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In wireless sensor networks (WSNs), cooperative communication represents a potential candidate to combat the effects of channel
fading by exploiting diversity gain achieved via cooperation among the relays nodes. However, for the energy-constrained WSN,
to what extent cooperative communication can save energy consumption for a successful packet transmission is still unknown.
Energy efficiency of cooperation and direct transmission schemes in WSN is studied and compared in this paper. The expressions
of energy efficiency of the two schemes are derived, respectively. The numerical results reveal that for the small distance separation
between the source and destination nodes, the direct transmission scheme is more energy efficient than cooperation and the relay
location, packet size, and modulation level have important effects on energy efficiency. At last, energy efficiency maximization for
the cooperative communication system is achieved by optimizing both the packet size and modulation level jointly.

1. Introduction

Wireless sensor networks (WSNs) are composed of nodes
typically powered by batteries, for which replacement or
recharging is very difficult [1]. With finite energy, we can
only transmit a finite amount of information. Therefore,
minimizing the energy consumption for data transmission
becomes one of the most important design considerations
for WSN. Unfortunately, the channel fading has a great
effect on the reliability of data transmission and energy
consumption in WSN. Cooperative diversity represents a
potential candidate to combat the effects of channel fading
by exploiting diversity gain achieved via cooperation among
the relays nodes [2—4].

Various cooperative schemes have been developed and
proved to be highly effective in terms of throughput or
capacity compared with the noncooperative scheme [5-13].
Multi-node cooperative schemes have been investigated in
[5-7]. Distributed space-time coding for cooperative systems
has been proposed in [5, 6], where a number of nodes
transmit the different columns of a space-time coding matrix
simultaneously to the destination. Distributed beamforming
schemes have been also proposed in [7], which require all

cooperators to be synchronized and cophased such that the
signals from the cooperators can be combined constructively
at the destination. Single-relay selective cooperative schemes
have been investigated recently in [8-10], where only one
out of a set of potential candidates is chosen to aid the
communication process, and the relay selection can be based
on instantaneous channel gains. Compared with multinode
cooperative schemes, the single-relay selective cooperative
scheme is easy to implement and incur less cooperation
overhead since it requires neither distributed space-time
coding nor cooperative beamforming. Moreover, it can
potentially achieve the same diversity-multiplexing tradeoff
as that of multinode cooperative schemes [9, 10]. Hence, the
single-relay selective cooperative strategy is practically more
appealing.

Compared with the noncooperative scheme named as the
direct transmission (DT) scheme in this paper, the single-
relay cooperative transmission (CT) scheme can mitigate
the required transmission energy for the successful data
transmission. However, a successful packet transmission in
the single-relay CT scheme involves two transmitting nodes,
the source and the relay node, transmitting an identical
data packet to the destination node via relaying way, which
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might increase energy consumption. Therefore, compared
with DT, to what extent the single-relay CT can save energy
consumption for a successful packet transmission in WSN
is still unknown. For the energy-constrained WSN, it is
desired that the proper design of CT scheme can conduct
minimum energy consumption for the successful packet
transmission between the source and the destination. Fur-
thermore, designing energy efficient single-relay CT schemes
suitable for WSN is still an open problem.

Motivated by previous researches, in order to minimize
the energy consumption for the successful packet trans-
mission in the single-relay cooperative system, the optimal
incremental relaying (IR) cooperation strategy is investigated
in this paper. Energy efficiency is a fair and appropriate
metric to performance evaluation and comparison between
the DT and CT, which can be defined as a ratio of the
number of packet bits transmitted successfully to energy
consumption. Specifically, the energy efficiency expressions
of DT and CT are firstly derived, respectively. Then, the
effects of the locations of relay nodes, the packet size,
and modulation level on energy efficiency are discussed
detailedly. At last, energy efficiency maximization for the
single-relay cooperative communication system is achieved
by optimizing both the packet size and modulation level
jointly, and the performance of the optimal IR cooperative
scheme is compared with that of the traditional IR coopera-
tive scheme and the DT scheme.

2. Related Work and Paper Contributions

There is a large amount of previous works focusing on the
energy efficiency optimization problem of communication
in WSN. Energy efficiency based packet size optimization
in WSN was investigated firstly in [14]. Energy efficiency
of large-scale proactive and reactive WSN for applications
involving data-centric and location-centric queries was
evaluated in [15]. In [16], the authors studied the joint
optimization problem of transmit power time and bit energy
efficiency in CDMA WSN. Optimal transmission range for
wireless sensor networks based on energy efficiency was
conducted in [17, 18]. However, all the aforementioned
papers focused on the energy efficiency problem of nonco-
operative communication scheme in WSN. Different from
research of these works, energy efficiency of the multinode
cooperative transmission exploiting distributed space-time
codes was studied in [19-22], where cooperation was utilized
for data transmission between clusters of nodes in WSN.
Besides, several energy efficient transmission strategies for
WSN were analyzed assuming the presence of powerful
mobile agents equipped with antenna arrays and complex
processors in [23]. However, few attempts have been done
on the energy efficiency of the single-relay CT. In our work,
we consider a single-relay CT which is more bandwidth
efficient compared with multinode CT exploiting distributed
space-time codes. Moreover, it is easier to implement than
the multinode CT exploiting distributed space-time codes,
as the later requires synchronization between the spatially
separated relays performing the distributed space-time code.

Specially speaking, the CT scheme studied in this paper
is different from the multihop relay transmission essentially.
Due to the limited transmission ranges of nodes, the data
packet of the source node needs to be relayed to the sink
node via the multihop fashion, which is the final receiving
node for the data packet. In this paper, the data transmission
via each hop is named as the direct transmission (DT)
which does not exploit the cooperative nodes. During the
each-hop transmission from the transmitting node to the
receiving node, due to the broadcast nature of the wireless
medium, the neighbor node of the transmitting node may
overhear the data packet. Then, the neighbor node can be
exploited to retransmit the data packet to the receiving node,
which is the so-called cooperative transmission. So, in CT,
the receiving node can receive the two same data packets,
with which cooperative diversity can be achieved. But, in the
multihop relay transmission scheme, the receiving node can
only receive one data packet from the previous transmitting
node during the each-hop transmission.

Furthermore, our study is concentrated on the energy
efficiency analysis and optimization of cooperative commu-
nication in two-hop fashion. Essentially speaking, multihop
cooperative communication is a cooperative routing prob-
lem, which is not the solved issue in this paper. In future, our
work will be generalized to multihop cooperative fashion.

We can summarize the contributions of our work
as follows. The analysis approach of energy efficiency of
the single-relay IR cooperative communication in WSN is
proposed in this paper and expressions of energy efficiency
for DT and CT are derived, respectively. The numerical
results reveal that for the small distance separation between
the source and the destination, DT is more energy efficient
than CT. Moreover, the effect of the locations of relay
nodes on energy efficiency in cooperation communication is
evaluated, which can provide guidelines for relay selection
algorithms in the large-scale WSN. At last, the optimal IR
cooperative scheme is conducted by optimizing both the
packet size and modulation level jointly. The results show
that energy efficiency of the optimal IR cooperative scheme
outperforms that of the traditional IR cooperative scheme.
In summary, we provide important guidelines for WSN
designers to decide when and how to apply the cooperative
communication scheme.

The remainder of this paper is organized as follows.
Section 3 introduces the system models and discusses the
different aspects of the two considered communication
architectures, namely direct and cooperative transmission.
Energy efficiency expressions of DT and CT are derived,
respectively, in Section 4. Some numerical results are given
and a discrete optimization algorithm for energy efficiency
maximization is proposed in Section 5. Finally, some conclu-
sions are drawn in Section 6.

3. System Model

Consider three relevant nodes in WSN, represented, respec-
tively, by S (source node), R (relay node), and D (destination
node), and assume that S wants to send the packet to D, as



EURASIP Journal on Wireless Communications and Networking 3

~

Phase 1 AN ~ Phase 2

s &
Phase 1

FIGURE 1: A typical scenario model in WSN.

illustrated in Figure 1. In the DT scheme, S just transmits
the packet to node D directly, thus, the energy should be
consumed for supporting the required SNR in node D for
the successful packet transmission.

In the incremental relaying CT scheme, we consider
a two-phase cooperation protocol. In the first phase, S
transmits a data packet to D, and due to the broadcast nature
of the wireless medium, R can overhear this data packet. If D
receives the packet in this phase correctly, then it sends back
an acknowledgment (ACK) and R just idles. On the other
hand, if D cannot decode the received packet correctly, then it
sends back a negative acknowledgment (NACK). In this case,
if R was able to receive the data packet correctly in the first
phase, then it forwards it to D. Otherwise, this packet will be
dropped.

Compared with DT, CT can mitigate the required trans-
mission energy of S for the successful packet transmission.
However, a successful packet transmission in CT involves two
transmitting nodes, S and R, transmitting an identical data
packet to D via relaying way, which might increase energy
consumption. Therefore, compared with DT, to what extent
CT can save energy consumption for a successful packet
transmission is still unknown. For the energy-constrained
WSN, it is desired that the proper design of CT scheme can
conduct minimum energy consumption for the successful
packet transmission between the source and the destination.

Next, the wireless channel and the packet error rate
(PER) models of DT and CT are described. Consider that
the wireless channel between any two nodes is subject
to flat Rayleigh fading and channel gains for different
links are assumed to be statistically mutually independent
and unchanged during the time period of a data packet.
Assuming that the transmit power is constant for all nodes,
denoted by P;, path loss exponent is represented by «,
and the noise components are modeled as additional white
Gaussian noise (AWGN) with variance Ny, we can obtain the
description of received SNR y for a link by the probability
distribution function (PDF),

1 ..
500 = ep(=L) () = s, )
Oij Oij
where (ij) denotes the different links and o;; is the average
SNR and can be expressed by

P[(f’ij)i‘x

O'ij = NO > (2)
where 7;; denotes the distance of a link with nodes i and j

being transmitter and receiver, respectively.

Assume that uncoded M-QAM is adapted with the
modulation level b = log, M bit/symbol, the closed-form
expression for the average symbol error rate (SER) of a link
is given by [24]

30~4.
e _ b2 _ ij
SER;j 2(1 2 )(1 2(2b—1)+3o,-j) (b =2).

3)

So, the PER of a link can be obtained as
L/b
PER; =1 - (1-SER;) (4)

where L is the length of the data packet.
Apparently, the PER of DT equals to the PER of the S-D
link and can be written as

PERP = PERy = 1 — (1 — SERy)"". (5)

Having the PER of all the links given by (4), the PER of
CT can be evaluated by

PER® = PERPER;; + PERy(1 — PER;)PER,4.  (6)

Equation (6) shows that the successful packet transmis-
sion from node S to node D can be carried out through the
path of S-D or S-R-D, and the corresponding PER might be
reduced by R’s retransmission.

Noting that the entire data packet is composed of the
packet header, payload and trailer, energy efficiency of the
system can be expressed by

L,(1 - PER)
- @)
where L, is the payload length of a data packet, PER
denotes the packet error rate of DT or CT, and E is energy
consumption of transporting a data packet with the DT or
CT scheme. Therefore, energy efficiency 7 represents the
ratio of the number of packet bits transmitted successfully
to energy consumption.

In the next section, we will evaluate energy efficiency of
DT and CT.

4, Performance Analysis

In this section, we characterize the system performance in
terms of energy efficiency for the direct and cooperative
scenarios to quantify the energy savings, if any, gained by
applying cooperative transmission.

Assume that the total energy consumption of the system
is composed of the power consumption of the power
amplifiers and all other circuit blocks of the nodes. Let f3
denotes the loss factor of the power amplifier (0 < § < 1)
and P and P, represent the power consumption of circuit
blocks of transmitter and receiver, respectively. Moreover, the
symbol rate R, is assumed to be constant, and then, the bit
rate is given by R, X b.
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4.1. Direct Transmission. The total consumed energy of
transmitting one data packet with the DT scheme can be
expressed by

EP = (P,(1+p) +Pct+Pcr)£. (8)
Ry

Substituting (5) and (8) into (7), energy efficiency of DT
is given by

L,(1- PERP)

(- ©)

4.2. Cooperative Transmission. Different from DT, the total
consumed power for CT to transmit one packet is a discrete
random variable and can be statistically described as follows,

P(1+f) + Pt + 2P, (1 — PERy),

PC

total —

P;(1+ ) + Pe + 2P, (PERPER,),

2P;(1+B) + 2P + 3P, (PERy(1 — PER;)).

(10)

In the first term of the above expression, when the
packet transmission over the S-D link is successful with the
probability (1 — PER4), the consumed power is composed
of the consumed power in node S (P;(1 + f§) + P.) and the
receiving power of the D and R 2P,,. Similarly, (PER4PERy,)
denotes the failure probability of both the transmissions over
the S-D and the S-R links, and so the consumed power is
still (P¢(1+ f3) + Pet + 2Pc;). The last term corresponds to the
event indicating the R’s retransmission while the failure of
transmission is over the S-D link.

So the total consumed energy of transmitting one data
packet with CT is written as

c (1= PERq) (P¢(1 + B) + Pt + 2P) L

E
Ry
N PERPER; (Pt(l + ﬁ) + P + ZPCY)L (11)
Ry
N PER(1 — PERsr)(ZPt(l +ﬁ) + 2P + 3Pcr)L

Ry

Substituting (6) and (11) into (7), energy efficiency of CT
is given by

L,(1- PER®)
11C =@ (12)
We have derived energy efficiency expressions of DT and
CT. So, the energy efficiency gain can be defined as the ratio
of energy efficiency of CT to that of DT and can be obtained
as

G="T. (13)
U
When this ratio is smaller than one, this indicates that
DT is more energy efficient and that the extra energy
consumption induced by cooperation overweighs its gains in
decreasing the packet error rate of the system.

5. Numerical Results

There are different system parameters such as the link
distance, the packet size, and modulation level, which
have important effects on energy efficiency. In order to
understand the effect of each of these parameters, we will
study the performance of CT and DT in Matlab 7.0.1 when
varying one of these parameters and fixing the rest.

Without the loss of the generality, we assume that the S,
R, and D nodes lie along a straight line and the R-D distance
isra=qxXrqa(0 < g < 1)

In all of the numerical simulations, the system parame-
ters take the following values when considered fixed: a = 4,
B =03DP = 000lw, Py = 10°*w, P, = 5X 107w,
R, = 10*symbol/s, Ny = 1073, g = 0.5, L, = 40bit,
L = 56bit, and b = 4. The values of a, 3, P, Py, and Py,
are taken from the specifications of Mica2 motes [25].

5.1. Effects of the S-D Distance and the Relay Locations on
Energy Efficiency. Firstly, we study the effects of the S-D
distance and the relay locations on energy efficiency.

Figure 2 depicts energy efficiency of CT and DT, which
are expressed by “C” and “D” respectively, and Figure 3
depicts the energy efficiency gain for different relay locations,
respectively. At S-D distances below 80m, DT is more
energy efficient than CT. This is because the extra energy
consumption of the relay node induced by cooperation
outweighs its gain in decreasing the packet error rate of
the system. However, at S-D distances above 80 m, CT is
more energy efficient than DT as shown in Figures 2 and 3.
Because the PER of DT deteriorates more seriously as the S-
D distance increases endlessly. However, due to the benefit of
cooperation, the PER of CT can keep much lower than that
of DT. The analytical and numerical results reveal a distance
threshold behavior that separates regions where DT is better
from regions where CT prevails.

Moreover, when ¢q equals 0.5, which means that the S-R
distance equals the R-D distance, the energy efficiency gain
is best among all of relay locations as shown in Figure 3.
When the S-D distance is below 80 m, the relay location
hardly affects energy efficiency gain. The effect of relay
locations on the energy efficiency can provide guidelines for
relay selection algorithms in the large-scale wireless sensor
networks.

5.2. Effects of the Packet Size and Modulation Level on
Energy Efficiency. Secondly, the effects of the packet size
and modulation level on energy efficiency are discussed
detailedly.

Based on the theoretical analysis in Sections 3 and
4, Figure 4 shows the joint effects of the packet size and
modulation level on energy efficiency of CT at rq = 140. It
can be seen that the energy efficiency plane is smooth, which
indicates a good match between the local maximum and the
global maximum of energy efficiency. We have conducted
extensive simulation for the DT system and found that
the energy efficiency plane of it is also smooth. So, energy
efficiency can be maximized by optimizing the packet size
and modulation level jointly.
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FIGURE 2: Energy efficiency versus the S-D distance for different
relay locations.
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FIGURE 3: Energy efficiency gain versus the S-D distance for
different relay locations.

5.3. Discrete Optimization Algorithm for Energy Efficiency
Maximization. As discussed in Section 5.2, energy efficiency
clearly depends on two important parameters: the packet
length L and the modulation level b. As we know, a small
packet length indicates that the packet transmission is not
susceptible to errors but at the cost of a large packet overhead.
A large L implies that the packet is more susceptible to errors,
which may decrease energy efficiency. As for the modulation

Energy efficiency (bit/])

192 2

FIGURE 4: Energy efficiency versus the packet size and modulation
level for the cooperation scenario (rsq = 140).

level b, a packet with a low modulation level is more robust
but may result in inefficient use of the channel and energy.
On the other hand, a packet with a high modulation level
is more liable to error but carries more information per
symbol. Therefore, the joint optimal L and b are desired so
as to maximize energy efficiency. Noting that both the packet
size L and modulation level b are discrete, we propose a
two-dimensional discrete optimization algorithm to find the
maximum of energy efficiency for the CT and DT systems by
optimizing both L and b jointly.

Let n(L,b) represents energy efficiency with a packet
length L and a modulation level b and #* denotes the optimal
energy efficiency. Assume the minimum of L equals 32 bits,
the incremental step value of L equals 1 byte (8 bits), and
the maximum value of b equals 8. The discrete optimization
algorithm is described as shown in Algorithm 1.

In the optimization algorithm, we start searching the
optimal packet size Loy with a fixed b = 2, and for
each incremental b, we compute the maximum of energy
efficiency by optimizing L. The whole process will terminate
when energy efficiency begins to fall. This is based on the
observation that the local energy efficiency and the global
energy efficiency always match perfectly when b varies and L
is fixed or L varies and b is fixed as shown in Figure 4. It can
be seen that with discrete optimization algorithm, the joint
optimization of L and b is decoupled so that the complexity
can be reduced dramatically.

Using the discrete optimization algorithm, the curves of
energy efficiency for the optimal CT and DT systems, which
are expressed by “Optimal C” and “Optimal D”, respectively,
are plotted in Figure 5. For comparison, the energy efficiency
curves for CT and DT systems with fixed L = 56 and b = 4
are also given in Figure 5. The corresponding optimal values
of packet size L and modulation level b are drawn in Figures
6 and 7, respectively.

It can be seen from Figure 5 that the optimal CT scheme
exhibits the best performance and energy efficiency of the



Initialization: b = 2, k = 2; #* = 05
while (b <9)  %Performing condition of the algorithm
L, =32 %The minimum of packet size 32 bits
L, =L, +8; %lncreasing the packet size with 8 bits
%Comparing energy efficiency # for different L
{while ((L,,,b) < (L, b))
Ly =Ls
L; = L; + 8; %Increasing the packet size with 8 bits
end while}
%Saving the temporary value of energy efficiency 7,
by = b;
Ly = Ly
ik = 1(Li, bi);
{if (x> n*)
n* =1
b* = bk;
L* = Lk;
else
flopt = 13 %The optimal value of energy efficiency
bopt = b*; %The optimal value of packet size
Lopt = L*; %The optimal value of modulation level

stop; % Terminating the whole loop
end if }
b=b+1; %]Increasing the modulation level with 1
k =k+1; %Performing the next loop
end while

ALGORITHM 1

optimal DT scheme is much less than that of the optimal
CT scheme, especially when the S-D distance becomes longer
and longer. In addition, energy efficiency of the optimal CT
scheme is better than that of the traditional CT scheme with
fixed L and b.

Moreover, when the S-D distance is above 160 m, energy
efficiency of the optimal CT scheme equals that of the
traditional CT scheme with fixed L = 56 and b = 4. Because,
at the S-D distances above 160, the optimal packet size and
modulation level for the optimal CT scheme are also 56 and
4, respectively, as shown in Figures 6 and 7.

At last, specially speaking, the optimal cooperative
communication scheme should use the large packet size and
high modulation level when the S-D distance is shorter and
adopt the small packet size and low modulation level when
the S-D distance is longer, as shown in Figures 6 and 7.

6. Conclusions and Future Work

In this paper, energy efficiency of the cooperative and direct
transmission schemes in WSN is studied and compared. The
numerical results reveal that for small distance separation
between the source and destination, direct transmission
is more energy efficient than cooperation and, above the
threshold distance, cooperation gains can be achieved.
Moreover, when the S-R distance equals the R-D distance,
energy efficiency gain is the best among all of the different
relay locations. This conclusion can provide guidelines for
relay selection algorithms in the large-scale wireless sensor
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networks. At last, a two-dimensional discrete optimization
algorithm is proposed to find the maximum of energy effi-
ciency for cooperative communication system by optimizing
both the packet size and modulation level jointly. Energy
efficiency of the optimal cooperative scheme is better than
that of the traditional cooperative scheme with fixed L and
b. In summary, we provide important guidelines for WSN
designers to decide when and how to apply the cooperative
communication scheme.
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We present the performance analysis of cooperative com-
munication in two-hop fashion, which will be generalized
to multihop cooperative fashion. Moreover, the constant
transmit power is adopted at all the nodes in this paper. In
tuture, the power control scheme can be integrated into our
research.
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