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The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile
communication systems. The proposed cellular firefly synchronization (CelFSync) algorithm is derived from the theory of
pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous
synchronization of fireflies. In order to maintain synchronization among base stations (BSs), even when there is no direct link
between adjacent BSs, some selected user terminals (UTs) participate in the network synchronization process. Synchronization
emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a
priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to
a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate
combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at
the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.
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1. Introduction

Slot synchronization is an enabling component for cellular
systems. It is a prerequisite for advanced intercellular coop-
eration schemes, such as interference suppression between
neighboring cells, as well as multicast and broadcasting
services. The problem of intercell slot synchronization is to
align the internal timing references of all nodes, so that base
stations (BSs) and user terminals (UTs) agree on a common
reference instant that marks the start of a transmission slot.
In the context of cellular systems a slot is composed of a
number of successive uplink and downlink frames, referred
to as superframe.

Network synchronization in cellular systems is com-
monly performed in a master-slave manner: BSs synchronize
to an external timing reference, known as the primary
reference clock, and transfer this timing to UTs. This refer-
ence clock can be acquired through the global positioning
system (GPS) or through the backbone connection. The first
method requires the installation of a GPS receiver at each
BS, which increases costs and, more importantly, does not
work in environments where GPS signals cannot be received.

For high accuracy, the second method requires precise delay
compensation, and the accuracy severely decreases when
clocks are chained [1].

Over-the-air decentralized intercell slot synchronization
that avoids the need for an external timing reference was
pioneered in [2], and further elaborated in [3, 4]. Its basic
principle is summarized as follows: a BS emits a pulse indi-
cating its own timing reference and is receptive to pulses from
surrounding BSs; internal timing references are adjusted
based on the power-weighted average of received pulses.
Conditions for convergence were derived in [5], which
reveals that convergence and stability are tightly linked to the
intersite propagation delays between neighboring BSs. This is
a critical issue, as inter-BS propagation delays are not known
a priori. Furthermore, in [2], direct communication between
BSs is required, and for the exchange of synchronization
pulses, a separate frequency band is assumed to be available.

In the present paper a different approach is taken based
on the theory of pulse-coupled oscillators (PCOs), which is
commonly used to describe self-organized synchronization
of biological systems such as swarms of fireflies, heart cells,
or neurons. Mirollo and Strogatz [6] derived a theoretical
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FiGgure 1: (a) Uncoupled phase function and (b) phase increment
upon reception of a pulse.

framework for the convergence to synchrony. Various aspects
regarding the application of the PCO model to wireless
networks are addressed in literature: radio effects such as
propagation delays [7], channel attenuation, and noise [8, 9],
and allowing for long synchronization words [10]. The rules
that govern the PCO synchronization model are intriguingly
simple and serve as a basis for inter-BS synchronization.

The proposed cellular firefly synchronization (CelFSync)
algorithm adapts the PCO model to account for constraints
of cellular networks. CelFSync operates over-the-air, in a
decentralized manner; no constraints are imposed on the
availability of an external timing reference. As BSs and
UTs typically transmit on successive downlink and uplink
frames, two groups need to be distinguished; the BS group
transmitting on the downlink and the UT group transmitting
on the uplink. To facilitate the formation of two groups, two
synchronization words are specified, one associated to BSs
and the other to UTs. UTs transmit an uplink sync word
based on their internal timing reference, which is received
by BSs to update their own timing; in return UTs adjust
their timing reference upon reception of downlink sync
words from neighboring BSs. Thus, unlike [2], no separate
frequency band is required as sync words are transmitted
in-band with data. Moreover direct communication among
BSs is not mandatory as synchronization is performed by
hopping over UTs. As the downlink sync word is mandatory
for conventional cellular systems to align the timing of UTs
with the BS, the only overhead for inter-BS synchronization
is the insertion of the uplink sync word. Thanks to the
proposed strategy, the network is able to synchronize starting
from an arbitrary misalignment, and propagation delays only
affect the achieved accuracy but do not compromise the
convergence to synchrony.

When considering a scenario where BSs are separated by
several hundred meters up to a few kilometers, propagation
delays severely affect the attainable timing accuracy. We
propose to combine CelFSync with the timing advance
procedure, which ensures that UT uplink transmissions
arrive simultaneously at the BS. Compensating intracell
propagation delays with the timing advance procedure, as
well as selecting cell edge users to participate in CelFSync,
are effective means to substantially improve the achieved
interbase station timing accuracy.

The remainder of the paper is structured as follows. In
Section 2 the PCO model and its achieved synchronization

accuracy in the presence of delays are presented. In Section 3
CelFSync is developed by adopting the rules that govern the
synchronization of PCOs to cellular networks, and Section 4
combines CelFSync with timing advance to compensate the
effects of propagation delays. Practical constraints regarding
the implementation in cellular networks are addressed in
Section 5, and simulation results are presented in Section 6
that investigate the time to convergence and the achieved
accuracy for an indoor office environment as well as an urban
macrocell deployment composed of hexagonal cells.

2. Synchronization of Pulse-Coupled Oscillators

Pulse-coupled oscillators (PCOs) describe systems where
individual nodes periodically emit pulses and adjust their
internal time reference upon reception of pulses from
neighboring oscillators. In this section the rules that govern
the PCO model [6] are summarized, and the achieved
accuracy in the stable state is elaborated.

2.1. Phase Function. A PCO is described by its phase function
¢i(t), 1 <i < N, where N is the number of oscillators. This
function evolves linearly over time with natural period T:

doi(r) 1
dt T

Whenever ¢;(t) = 1 at reference instant t = 7;, the PCO is
said to fire, it transmits a pulse and resets its phase to 0. Then
¢i(t) increases again linearly, and so on. Figure 1(a) plots the
evolution of the phase function (1) during one period with
initial condition ¢;(0) = 0. The phase function can be seen
as an internal counter that dictates the emission of pulses.
In the following, we consider that all nodes have the same
dynamics, that is, clock jitter is considered negligible.

(1)

2.2. Synchronization Rules. The goal of slot synchronization
is to align the internal time references of all nodes, so that
all PCOs fire simultaneously. To do so, the phase ¢;(t) is
adjusted when a pulse is received. When coupled to others,
an oscillator 7 is receptive to the pulses of its neighbors and
adjusts its phase ¢;(t). When node j fires at instant 7}, the
phase of node i instantly increases by a value A¢ that depends
on its current value ¢;(7;):

¢i(1j) — ¢i(7j) + Ap(¢i(7))). (2)

The phase increment A¢ is determined by the phase response
curve, which in [6] was chosen to be a linear function:

¢+ A¢d(¢) = min(a¢ + 3, 1), (3)

where the coupling parameters a and ff determine the
coupling between oscillators. Figure 1(b) plots the time
evolution of the phase when receiving a pulse at t = 7;. The
received pulse causes the oscillator to fire early.

Provided that « > 1 and 0 < B < 1, a system of
N identical oscillators coupled all-to-all is always able to
synchronize, so that all PCOs agree on a common reference
instant, independent of initial timing misalignments [6].
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FIGURE 2: Phase representation of the synchronization of N = 30
PCOs.

2.3. Convergence. An example of the synchronization of
pulse-coupled oscillators is shown in Figure 2. Initially
all nodes start with a random phase, which increments
according to (1) until one phase reaches the threshold. At this
instant and each time a phase reaches 1, neighboring nodes
increment their phase according to (3). Over time, order
emerges from a seemingly chaotic situation where nodes fire
randomly, and in Figure 2, all nodes fire in synchrony within
five periods.

A key feature in the synchronization of PCOs is that,
over time, nodes cluster into groups of oscillators. This
phenomenon is referred to as absorption and occurs when
a pulse forces nodes to exceed their firing threshold, causing
them to fire immediately. The absorption limit ¢, is derived
from (3):

1-p

(24

be = (4)
As nodes have the same internal dynamics and if they
are coupled all-to-all, absorptions remain permanently (see
Figure 2). Therefore nodes following the PCO rules first
gather into groups that gradually absorb one another, and
after some time, always coalesce into one synchronized
group.

In [11] Lucarelli and Wang extended the demonstration
of [6] to remove the all-to-all assumption. Under weak
coupling assumptions, that is, « close to 1 and f3 close to 0
in (3) (no proof for strong coupling exists), equivalent phase
deviation variables are derived for each node (each variable
represents the mean local interactions over one period) and
are shown to asymptotically converge to the same value [11].

Unfortunately the analysis in [11] is not applicable when
delays are introduced. Izhikevich showed that there is no
equivalent phase deviation variable when interactions are
delayed [12]. As the proposed inter-BS synchronization
scheme always delays interactions (see Section 3), an ana-
lytical convergence study appears infeasible. Convergence is
consequently studied through simulations in Section 6.

2.4. Impact of Delays. When delays are introduced, such as
propagation delays, the coupling between two nodes i and j
is delayed by v;;. In the presence of coupling delays a network
of PCOs may become unstable, and the network is unable
to synchronize [13]. Stability is regained by introducing a
refractory period of duration T after reference instant 7
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FIGURE 3: Synchronization of three pulse-coupled oscillators with
delays.

[7]. In refractory, when ¢;(t) < @refr With @rer = Trerr/ T, NO
phase increment is possible, so that received pulses are not
acknowledged. The duration of the refractory period needs
to be at least twice the maximum delay between two nodes,
so that echos are not acknowledged [7]:

Trefr > l'l'llaX 21/;‘]‘. (5)
J

Because of delays nodes are no longer able to perfectly align
their reference instants 7; [7]. Nevertheless nodes converge
to a stable state where reference instants are spread within an
interval limited only by the coupling delays v;;, as detailed
for networks of two and three nodes in the remainder of this
section. Further discussion on the achieved accuracy of the
PCO scheme in the presence of delays is available in [14].

2.4.1. Two Nodes. The accuracy limits for a network of N = 2
nodes is bounded by the interval of reference instants leading
to a stable state [7]. Suppose that the reference instants of two
nodes i and j are aligned such that 7; > 7; + v;;; then node i is
the forcing node that imposes its delayed reference onto node
j. After coupling, node j is pulled to the delayed timing of
node i, 7; = 7; + v;; (as shown for nodes i = 1 and j = 2
in Figure 3), as long as the pulse of node i falls within the
absorption interval (4) of node j, thatis, ¢; (7i+v;;) € [¢¢, 1].
If 7; > 7j + v;j, the roles are reversed, in the way that node j
imposes its delayed timing onto node i, so that after coupling
7; = 7; + v;j. On the other hand, if the reference instant of
node i is within the range

7i € [1j = %ij, T + i), (6)

the pulses from node j fall into the refractory period of
node i, and vice versa, and are thus not acknowledged.
This corresponds to the stable state where the phases of
both nodes are not adjusted. According to (6) the achieved
accuracy is bounded by the propagation delay v;; and is given
by [7]:

€ij £ |Ti —Tj | < Vij. (7)

The introduction of a refractory period thus may result
in a state where one node imposes its timing onto the other,
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in a similar way to a master-slave synchronization scheme.
However, the achieved state is random: it depends on the
initial condition and on interactions with other nodes in the
network. Therefore the role of the forcing node is arbitrary,
and PCO synchronization is still considered decentralized.

2.4.2. Three Nodes. The analysis of [7] is extended to a
network of N = 3 nodes in the following. Two cases are
distinguished.

(i) The forcing node is directly connected with all nodes.

(ii) The forcing node is the edge node of a line topology
and imposes its timing to the other edge node by
hopping over the center node.

Considering (i), suppose that node 1 is the forcing node that
imposes its delayed timing onto nodes 2 and 3. This state
is shown in Figure 3: node 1 fires at instant t = 7;, which
causes nodes 2 and 3 to increment their phases at instants
71 + 712 and 71 + v13, respectively. Assuming that their phase
exceeds the absorption limit (4), nodes 2 and 3 fire at instants
T, = 171 +v12 and 73 = T + ¥13, and subsequently enter
refractory. No further phase increments occur because the
pulses from nodes 2 and 3 are received when nodes are in
refractory (5). Therefore the network is in a stable state, and
the achieved accuracies of node 1 relative to node 2 and 3
amount to €); = v, and €3 = 13, respectively. Interestingly,
the accuracy between nodes 2 and 3 is equal to the difference
in delays with forcing node 1, that is, €13 = [v12 — v13]. Thus
this achieved accuracy does not depend on the direct delay
7,3 but on the delay difference with the forcing node 1.

In case (ii) the considered nodes form a line topology,
where the edge nodes 1 and 3, cannot communicate directly.
Suppose that node 1 is the forcing node that imposes its
timing onto node 3 via the center node 2. As the accuracy
between adjacent nodes is bounded by (7), that is, €1, < v1»
and €33 < 7,3, the resulting accuracy interval over two hops
between edge nodes 1 and 3 amounts to the sum of delays:
€13 = V12 + V23.

3. Decentralized Intercell Synchronization

This section presents an adaptation of the PCO model to per-
form intercell synchronization. To facilitate reliable exchange
of reference instants in the presence of signal fading,
interference, and noise, long synchronization sequences that
are transmitted in-band with data are considered instead of
pulses. Furthermore, half-duplex transmission is considered,
which implies that nodes cannot receive whilst transmitting.
To this end, when two nodes transmit sync words that
partially overlap, both nodes are unable to detect the sync
word sent by the other node, referred to as deafness between
nodes. Hence both nodes are effectively uncoupled, an
effect which may severely disrupt intercell synchronization.
Further accounting for constraints in cellular systems, the
frame structure does not allow for overlapping downlink
and uplink slots. Thus synchronized BSs and UTs should not
transmit simultaneously.
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FIGURE 4: Synchronization regimes of pulse-coupled oscillators.

The proposed cellular firefly synchronization (CelFSync)
scheme takes into account these fundamental constraints, by
resorting to an out-of-phase synchronization regime, intro-
duced in Section 3.1. CelFSync relies on two synchronization
sequences, one transmitted by BSs to adjust timing references
of UTs, and a second one transmitted by UTs to adjust
timing references of BSs, based on rules that are established
in Section 3.2. The detection of the two distinct synchroniza-
tion sequences in an asynchronous environment is discussed
in Section 3.3. For ease of explanation, propagation delays
are neglected in this section and are treated specifically in
Section 4.

3.1. Synchronization Regimes. A system of PCOs is said
to be synchronized when all nodes have reached a stable
state where their internal timing references are aligned,
constrained to the considered synchronization regime [15].
The synchronization regime is characterized by the phase
difference A = 7, — 1, between two synchronized groups
in the stable state, where members of the same group
are perfectly aligned. Depending on the phase difference
A, three synchronization regimes are distinguished [15],
as illustrated in Figure 4. If there is no phase shift, A =
0, the regime is said to be in-phase. If the phase shift
is exactly equal to half a period, A = T/2, nodes have
reached an antiphase synchronization regime. Finally if the
phase difference between oscillators is A#0 and A# T/2
between the first and second groups (and T — A between
the second and first groups), then oscillators are out-of-phase
synchronized.

The in-phase regime is the most common form of
synchronization; pacemaker cells pulse simultaneously to
pump the heart, fireflies emit light at the same time.
Antiphase synchronization is also familiar; when walking,
our legs are antiphase synchronized: the left foot touches the
ground half a period after the right one, and vice versa.

Following the frame structure of cellular systems com-
posed of successive downlink and uplink frames, BSs are
to be synchronized out-of-phase with UTs. Out-of-phase
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FIGURE 6: Synchronization principle of CelFSync.

synchronization ensures that uplink and downlink transmis-
sions in the steady state do not overlap, so that detrimental
effects of deafness between nodes, inherent to half-duplex
transmission, are mitigated.

3.2. Cellular Firefly Synchronization. The goal of CelFSync
is to synchronize in time the transmission slots of a cellular
network, so that neighboring BSs mutually align the start of
the superframe preamble. The timing information between
BSs is conveyed by implicitly hopping over mobiles close to
the cell edge, as exemplified in Figure 5. Hopping on the UT
enables to extend the reception range of sync words, and
thus allows for robust intercell synchronization, even when
neighboring base stations do not hear one another.

CelFSync adapts the PCO synchronization model to
establish an out-of-phase synchronization regime. The
desired stable state is illustrated for one user terminal UT;
and one base station BS, in Figure 6. Unlike the PCO model,
instead of pulses, nodes transmit long synchronization
sequences denoted by UL_Sync and DL_Sync of duration
Tut,sync and Tppsyne, respectively. For slot synchronization
three states are distinguished: transmission of the sync word,
the refractory period, and the listen state. Transmission starts
when a node fires (see Tyr; for UT; in Figure 6). Half-
duplex transmission is considered: when a node transmits, its
receiver is switched off. After transmission of the sync word
nodes enter the refractory period, where detected sync words
are not acknowledged. In listen state nodes maintain a phase
function, that is, adjusted upon detection of a sync word. Key
to separating nodes into two predefined groups is achieved by
three types of interactions as follows.

UT-BS Coupling. Base station BS, estimates the reference
instant of UT; by detecting its sync word UL_Sync; the
estimate of this reference instant is denoted by Tyr,. In order

to establish the desired out-of-phase synchronization regime,
BS, adjusts its phase function ¢gs, exactly A seconds after
UT; has fired, at instant Oy; = Tyt + A. If the coupling
instant Oyt falls within the listen state of BS,, the receiving
BS increments its phase:

PBs.a(Out,i) — ¢Bsa(Our,i) + Adps(Ppsa(Buri)).  (8)

The phase response curve A¢ps is chosen according to (3),
such that phase increments are strictly positive:

¢ + A¢BS(¢) = min (OCBs(p +/335, 1). (9)

The coupling parameters are chosen in accordance to the
PCO synchronization model: ags > 1 and 0 < ffps < 1.

The BS decoding delay Tpsdec, shown in Figure 6,
specifies the interaction delay between the instant UL_Sync
detected at Tyt + Tursync and the coupling instant Oyr; =
Tur,i+A. It is an important parameter for two reasons. Firstly
Tgs,dec allows for a processing delay at the receiver in order
to perform link level synchronization. Secondly Tgs gec needs
to be appropriately chosen, so that the desired out-of-phase
synchronization regime is reached. As BSs fire A after UTs,
the BS decoding delay yields

Tgsdec = A — Tursyne. (10)

BS-UT Coupling. The considered user terminal UT; esti-
mates Tpsq, the reference instant of BS,. If the reception of
DL_Sync from BS, at instant gs, = Tps, + T — A falls within
the listen state of UTj, the receiving UT increments its phase:

Gut,i(Ossa) — duri(Ossa) + Apur(Pur,i(Ossa)). (11)

Again the phase response curve for BS-UT coupling Adyr is
chosen according to (3):

¢ + A¢UT(¢) = min (aUT(/S + [3UT’ 1) (12)

with the coupling parameters ayr > 1 and 0 < Byt < 1. The
UT decoding delay that enforces UTs to fire T' — A after BSs
is equal to (see Figure 6):

TUT,dec =T-A- TDL,Sync~ (13)

Thanks to this strategy, the formation of two groups is
controlled. Starting from an arbitrary initial misalignment,
where all reference instants tyr;, Tgs, are randomly dis-
tributed within [0, T], by following simple coupling rules,
reference instants of UTs and BSs separate over time into
two groups; all BS fire A after UTs, and all UTs fire T —
A after BSs. This state corresponds to the synchronized
state shown in Figure 6. Convergence is verified through
simulations in Section 6; by appropriately selecting the
coupling parameters, it is shown that synchronization is
always accomplished.

To speed up the convergence of CelFSync, two enhance-
ments are possible, namely BS-BS and UT-UT couplings and
the selection of active UTs.
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BS-BS and UT-UT Coupling. In case BSs can communicate
directly or UTs are placed close to one another, convergence
may be accelerated by allowing coupling between nodes
of the same group. Moreover, the occurrence of deafness
between nodes decreases because the number of nodes
that are potentially coupled is increased. As half-duplex
transmission is considered, BS-BS and UT-UT couplings are
useful only during the coarse synchronization phase, that
is, among nodes whose reference instants are misaligned by
more than the sync word length.

Phase adjustments are made similarly to (8) and (11)
for BSs and UTs; however decoding delays are different, as
nodes need to align in time with other nodes from their
own group. Therefore the interaction delay upon detection
of DL_Sync and UL_Sync needs to be equal to one period T,
giving a decoding delay of Tgs-psgecc = T — Tprsync for BSs
and TUT—UT,dec =T- TUL,Sync for UTs.

Active UT Selection. Since uplink sync words UL_Sync
should be heard by multiple BSs, it is reasonable to select
a subset of UTs close to the cell boundary to participate in
intercell synchronization. Therefore, in each cell, the base
station selects the Nyr UTs with the largest propagation
delay among Nyt total UTs in the cell. The remaining
Nur,t — Nur UTs are not active in CelFSync and follow the
timing reference dictated by their closest BS, by aligning their
local clocks based on DL_Sync.

3.3. Synchronization Word Detection. CelESync relies on the
detection of transmitted DL_Sync and UL_Sync sequences.
In the following, we assume that uplink and downlink sync
words are two different random sequences, each composed
of M symbols. Sync word detection is carried out by the
link-level synchronization unit, which cross-correlates the
received signal stream x(t) with the sync word s(t), where
s(t) = syu(t) if uplink sync words are to be detected,
and s(¢#) = sp(#) otherwise. The output of the link-level
synchronization unit i is denoted by r;(¢) = [ x(t—1)s*(1)dr.
The correlator output produces a series of peaks, in a similar
way to the emission of pulses in the PCO model, and
detection of a sync word is declared when r;(t) exceeds the
detection threshold R [16].

Signal fading may attenuate the received signal x(1),
which may result in a missed detection. The probability that
reference instants 7yr,; and Tgs, are correctly detected is

defined as [17]
Pq = Pr[ri(t) = R | #], (14)

where # is the hypothesis that a sync word is present at the
receiver. On the other hand, as sync words are transmitted
in-band, cross-correlation of s(t) with other sync words,
payload data or noise produces spurious peaks, so that
detection of a sync word may be declared although no sync
word is present, giving rise to a false alarm. The false alarm
probability is defined as [17]

Pg, = Pr[ri(t) = R| #], (15)

where #, the hypothesis that no sync word is present at the
receiver, is the complement of F.

The Neyman-Pearson criterion is used to design the
sync word detector [17]: the detection threshold R is set
according to the desired false alarm rate Pg,; once R is set, the
detection rate Py4 is determined. The impact of false alarm
and detection rates on an adaptation of the PCO model to
ad hoc networks was studied for a multicarrier system in
[18]. It was shown that false alarms have a higher impact on
the convergence than missed detections 1 — P4. Hence, it is
necessary to maintain a sufficiently low false alarm rate [18].

The reliability of the link-level synchronization unit can
be enhanced by increasing the length of the sync word M.
Increasing M improves the detection rate for a given false
alarm rate, at the expense of higher overhead [18].

4. Compensation of Propagation Delays

The accuracy of CelFSync is limited by propagation delays,
similarly to the PCO model discussed in Section 2. In an
indoor environment where distances between nodes are
typically small, propagation delays are negligible. However,
for cellular systems where the inter-BS distance is up to a
few kilometers, Section 4.1 reveals that propagation delays
cannot be ignored. A common procedure to align uplink
transmissions is the timing advance procedure, described in
Section 4.2. Timing advance is combined with CelFSync in
Section 4.3 to achieve a timing accuracy within a fraction of
the inter-BS propagation delays.

4.1. Achieved Accuracy in the Stable State. After CelFSync
converges and reaches a stable state, reference instants of BSs
and UTs are out-of-phase synchronized (see Figure 6), and
no phase increments occur. In the following discussion a
sufficient refractory period (5) is assumed; then stability is
maintained and the achieved timing accuracy in the stable
state between any two nodes is bounded by (7). In the
presence of propagation delays, the stable state condition (6)
in terms of the reference instants of BS, and UT; translates to

Tgs,a € [TUTi + A — Vai> TuTi + A+ V4], (16)

where v,; is the propagation delay between BS, and UT;.
When the upper bound in (16) is approached, then 755, =
TuTi + A + 4, UT; is the forcing node that imposes its
timing onto BS,. Likewise, (16) approaches the lower bound,
TuTi = T’ — A+ Ts,0 + Vai» when BS, is the forcing node that
imposes its timing onto UT;.

The effect of propagation delays on the achieved inter-
BS accuracy in the stable state is analyzed with the aid of a
case study, where two BSs are synchronized via one UT, as
depicted in Figure 5. This case study resembles the discussion
for a network with N = 3 nodes presented in Section 2.4.2.
Clearly, the worst case inter-BS timing misalignment is
encountered when one BS is the forcing node. Then the
two end nodes BS, and BS, synchronize by hopping over
UTj, so that the timing misalignments over two hops add
up. Applying the bound (16), the inter-BS accuracy is upper



EURASIP Journal on Wireless Communications and Networking 7

bounded by the sum of the BS, to UT; and UT; to BS,
propagation delays:

| TBs,6 — TBS,a| < Vai + Vbic (17)

Given that in cellular networks the inter-BS distance is up to
a few kilometers, propagation delays have a major impact on
the achieved accuracy in the stable state.

4.2. Timing Advance Procedure. As UTs are arbitrarily dis-
tributed within the cell, the distance d,; between UT; to
BS, varies. Since propagation delays are distance dependent
through v, = d,/c, where ¢ is the speed of light, the
observed timing reference of BS, measured at different
UTs, denoted Tps, = Tpsa + Vai» are mutually different.
To ensure that uplink transmissions arrive simultaneously
at their own base station, timing advance is a common
procedure in current cellular systems [19] and in wired
telecommunication systems [20]. For timing advance UT;
advances its transmission by v, the propagation delay to
its serving BS, taken to be BS, (see Figure 5). The uplink
reference instant of UT; including timing advance is given
by

TUTA,i = TUT,i — Vai- (18)

The propagation delay v,; may be determined by esti-
mating the round trip delay between BS, and UT; [21].
Upon reception of DL_Sync from BS,, UT; responds with the
transmission of a random access preamble (RAP) at Tpap; =
Ts,a+ Trap. Since Trap is a constant known to BS,, the round
trip delay 2v,; is determined by detecting the received timing
of the RAP at BS,,. In addition, the RAP identifies UT;, so that
BS,, can distribute the estimate of v,; to UT;.

4.3. CelFSync with Timing Advance. In order to combat
propagation delays, we propose to combine CelFSync with
the timing advance procedure. If UT; knows the propagation
delay to its serving base station BS,, the corresponding round
trip delay of 2v,; can be compensated. Owing to the multi-
point-to-point topology specific to cellular networks, BS, of
cell A typically serves several mobiles UT;, i € 4, each witha
specific propagation delay v,;. Hence, all timing inaccuracies,
the propagation delays from BS, to UT; and back from UT;
to BS,, must be compensated for at the mobile UT;. This is
accomplished by advancing both, the transmitted UL_Sync
and the coupling of the received DL_Sync at UT;, by the BS-
UT propagation delay vg;.

For the following discussion, suppose that UT; has
carried out the timing advance procedure with BS,, but its
UL_Sync transmission is received by BSy.

UT-BS Coupling. For CelFSync with timing advance, UT;
sends the uplink sync word UL_Sync at the advanced
reference instant Tyta; = Tur,; — Vai in (18). Then a phase
increment occurs at BS; at instant Oyta,; = TuTa,;i + A+ Vpi> SO
that (8) is transformed to

PBs,b (Buta,i) — @B (Butai) + Adss (P (Butai)) (19)

with HUTA,i = TuT,i + A+ Vbi — Vi

! 1
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F1Gure 7: Combination of CelFSync with timing advance.

BS-UT Coupling. For BS-UT coupling (11), we propose to
also advance the coupling by the propagation delay. So given
that UT; is timing aligned to BS,, but receives DL_Sync from
BS;, the mobile UT; advances its coupling by v,;. Then the
received DL_Sync from BS; leads to a phase increment at UT;
at instant Ogsap = s,y — Vai> S0 that (11) changes to

du,i(Ossas) — Pur,i(Osap) + Adur(dur,i(Ossap)) (20)

with Ogsap = Ossp — Vai = TBsp — A+ Vi — Vai.

Figure 7 summarizes the proposed combination of CelF-
Sync with timing advance: UT; starts transmision at Tyta,; =
TuT,i — Vai> S0 that the coupling at BS, occurs exactly at 755, =
TuT, + A; in return, BS, starts transmission of its sync word,
whose decoding time is reduced at UT; by v,; so that UT; fires
exactly T — A after BS,. Hence, all entities within one cell are
perfectly timing aligned, and thus, the only remaining source
of timing inaccuracies is between entities of neighboring
cells.

In the synchronized steady state, sync words observed at
Outa,; and Ogsa,, must fall into the refractory period, such
that sy < Ourai < Tesp + Trerr for UT-BS coupling, and
TuT,i < Osap < TuT,i + Trerr for BS-UT coupling. The steady
state accuracy between BS;, and UT; is bounded by the two
extreme cases when either BS, or UT; is the forcing node.
In case UT; is forcing, the observed timing at BS, yields
Tes,p = TuT,i + A + Vb — Vai. Otherwise, if BS, is forcing, the
timing imposed on UT; amounts to Tyt = s,y —A+Vpi — Vai.
This means that the achieved accuracy in the steady state
between BS;, and UT; is bounded by

Vai|> TUTi + A+ [ Vi — Vai | |
(21)

Tes,p € [Turi + A — | vei —

Therefore combining timing advance with CelFSync always
achieves an accuracy, that is, bounded by the difference of UT-
BS propagation delays.

In order to analyze the achieved inter-BS accuracy, the
case study depicted in Figure 5 and discussed in Section 4.1
is revisited. Given that UT; is time aligned to BS,, that is,
TUTA,; = TUT,i — Vai> the only remaining source of inaccuracies
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is the link from UT; to BS;, so that the UT-BS accuracy
bound (21) can be directly applied. Substituting ryr; =
Tps, — A into (21), the inter-BS accuracy between BS, and
BS;, over two hops is bounded to

| TBs,6 — TBS,a | < | Vai — Vbil. (22)

Provided that UT; is located near the cell boundary, its
propagation delays to BS, and BS;, are similar, so that the
difference |v,; — ;| is much smaller than the individual
delays v,; and vp;. This is in sharp contrast to the achieved
accuracy without timing advance in (17), which is bounded
by the sum of propagation delays. Increasing the UT density
per cell Nur,or increases the probability of selected UTs to
be close to the cell edge, which has the appealing effect that
the inter-BS accuracy (22) improves. The accuracy bound is
extended to multiple UTs in the Appendix.

The working principle of CelFSync including timing
advance is summarized as follows.

(i) UT; connects to the BS with the strongest received
signal strength, assumed to be BS,.

(ii) UT; aligns its timing to BS, by carrying out a timing
advance procedure, as described in Section 4.2.

(iii) If identified as active, UT; emits UL_Sync at reference
instants Tyra,; in (18) and adjusts its phase ¢uyr,; upon
reception of DL_Sync according to (20).

5. Implementation Aspects

In order to integrate CelFSync into a cellular mobile radio
standard, several practical constraints need to be taken into
consideration. Constraints regarding the frame structure and
the chosen duplexing scheme are addressed in this section.

5.1. Frame Structure. CelFSync is implemented and verified
based on the frame structure taken from the specifications
of the Wireless World Initiative New Radio (WINNER, URL:
http://www.ist-winner.org.) system concept [22]. Consecu-
tive downlink and uplink slots constitute one frame, and
a number of successive frames form one super-frame of
duration T. One uplink and one downlink sync words
UL_Sync and DL_Sync are placed into the superframe with
a relative spacing of A, as illustrated in Figure 4.

The downlink sync word DL_Sync allows UTs to synchro-
nize to its BS and is therefore essential for cellular networks.
Unlike DL_Sync, the insertion of the uplink sync word
UL_Sync adds overhead, as UL_Sync is typically not required
in current cellular networks. Fortunately, this overhead is
modest as UL_Sync is typically transmitted with low rate. For
the WINNER system the respective durations for superframe
and UL_Sync are 5.8ms and 45ps. Hence the resulting
overhead is less than 1% [22].

5.2. Acquisition and Tracking Modes. An intrinsic property
of PCO synchronization is that coupling between nodes
effectively shortens period T. However, cellular systems
typically rely on a fixed frame structure, which specifies the

way uplink and downlink slots are arranged to exchange
payload data. To this end, whilst the reception of payload
data is still ongoing, CelFSync may shorten the period of
two successive reference instants to T” < T, which effectively
shortens the duration of the superframe.

As long as the effective period T’ is only slightly
shortened, such that T — T’ < ¢, insertion of a guard time
with duration Tg > ¢ ensures that reception of payload
data is completed before a sync word is transmitted. The
condition T — T’ < ¢ corresponds to the tracking mode in
the steady synchronization state, where small offsets due to
clock skews, leading to deviations of the natural oscillation
period T between nodes, are compensated.

In case of coarse timing misalignments between cells, so
that T — T > ¢, the network is in acquisition mode. Potential
conflicts in acquisition mode are avoided by

(i) suspending payload data transmission while intercell
synchronization is in progress;

(ii) shortening the superframe duration to Tsr < T.

Scheme (i) does not allow for exchange of payload data
before CelFSync has reached a steady state. Given that a
steady state is likely to be maintained for hours or even days,
while CelFSync typically converges within a fraction of a
second or so, the loss in system throughput due to suspended
data transmissions may be acceptable. For instance, scheme
(i) is applied to facilitate the synchronization procedure in
the wireless LAN standard 802.11 [23, 24]: periodically, data
transfer is preempted, and the access point transfers its clock
value, known as timing synchronization function (TSF), to
the networks participants.

Scheme (ii) avoids conflicts by forcing the effective period
T’ to be at least as long as Ty By doing so, continuous
exchange of payload data is maintained, at the expense of
reducing the throughput during acquisition by about (T —
Ts)/T.

5.3. Duplexing Scheme. CelFSync is applicable to both
time division duplex (TDD) and frequency division duplex
(FDD). Nodes adjust their internal clocks based on received
sync words; whether the uplink and downlink sync words
are transmitted on different frequency bands or not is
irrelevant. The discussion in this paper targets half-duplex
transmission, where nodes cannot receive and transmit at
the same time, applicable to TDD and half-duplex FDD.
Full-duplex FDD benefits CelFSync, since nodes can transmit
and receive simultaneously, which eliminates deafness due to
missed sync words whilst transmitting.

5.4. Imposing a Global Timing Reference. An inherent prob-
lem of any distributed synchronization procedure is that
nodes agree on a relative time reference, that is, valid only
among the considered nodes and has no external tie. Such a
relative reference is opposed to a global time reference such
as the Coordinated Universal Time, which is provided by
GPS for example. Furthermore, as the size of the network
increases, it becomes increasingly difficult to synchronize
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the entire network in a completely decentralized manner.
To avoid this difficulty, in [25] a scenario was considered
where only a few nodes have access to a global time reference.
The PCO model was extended such that these master nodes
impose a global time reference to the entire network, even
though the number of master nodes was only a small fraction
of the total number of nodes in the network. Furthermore,
the behavior of normal nodes that do not have access to a
global time reference is not modified at all.

Applied to CelFSync a subset of BSs get access to a
global time reference. These master BS emit downlink sync
words DL_Sync with a slightly shortened period T, <
T, and are not receptive to sync words from other nodes
[25]. Neighboring cells then align their reference instants
following the synchronization rules outlined in Section 3.2.
It was demonstrated in [25] that for 0.9T < Ty, < T,
arbitrarily large networks are reliably synchronized. By doing
so the problem of synchronizing large networks with a
distributed algorithm is reduced to synchronizing a number
of cells (typically up to 2 or 3 tiers) around a master BS.

6. Performance Evaluation

To evaluate the performance of CelFSync two deployment
scenarios are considered: first an indoor office scenario in
Section 6.1; and second a macrocell deployment modeled
by an hexagonal cell structure in Section 6.2 [26]. All nodes
transmit with the same power P;. The propagation channel
between nodes i and j is modeled as a distance-dependent
pathloss channel. Node j receives the transmission of a
node i at a distance d;; with power Ptdi;X , where x is
the pathloss exponent. The signal-to-noise-plus-interference
ratio (SINR) of a received sync word is composed of the
received power of the sync word, divided by the level of
interference plus thermal noise with power Ny. The detection
threshold is set for a given false alarm rate, which enables the
computation of the detection probability P4 for each received
sync word as a function of the current SINR (see Section 3.3).
Unless otherwise stated, the parameters shown in Table 1 are
used in the simulations.

Both environments impose different strains on CelFSync.
In the indoor environment, sync words are subject to a high
level of interference from other transmitting UTs. In the
outdoor environment, the large distance between UTs and
BSs results in higher channel attenuations, creating a more
sparsely connected network, which implies that network
synchronization is to be carried out over multiple hops.

In both scenarios, Monte-Carlo simulations are con-
ducted for 5000 sets of initial conditions: all BSs initially
commence with uniformly distributed internal timing refer-
ences, while UTs are locally synchronized to their closest BS.
Synchronization is declared when two groups have formed,
so that reference instants of UTs are aligned and out-of-phase
synchronized with reference instants of BSs, with a relative
timing difference of A.

6.1. Indoor Office Environment. An indoor office with two
corridors and ten offices on each side is considered. This

TasBLE 1: Default simulation parameters.

Default value

Parameter Symbol
Indoor Macrocell

Transmit power P, 10 dBm
Pathloss exponent X 4 3
Noise level Ny —93 dBm
False alarm rate Py, 10°*
Sync word length M 32 symbols
Superframe duration T 5.89 ms
Out-of-phase offset A 0.11 ms
BS refractory Tgs refr 2.33ms
BS coupling oS L5

ﬂBS 0.01
UT refractory TUT refr 2.33ms
UT coupling our 1.3

Bur 0.01
Number of BSs Nps 4 BSs 19 BSs
Number of active UTs Nur 15 UTs 3 UTs/cell
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FiGure 8: Considered indoor network topology.

setting was defined for the local area scenario in WINNER
[27]. The network topology with Ngs = 4 BSs and Nyr =
15UTs participating in CelFSync is depicted in Figure 8.
The selected UTs (marked as bold circles) can communicate
directly with all BSs (marked as squares). UTs that do not
participate in the network synchronization procedure do not
transmit UL_Sync and adjust their slot oscillator based on
received DL_Sync.

Results plotted in Figure 9 elaborate on the time taken
for the entire network to synchronize. The time to synchrony
Tyyne is normalized to the duration of a superframe T.
Figure 9 plots the cumulative distribution function (CDF) of
the normalized time to synchrony for different values of the
BS-UT coupling factor ayr.

The performance of the proposed inter-BS synchroniza-
tion scheme can be controlled by the coupling factor ayr. For
a high coupling value, ayt > 1.3, synchronization is reached
quickly, but convergence to a synchronized stable state is not
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FiGure 9: CDF of the normalized time to synchrony in the
considered indoor environment when varying the BS-UT coupling.

always achieved. The fraction of initial conditions that do
not converge to this state is due to deafness among nodes:
some part of the network transmits partially overlapping
DL_Sync and UL_Sync sequences, and due to the half-duplex
assumption, some nodes are thus not able to synchronize.
The deafness probability increases with the coupling factor
aut, and for ayr = 1.5, it is approximately 10%. If the
coupling is low, ayr < 1.3, synchronization is always reached
within Tgne = 10 periods, and for ayr = 1.3, 80% of initial
conditions lead to synchrony within Ty, = 5 periods. This
is encouraging given the fact that deafness among nodes does
not occur when ayr < 1.3, even though nodes start with
a random initial timing reference. Setting ayr sufficiently
low reduces the absorption limit (4), which allows nodes to
receive more sync words in the synchronization phase. This
lowers the deafness probability, and enables the network to
synchronize starting from any initial timing misalignment.

6.2. Macrocell Deployment. For cellular networks, an hexag-
onal cell structure is considered as shown in Figure 10. One
or two tiers of BSs are placed around a center BS, resulting
in a network of Ngs = 7 and Nps = 19 BSs, respectively,
each of radius of de = 1km. The number of active UTs
per cell, Nur, specifies the number of UTs that participate in
CelFSync. Among the Nyr,or UTs randomly placed in each
cell, the Nyt UTs closest to the cell edge are selected as active.

6.2.1. Time to Synchrony. In a similar manner to Figure 9,
results plotted in Figure 11 depict the time to synchrony of
CelFSync in an hexagonal cell deployment for Ngs = 7 BSs
and Ngs = 19 BSs. Coupling among UTs is also considered
with strength ayr.yr = 1.05.

As expected, networks of Nps = 19BSs converge
less rapidly than smaller networks of Npgs = 7BSs. This
degradation is due to the increase in network diameter
from 4 hops to 8 hops. Moreover, the number of UTs per
cell participating in CelFSync, Nyr, does not significantly
change the time to synchrony, and a synchrony rate of 80%
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FiGure 10: Macrocell network topology composed of Ngs = 7
hexagonal cells with Nyr = 3 active UTs per cell.
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FiIGUre 11: CDF of the normalized time to synchrony for an
hexagonal cell deployment scenario with Ngs = 7 and Ngs = 19
base stations.

is achieved within 12T when Ngg = 7 BSs and within 25T
when Nps = 19 BSs. In all cases, a synchronization rate of
100% is achieved within Ty, = 50 periods, which means
that deafness between nodes, due to partially overlapping
sync words, does not corrupt the convergence of CelFSync.

6.2.2. Achieved Inter-BS Accuracy. While in an indoor envi-
ronment propagation delays are typically negligible, the
opposite is true for the macrocell deployment (17). The
achieved inter-BS accuracy €4, = |Tgsp — Tgs,a| of CelFSync
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FIGURE 12: Achieved inter-BS accuracy for Ngs = 19BSs with
timing advance and Nyt = 3 active UTs.

including timing advance is verified in Figure 12 for various
node densities Nyr,or. Simulations are conducted over 100
random network topologies, each with 200 sets of initial
conditions. It is assumed that UTs are timing aligned with
their closest BS, and that the number of active UTs per cell is
set to Nyt = 3 UTs per cell.

As the accuracy bound (22) suggests, the inter-BS accu-
racy €, is significantly improved as the node density Nyr ot
increases. Augmenting Nyt increases the probability for
selected UTs to be close to the cell edge, which decreases the
delay difference vp; — v, in (22). For a UT density equal or
higher than Nyt = 25 UTs per cell, the achieved accuracy
is bounded by €, < 0.5 us. This is a significant achievement
as the propagation delay for an inter-BS distance of 2 dce =
2km is vgp =~ 6.67 ys.

7. Conclusion

This paper studied the application of self-organized syn-
chronization inspired from the theory of pulse-coupled
oscillators to cellular systems. The original algorithm was
modified to align the timing references of base stations to
simultaneously transmit on downlink frames, and of user
terminals to simultaneously transmit on uplink frames. With
the proposed decentralized cellular firefly synchronization
(CelFSync) algorithm, a local area wireless network com-
posed of 4 base stations and 15 user terminals is always able
to synchronize within 10 periods. In large-scale networks
where propagation delays are typically non-negligible, the
timing advance procedure, common in current cellular
networks, was combined with CelFSync to combat the effect
of propagation delays. By compensating intra-cell propa-
gation delays with timing advance together with selecting
cell edge users to participate in CelFSync, the detrimental
effects of large propagation delays are substantially reduced.
Simulation results demonstrated that the achieved inter-
BS timing accuracy is always below 1us when at least 10
users are randomly distributed per cell, which corresponds

to approximately 15% of the direct propagation delay for an
inter-BS spacing of 2 km.

Appendix
Achieved Accuracy for Multiple UTs

In the following the inter-BS accuracy bound (22) is
extended to multiple UTs. Active UTs that are timing aligned
to BS, and BSy, are associated to cells 4 and B, respectively.
Entities within cells A and B are perfect timing aligned,
such that 75, = TuT,; + A, Vi € A, and 185, = TUT; + A,
Vi € $B. In line with the discussion in Section 4.3, timing
misalignments between entities belonging to different cells
are bounded by four extreme cases: either UTs in cell 4 or
B are forcing by imposing their timing reference ryr; to
neighboring BS; alternatively either BS, or BS; force UTs in
neighboring cells.

If UTs in cell A are forcing, then UT;, i € A with the
earliest timing reference Tyr, imposes its time reference to
BSy, such that 755, = minje{Tur,; + A + Vb — Vai}. Since
Tps,a = TuT,i+A is valid for all entities within cell 4 the timing
reference of BS;, yields

TBS,b = TBS,a T 1};3}{%’ — Vai}. (A1)

Now consider the case when BS; forces UTs in cell #A.
For BS-UT coupling (20) the reference instant of BS; causes
a phase adjustment at UT; at instant Ogspap = Tpsp — A +
Vbi — Vai- Since Tps o = TuT, + A generally holds for all entities
in cell A, the UT;, i € A whose UT-BS propagation delays
minimize the difference v,; — v,; receives the earliest Opgp p.
This UT then triggers BS, and in turn the remaining UTs of
cell A, and hence determines the accuracy between BS;, and
the UTs in cell 4. When BS, is forcing UTs in cell 4, the
timing reference of BS, therefore yields

TBS,a = TBS,p T I}g)‘{l{vbi = Vai}. (A.2)

Due to symmetry the remaining two cases, when either UTs
of cell 8B force BS, or BS, forces UTs of cell B, are obtained
by exchanging a with b, and 4 with 8 in (A.1) and (A.2).
This yields the inter-BS accuracy bound for CelFSync with
timing advance between two cells:

>

Tlléiil{vbi - Vai} ‘ }
(A.3)

| TBs,p — TBs,a | < max { ‘min{vm‘ — Vpi}
ieB

If UTs are timing aligned to the BSs with the shortest
distance, the difference vp; — v4i, for i € A and v — Vi,
for i € B, will always be positive. Hence, the bound (A.3)
improves with growing numbers of UTs per cell |4 and
|B|. Asymptotically, when [Al,|8B| — oo, the accuracy
approaches zero, so that the effect of propagation delays
is perfectly compensated. This trend is confirmed by the
simulation results presented in Section 6.2.2, which show
that the achieved inter-BS accuracy significantly improves as
the number of users per cell Nyr ot increases.
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