considered wireless network, this means
that the distributed routing algorithm tries to achieve an
optimum coordination between node buffers and capacities
allocated to the links, subject to the network constraints as
defined in (26).

6. Simulation Results

In this section, we present some numerical results of the
distributed RPCD algorithm as applied to a wireless mesh
backhaul network. Furthermore, we compare the results with
the dual decomposition method introduced by Xiao et al.
in [5]. The network under consideration is a typical cellular
network with hexagonal cell structure. The cells are arranged
around a center cell by rings and a node is located in the
center of a hexagon as depicted in Figure 3.

This models the situation where, to save infrastructure
expenses like laying cable or fiber to each node in a network,
we try to extend the range of given source node (center
node) by intermediate nodes being wireless connected. The
source node has wired backhaul connection only, while all
other nodes have no wired backhaul connection and can only
communicate with the wireless mesh backhaul via the source



EURASIP Journal on Wireless Communications and Networking 9

1

2

5

4

3

6

9

8

7

10 Destination

Source

Ring 0

Ring 1
Ring 2

Ring 3

Figure 4: Network [1 3 5 1].

node. We require that wireless links can only be formed
between nodes in adjacent rings. This means, (1) a node
can not transmit to any node that is more than one ring
away, and (2) intraring communication is not allowed so
that nodes belonging to the same ring have no wireless link
established. Figure 4 shows the resulting directed graph of
the wireless mesh backhaul network for the case where the
first ring composes three, the second ring five, and the third
ring the destination node only.

Each intermediate node can transmit to and receive along
multiple links from nodes, neither multicast nor broadcast
is considered. The network is a single frequency network.
For the sake of simplicity, we assume that the scheduler
does not take in-band signaling users into account, rather we
might interpret in-band users as additive noise. We further
require in the simulations that simultaneously active links
do not interfere. Hence, the SRPC problem under consider-
ation is convex, therefore, the optimum solution is global.
This means, we assume orthogonal transmission between
links, possibly performed by Space Division Multiple Access
(SDMA) schemes such as sending/receiving beamforming
[15, 16]. Due to the setup of the wireless backhaul links,
the nodes we consider are cellular base stations with high
processing capability. Without loss of generality, the objective
function we assume is to minimize total transmitted power
with f (p) =∑e∈E,t∈T pe,t.

The scenario shown in Figure 4 is denoted as [1, 3,
5, 1] scenario. So, we have 10 nodes forming a wireless
mesh backhauling network with 23 edges. The simulation
parameter set up is as follows. The wireless network has
to transmit data of Sm = 10 Mbit size from the source
node to the destination, but due to the delay constraint
the transmission has to be completed within a maximum
number of tmax = 7 time slots, that is, T = {1, . . . , 7}. The
bandwidth per link is B = 5 MHz, the length of an time-slot
is τ = 1 ms and the radius per hexagonal cell is r = 500 m.
We assume an exponential path-loss model with factor 3,
but no shadow-fading. The thermal spectral noise density is
σ2 = −174 dBm/Hz. The buffer size per node is restricted
to Bv,m = 10 Mbit. To account for power constraints we
upper bound the power per node by Pmax

v = 10 Watt,
whereas for each specific link we assume no explicit power
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Figure 5: Dual Decomposition: Progress of dual function for [1 3 5
1] network.

restriction. Regarding the distributed RPCD algorithm, we
use a stopping criterion based on the variables ce,m,t(e ∈
E,m ∈ M, t ∈ T) to check for convergence. We proceed
with the iteration as long as the maximum norm of two
consecutive iteration steps is greater than 10−7. To show
convergence, we apply the algorithm for a huge number of
different starting points as well as for several networks, that
is, [1, 3, 1], [1, 3, 5, 1], [1, 3, 5, 7, 1].

We observe the following result.
For a given feasible starting point p̂(0) the distributed

RPCD algorithm converges to an optimum solution within one
step only.

Since the algorithm converges globally the zero vector is
always a feasible starting point.

The optimum solution is cross checked twice. First, we
verify the solution by applying the NPSOL solver of TOM-
LAB that reflects centralized implementation. Secondly, we
compare our results with another distributed algorithm, the
dual decomposition approach [5]. Figure 5 shows the dual
function versus iteration i. Clearly, the dual function slowly
converges to the unique optimum solution (as proposed in
[5], we applied the subgradient method to update the dual
variables).

Hence, it is obvious that the proposed method signif-
icantly outperforms the dual decomposition approach in
terms of required iterations steps towards the optimum solu-
tion. Moreover, the distributed RPCD approach requires an
inter-node communication where nodes share the power and
network variables only. The dual decomposition, however,
requires an extra communication of the dual variables [17].
Finally, Figure 6 shows the average rate allocation of the
data values per edge, where averaging is performed over the
time slots the links are active. The amount of transmitted
bits is given in [Mbit] while the power values are given in
[Watt]. For illustration purposes, the thickness of the links
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reflects the amount of data transmitted, while dotted links
are never active during the entire transmission. As expected,
we observe that due to the geometry of the network traffic
is mainly concentrated in inner links and the algorithm use
one single route from the source to the destination, although
multiple path routing could be performed.

Further, we decrease the bandwidth for every link in the
network and use B = 1 MHz. In Figure 7 we can observe
that the algorithm can not transmit the total amount of the
data over one single route anymore and multiple path routing
has to be performed. The transmission of the data expands
over more routes in the wireless mesh backhaul network.
Nevertheless the data traffic is generally concentrated in the
inner links, which can be explained with the geometry of the
network.

7. Conclusion

In this paper we have considered the joint routing, time
scheduling and power control problem for single frequency,
time-slotted wireless mesh networks. We presented an
approach for optimally solving this crosslayer optimization
problem while meeting the requirements, such as distributed
implementation, multiple path routing, and per-hop error
performance. The main contribution is the distributed
Routing and Power Control Decomposition (RPCD) Algo-
rithm, which is based on the idea of decoupling the

SRPC problem into two subproblems, power control and
routing, and including scheduling in the constraint set
of the SRPC problem. Moreover, we presented distributed
algorithms for solving both, the power control and the
routing subproblem. For illustration purpose we applied the
distributed RPCD algorithm to a wireless mesh backhaul
network. The observed convergence results are impressive:
only one decomposition step is needed to achieve the optimal
solution.

Appendices

A. Proof of Theorem 1

Proof. Choosing feasible variables pe,m,t, ce,m,t, bv,m,t (e ∈
E,m ∈ M, t ∈ T , v ∈ V) for the problem above, we
immediately see that the interference function defined by
(29) is a standard interference function. Therefore, the power
iteration (29) started from, say, p(0) = 0 converges to a
point p∗ with (22). Clearly, for this point the constraints
(20) are active. Moreover, in [9] it was shown that p∗ has
the smallest objective function value for all possible choices
of the variables pe,m,t (e ∈ E,m ∈ M, t ∈ T , v ∈ V)
with prespecified and fixed variables ce,m,t, bv,m,t (e ∈ E,m ∈
M, t ∈ T , v ∈ V). Therefore, the constraints (20) have to be
active in all solutions of the optimization problem above.

B. Proof of Lemma 1

Proof. (1) This can be seen by differentiating the objective
under consideration with respect to c.

(2) The Hessian of the objective under consideration
with respect to c can be written as

(
∂J
∂c

)T ∂2 f

∂p2

∂J
∂c

+ D +
∂2 f

∂c2
, (B.1)

where D is a diagonal matrix with entries

∂ f

∂pe,m,t

∂2Je,m,t

∂2ce,m,t
. (B.2)

The objective is strict convex in c if and only if this Hessian
is positive definite. Now, the first summand above is clearly
positive semidefinite, since f (·, b, c) is convex in p. Likewise,
the third summand is positive semidefinite, since f (p, b, ·) is
convex in c. Finally, the diagonal matrix D has nonnegative
entries on the main diagonal, since J is strictly convex in c and
f (·, b, c) is monotone in p. Accordingly, the Hessian above is
positive definite as long as one of the summands is positive
definite. Assumption (a) leads to the positive definiteness
of the first summand, assumption (b) leads to the positive
definiteness of the last summand, while assumption (c) leads
to the positive definiteness of D.

From this, the strict convexity under the given assump-
tions readily follows.

Clearly, the variables ce,m,t (e ∈ E, m ∈ M, t ∈ T) are
unique in an optimum of the problem under consideration.
Using (9), (10), and (14) and induction over t ∈ T , one easily
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concludes that optimal variables bv,m,t (v ∈ V ,m ∈ M, t ∈
T) are unique, too.

The continuity is a classic result from parametric opti-
mization, see, for example, [18], and follows from the strict
convexity of the objective in c and from the fact that the set
of feasible points is a polyhedron.

Remark 1. The following remarks hold with respect to
Lemma 1.

(1) The second result of Lemma 1 can be weakened a bit.
In case f is not strictly convex in, say, c, it suffices
to assume that the diagonal entries of the matrix D
are sufficiently large. That amounts to saying that
either ce,m,t is sufficiently large or that ∂ f /∂pe,m,t is
sufficiently large, that is, there is certain amount of
monotonicity build into the objective function (e ∈
E, m ∈M, t ∈ T).

(2) The convexity assumptions of Lemma 1 do not
amount in assuming that f is convex, as the example
f (p, c) = pc shows.

C. Proof of Lemma 2

Proof. (1) See Theorem 1 and [9].
(2) This follows by noting that the solution to the

problem at hand is uniquely characterized by the fixed-point
equation p = J(p, ĉ), the latter being a linear system in p. The

corresponding solution depends continuously on (b̂, ĉ).

Remark 2. In Lemma 2, strict monotonicity cannot be
replaced by monotonicity. However, uniqueness of the
results of Lemma 2 hold again if only the (unique) ‖ · ‖2-
solution of the optimization problem under consideration is
considered.

D. Proof of Theorem 2

Proof. The well-definedness rests on the two lemmas above,
which also tell us that the maps p �→ P( f , p) and (b, c) �→
P( f , b, c), mapping parameters to solutions of optimization
problems, that are considered in the algorithm are point-
to-point. Moreover, both maps are continuous. We call an
arbitrary mapping M : x �→ M(x)closed if limk→∞x(k) = x
and limk→∞M(x(k)) = y implyM(x) = y. Clearly, continuous
mappings are closed, and therefore the two mappings
mentioned above are closed. (See also [19, page 123],.
Actually, closedness is a property usually associated with
point-to-set mappings, but we only consider point-to-point
mappings here. For point-to-point mappings, continuity is
sufficient for closedness, and these two notions are equivalent
if the set of arguments is compact.) The rest of the theorem
follows the convergence proof of the coordinate descent
method [19, Section 7.8], replacing the set {x | f (x) =
0} with the set of feasible points for which there does not
exist a feasible direction of descent: since Cp is compact,

the coupling constraint implies that Cc is compact, too,
and therefore the whole set of feasible points is compact.
Accordingly, the composition of maps

M :
(

p(0), b(0), c(0)
)
�→
(

p(0),P
(
f , p(0)

))
=:
(

p(1), b(1), c(1)
)

�→
(
P
(
f , b(1), c(1)

)
, b(1), c(1)

)

=:
(

p(2), b(2), c(2)
)
.

(D.1)

that is,

M
(

p, b, c
)

:= (P( f ,P
(
f , p
))

,P
(
f , p
))

(D.2)

is closed, see [19, page 124]. That the sequence

( f (b̂(i), ĉ(i), p̂(i)))i is monotonically decreasing (and therefore
convergent) follows by construction of the sequence. We can
now define the compact set

Γ := {(p, b, c
) | (p, b, c

)
feas. & f

(
p,P

(
f , p
))

≥ f
(

p, b, c
)

& f
(
P
(
f , b, c

)
, b, c

) ≥ f
(

p, b, c
)}

= {(p, b, c
) | (p, b, c

)
feas. & f

(
p,P

(
f , p
))

= f
(

p, b, c
)

& f
(
P
(
f , b, c

)
, b, c

) = f
(

p, b, c
)}

,
(D.3)

that is, the set of feasible points from which the algorithm
does not improve objective function values any more. In
the convex case this is a set of KKT-points which is the
same as the set of the optimal points. It is easy to see that

every converging subsequence of (p̂(i), b̂(i), ĉ(i))i converges to
a point in Γ, more precisely to a fixed point of M (see also
[20]), which is thereby a point for which no feasible direction
of descent exists.

Remark 3. The following remarks hold with respect to
Theorem 2.

(1) The convexity assumptions within the theorem have
mainly be imposed to guarantee that the map p �→
P( f , p) is well-defined (i.e., the solution to the cor-
responding optimization problem is unique). If we
simply assume this well-definedness (or enforce it by,
say, computing the least-squares optimal solution),
we can drop the corresponding assumptions on f
instead.

(2) In principle, strict monotonicity of f in p is required
to obtain that (b, c) �→ P( f , b, c) is continuous. How-
ever, what usually happens is that in step 5 the power
iteration is used, which results in the computation
of the unique ‖ · ‖1-solution to P( f , b, c). In case
the power iteration is replaced by another algorithm,
uniqueness of the corresponding solution has to be
guaranteed in a different way.
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