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In wireless networks, an attacker can tune a receiver and tap the communication between two nodes. Whether or not some
meaningful information is obtained by tapping a wireless connection depends on the transmission scheme. In this paper, we
design some secure network coding by combining information-theoretic approaches with cryptographic approaches. It ensures
that the wiretapper cannot get any meaningful information no matter how many channels are wiretapped. In addition, if each
source packet is augmented with a hash symbol which is computed from a simple nonlinear polynomial function of the data
symbols, then the probability of detecting the modification is very high.

1. Introduction

Network coding is a packet-level coding technique that
generalizes the classical routing paradigm [1]. Based on
linear superposition of incoming packets at intermediate
nodes, linear network coding achieves multicast capacity in
single-source wired networks [2]. Recently, wireless network
coding has gained much attention as one skill to enhance
the overall throughput in a wireless multihop network that
supports multiple communication flows [1-4]. Like in wired
networks, the basic idea is also that a relay node can com-
bine several incoming packets. The wireless communication
medium has inherent particularities, such as the broadcast
nature, high error rates, and unpredictable signal strength,
which create some opportunities for attackers. Thus, secure
network coding [5-8] is a hot topic in wireless networks.

In [9], Cai and Yeung proposed a model which incor-
porates network coding and information security. This is
the first time that network coding was used for secure
transmission. Later, Jain [5] widened the sufficient condition
in [9] and generalized these results to wireless networks.

In general, secure network coding is designed against two
kinds of attacks: wiretapping and Byzantine modification.
And we call them type I and type II secure network coding,
respectively.

Type I Secure Network Coding. The wiretapping attack means
that some adversary can wiretap some communication
signals with the purposes of curiosity or recovering the
messages. In traditional transmission, packets are generally
encrypted against wiretapping. However, Cai and Yeung
[9] found that without cryptographic approaches one can
securely transmit the message by using network coding. With
the similar model for wireless networks, Jain [5] explored
widening the sufficient condition in [9] so that it becomes
necessary, too. Under the transmission rate of one unit,
the sender can send a message to the receiver without
leaking any information to a wiretapper. In [10], Feldman
et al. showed that if a small amount of overall capacity is
given up, then a random code achieves security by using
a much smaller base field than that in [9]. Furthermore,
they pointed out that a large field size may sometimes be
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required to achieve security without giving up any capacity.
In [11], Bhattad and Narayanan generalized the model in
[9] and gave a new information theoretic model for security
which accommodates a lot more practical requirements on
security.

In general, this previous secure network coding by
information-theoretic approaches has to restrict the eaves-
dropping set or give up some capacities. To address this
problem, in this paper, we present a new secure network
coding scheme by combining information-theoretic and
cryptographic approaches. In our scheme, we do not restrict
the eavesdropping set, that is, the wiretapper can eavesdrop
any communication signals. Moreover, we do not give up any
capacity. Based on these superiorities, our scheme is more
suitable for wireless multicast compared with the previous
schemes [5, 9, 10].

Type II Secure Network Coding. Byzantine attack means that
attackers may modify the coded packets. For this case, since
some important packets that are modified by an adversary
will mislead the receivers and maybe cause the receivers
to make wrong decisions, the modification detection of
packets transmitted is also very important compared with
the modification correction. How to detect the modification
is a hot topic in network coding theory. With cryptographic
approaches, Charles et al. [6] proposed a signature scheme
for network coding based on Weil pairing on elliptic curves.
Later, in [7, 8] the authors proposed some signature schemes
by the linearity property of the packets in a coded system for
network coding. In these schemes, one detects the modifi-
cations at intermediate nodes, so they are computationally
expensive. With information-theoretic approaches, Ho et al.
[12] showed a scheme in which Byzantine modification
detections are done at sink nodes. In this scheme, he used
random network coding by incorporating a polynomial hash
value in each packet. By this way, the computing complexity
is much less.

In this paper, to optimize the capacity loss and com-
putation complexity, we propose a new scheme with
Byzantine modification detection. Our scheme only needs
one hash symbol which is much less than previous
results in [12] and can achieve higher detection prob-
ability. Moreover, its computation complexity is lower
than that in [12]. Furthermore, by combining crypto-
graphic and information-theoretic approaches, we present
secure network coding against wiretapping and Byzantine
attacks.

The rest of this paper is organized as follows. In Section 2,
we mainly give some necessary notations and definitions.
In Section 3, we show some secure network coding against
wiretapping or detecting Byzantine modification. One exam-
ple is given at the end of this section. Some conclusions are
presented in Section 4.

2. Primaries

In this section, some necessary notations and definitions
such as network model, descriptions of a linear network

code and all-or-nothing transform are presented. We denote
matrices and linear spaces with bold uppercase letters and
vectors with bold lowercase letters. All vectors are column
unless some additional illustrations.

2.1. Network Model. Network coding has been leveraged as a
generic technique in several types of wireless networks, such
as vehicular ad hoc networks [13], wireless sensor networks
[14], and Mesh networks [15],. In this paper, our focus is on
secure network coding for acyclic wired networks and acyclic
wireless networks which include parts of vehicular ad hoc
networks, wireless sensor networks and Mesh networks. In
detail, by the broadcast nature of the wireless interface each
node is possiblly connected to several other nodes, where one
node u connects to node v means that v is in the coverage
of u’s signal. By this way, we can obtain a directed graph
G. Our attentions are mainly focused on the acyclic wired
networks and acyclic wireless networks, both of which can be
represented by a directed acyclic network G = (V, E), where
V is the set of nodes and E is the set of edges. The source node
is denoted by s, and edges are denoted by round brackets
e = (u,v) € E, in which v = head(e) and u = tail(e). Let
In(v)(Out(v)) be the set of edges that end (start) at a vertex
veV.

2.2. Descriptions of a Linear Network Code. Now we give two
kinds of descriptions of a linear network code.

Definition 1 (see [16] (Local Description of a Linear Network
Code)). An w-dimensional linear network code on an acyclic
network over a base field [, consists of a scalar k., called the
local encoding coefficient, for every adjacent pair of channels
(d, e) in the network. The matrix

K = [kaelge m(e).ec oun (1)
is called the local encoding kernel at node t.

Definition 2 (see [16] (Global Description of a Linear
Network Code)). An w-dimensional linear network code on
an acyclic network over a base field [, consists of a scalar k;,
for every adjacent pair of channels (d,e) in the network as
well as a column w-vector £, for every channel e such that

(1) fo = X gem() kaefa for e € Out(t);

(2) the vectors for the w imaginary channels e € In(s)
form a standard basis of [y

The vector £, is called the global encoding kernel for channel
e.

For convenience of decode, during the transmission
process, global encoding kernels are combined in the head
of packets.

2.3. All-Or-Nothing Transform. In [17], Rivest presented a
model of encryption for block ciphers, which is called all-
or-nothing transform (AONT in short). AONT is defined
for information-theoretic security [18]. In detail, let F, be
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a finite field and Fj be an n-dimensional space over [g.
Suppose that ¢ : Fj — [Fj. ¢ is named as an (n,q)-AONT
if ¢ satisfies the following properties:

(1) ¢ is a bijection;
(2) If any n — 1 of the n output values yi, yz,..., y, is

fixed, then the value of any input value x; (1 <i < n)
is completely undetermined.

From this definition, for some input vectors vy,...,v, (a
basis of the space ) and the corresponding output vectors
uy,...,u,, we have the following result.

Theorem 1. For any (n,q)-AONT¢ : I — [, if anyn — 1
of n output vectors uy,...,u, is fixed, then each input vector
vi (1 i < n) is completely undetermined.

Proof. Let v; = (viy vig---vin) and w = (ui - - -
ui,n)T, 1 < i < n, where v denotes the transpose of vector
v. For any i, from the definition of AONT if any n — 1 of the

noutput uy;, Uz j,. .., Un,; is fixed, then the value of any input
V1> Vais - - - » Vi 1S completely undetermined. Therefore, when
any n — 1 of n output vectors uy,...,u, is fixed, any input

vector v; is completely undetermined. O

If an (n,q)-AONT ¢ : Fyp — [} is also Fy-linear,
¢ is called a linear all-or-nothing transform. In fact, the
linear AONT is very useful for constructing secure linear
network coding because of its low computation complexity
and convenience for decoding. In [18], Stinson proved that
for prime power g > 2 and positive integer n there exists a
linear (#,q)-ANOT. Moreover, he constructed the following
linear AONT which can be implemented very efficiently.
Let ¢ = pk, where p is prime and k is a positive integer.
A € F; such that A¢ {n — 1 mod p,n — 2 mod p}. Then
the linear function ¢ : [Fg — [FZ defined by ¢(vy,...,v,) =

(uy,...,u,)Tsis alinear (n, q)-ANOT, where
10 ---01
01 - 01
To=|i: i) @
00 - 11
11 - 12

We call Ts an (n,9)-ANOT matrix. This transform (and
the inverse transform) can be implemented very efficiently.

Given V = (vy - - - v,), we can compute U = (u; - - - u,) as
follows:
u=vi+v, i=1,...,n—1,
(3)
W, =Vi+---+v,_1+Av,.
Conversely, given U = (u; - - - u,), we can compute V. =

(vi - - -v,) as follows:

vi=u—y(wm A+t —w,), i=1,...,n-1,

(4)

V= p(up+ - -+ u,m —uy),

wherey = (n -1 -0L
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FIGURE 1: (a) Source s wants to send two messages to sink nodes
y and z. t and u are within the coverage of source s, x is within the
coverage of t and u, and terminals y and z are within the coverage of
x. The region bounded by the dash lines denotes the signal coverage
of the broadcast node. (b) The equivalent graph model of (a).

(b)

3. Main Schemes

In this section, we present some schemes that achieve
different securities. Suppose that w is the source rate. Each
packet is represented by one vector in some linear space
based on [F,;. The output packets of an AONT is called
pseudopackets. In our schemes, AONT, the hash function and
cryptosystem are public. The only shared secret is the key of
the encryption when we use symmetric cryptsystem.

3.1. Against Wiretapping Attack. In wireless networks,
because of the broadcast nature of the wireless interface,
we canot determine which edges can be eavesdropped. So
we canot obtain the same secure communication on the
wireless networks if we made use of the scheme in [9] against
wiretapping attacks. For example, consider the wireless
network shown in Figure 1(a). From the presentation of
the wireless network model in Section 2.1, we can get its
equivalent graph model shown in Figure 1(b).

As for this wireless network, the scheme in [9] is not
efficient and secure enough against wiretapping attack. In
detail, the scheme in [9] for the network in Figure 1(b) is
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FIGURE 2: (a) The source node s sends v to sink nodes y and z. For
security Cai et al. add an independent random packet k to v. (b) At
source node s we transform the packets (vy,v,) into (u;,u,) by alin-
ear ANOT T; then send the pseudopackets u; and u, to sink nodes.

shown in Figure 2(a). The collection of sets of wiretap edges
is A = {{(t)y)}){(t)x)}) {(”,x)}a{(x,)’)}, {(X,Z)}, {(U,Z)}}.
For secure transmission, Cai et al. added some randomly
chosen key vector k to the packet vector v at source node s. If
the wiretapper only eavesdrops one channel in #, he will get
nothing about packet v. However, the source only transmits
one packet to the sink nodes in one transmission process.
It means that one gets a secure transmission by giving up
some capacity. In fact, if we choose an appropriate local
encoding kernel for source node we can obtain the similarly
secure transmission without capacity loss. In Figure 2(b), let
a (2,q)-AONT matrix Ts defined in (2) be the local encoding
kernel of the source node s, and (u;,uy) = (vi,v2)Ts. The
network codes of the intermediate nodes in Figures 2(a)
and 2(b) are the same. If the wiretapper only wiretaps one
channel, he can not get any meaningful information about
v; or v, even if he knows Ts. Therefore, we can get secure
transmission without giving up any capacity.

In reality, however, as for this wireless network, it is
possible that the wiretapper can eavesdrop all the network
linkages because of the broadcast nature of the wireless inter-
face. Then the previous two schemes are not secure enough
in practical applications. So some cryptographic approaches
are required to address this problem. In fact, by combining
ANOT with symmetrical cryptography, without constric-
tions of wiretapping sets, we can construct secure network
coding in the sense of cryptographic security. That means the
wiretapper cannot obtain any massage if he has not the secret
key. Our secure network coding is presented as follows.

Scheme 1. Let vi,...,v, be w packets, where v; € F¥. An
(w, q)-AONT matrix Ty is the local encoding kernel of source
node s.

Step 1. Let (uy,...,uy) = (Vi,...,V,)Ts. The source node
encrypts u, using AES cryptsystem ( the source can also
choose other high speed asymmetric cryptsystem. And the
only secret for this scheme is the private key owned by the
sender and receiver.) and sends out uj,...,u, 1,c, where
¢ = Exps(uy).

Step 2. Based on Jaggi’s construction of network coding [19]
for wired networks and Rajawat’s [20] for wireless networks,
we can construct the codes for the intermediate nodes in
wired networks and wireless networks, respectively.

Step 3. Each sink node first decodes the received packets and
gets uy,...,u,_1,c then decrypts ¢ and obtains u,. By the
inverse of Tg, they get the original packets vi,...,v,.

Time Complexity Analysis. Since the orders of matrix Ts and
its inverse are both w, the time complexity of multiplying Ts
or T5! is at most O(w?). In addition, there are two opera-
tions, encryption and decryption. So the more time com-
plexity of this construction than those of Jaggi’s and Rajawat’s
is O(w?) and the time for encryption and decryption.

Security Analysis. Since the network coding in this paper
is linear, all of the network coding operations in the
network are linear. The packets in the network are linear
combinations of uj,...,u,_1,¢c. On one hand, if the rank
of the linear packets that an adversary eavesdrops is less
than w, he can only get some (not all) of the packets
uy,...,U,-1,C By the definition of AONT, he can not obtain
any original packet v;. On the other hand, even if the rank of
eavesdropped packets is equal to w, the wiretapper can not
get the pseudopacket u, without the private key. So he can
not obtain any original packet either by Theorem 1.

In this model, we do not need to encrypt all the trans-
mitted packets ( In [18], all pseudopackets are encrypted,
because this requires an adversary to decrypt all the blocks
of ciphertext to determine any block of plaintext by the
definition of AONT. Then the attack will be slowed down
without any change in the size of the secrete key. Therefore,
AONT is used to afford a certain amount of additional
security for a block cipher encryption.). Only one is enough
by combing with AONT. By Theorem 1, each original packet
is relative to all the pseudopackets. When we encrypt one
of the pseudopackets, the wiretapper canot get all of the
pseudopackets without the private key. So he canot obtain
any original packet. For example in Figure 2(b), we only
need to encrypt u; or up, then the wiretapper can not
get any meaningful information about v, and v,. The
security here combines the information-theoretic security
with cryptographic security. However, by the wooden barrel
theory the whole security of this scheme is reduced to
cryptographic security.

Now, we show the advantages of AONT as the local
encoding kernel of the source node. Firstly, from the
information-theoretic point: we not only increase the achiev-
able throughput, but also get secure transmission. Secondly,
from the cryptographic point: we only need to encrypt one
packet out from the source node instead of encrypting all the
packets which will be sent to sink nodes. Moreover, we can
save lots of time consumption, explained from Table 1, where
w denotes the source rate, the length of each packet is 2 bytes
and “clk” is the abbreviated clock.

3.2. Byzantine Modification Detection. Since some important
packets that are modified by an adversary will mislead
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TaBLE 1: The time consumptions of different encryption models.

AES (clk) AES with Parallel Computing (clk) AONTHAES (clk)
5 9380 2516 1888
10 18760 3316 1898
20 37520 4916 1918
40 75040 8116 1958

the receivers and may cause the receivers to make wrong
decisions, the modification detection of packets transmitted
is also very important compared with the modification
correction in both wireless and wired networks. In this
subsection, we present a scheme to detect the Byzantine
modification combining AONT with a simple polynomial
hash function.

By the definition of AONT, we find that if one of the
pseudopackets from source node is damaged, then it is
likely that every packet will be damaged. This is the error-
propagation property of AONT. So we can append a suitable
block of redundancy to the packet before applying an AONT.
And this redundancy can be used to verify the integrity of the
packets and also can be removed after decode.

Suppose source s multicast w vector packets vy, va,...,V,
to the sink nodes. For convenience, each packet in the
network is represented by a column vector vofd +1 (d > w)
symbols over a finite field F;, where the first d entries are
data symbols and the last one is a redundant hash symbol.
The hash symbol in each augmented packet is given by a hash
function y : Fd — [, of the data symbols. Of course, we can
choose any nonlinear hash function. In fact, we find that the
security can be ensured by a simple nonlinear function. In
detail, we take the following simple nonlinear function as the
secure hash function in this scheme.

Let y : I]:g — [F4 be the function mapping (xi,... ,xd)T
to
l//(xl,...,xw):x%+---+x§. (5)
Denote v; = (vi; vip - - -vi,d)T,l < i < w. Denote the
augmented packets by

i\’i = <ZZ)) (6)

where (y) denotes the concatenation of two vectors x and y,
and h; is the hash symbol satistying

2

d
hi =y (Vi vig,. . vid) = Z"i,j’ l<i<w. (7)
j=1

Now we give a brief description of our scheme as follows.

Scheme 2. Initialization: For each original packets v;, 1
i < w, the source s calculates the hash values h;,1 < i
w, and obtains the augmented packets v;,1 < i < w,
by concatenating the hash value h; to each original packet
Vi.

<
<

Step 1. The source s takes the AONT matrix Ts as its local
encoding kernel and computes (Uy,...,U,) = (V1,...,Vy)Ts.
Then sends out Uy,..., Uy.

Step 2. Based on the Jaggi’s construction of network coding
for wired networks and Rajawat’s for wireless networks, we
can construct the codes for the intermediate nodes.

Step 3. Each sink node first decodes the received packets and
gets V1,...,V,. ( Since in this scheme, we donot consider
the wiretapping but the integrity of the packets, it does not
need to encrypt any pseudopackets from the source. We note
that Ty is the local encoding kernel of the source s, and thus

we can decode directly and get the packets v},...,V,.) Then

it verifies whether h; = Z;le{,jz,l <i< wlIfh =

2721 v,f, j2 for all i, then there does not exist modification on

the transmission and v; = v}, 1 < i < w. Finally, they remove
the hash values and obtain the original packets vy, ..., v,.

Time Complexity Analysis. This scheme 1is similar to
Scheme 1. The differences are additional calculations for
hash symbols in Step 1 and verifications for hash symbols in
Step 3. The time complexity of these two operations is O(w?).
So the time complexity of Steps 1 and 3 is polynomial on the
length w of the packet vector and equal to O(w?). So the total
time complexity of this secure network coding construction
is only O(w?) more than that of Jaggi’s for wired networks
and Rajawat’s for wireless networks.

Security Analysis. Based on the model above, an adversary
successfully modifies the packet that he can construct the
logical hash symbol after modifying the data symbols (actu-
ally here he modifies the pseudopackets). From the following
theorem we will find that an adversary can construct a logical
hash symbol after modifying the data symbols with a very
low probability.

Theorem 2. In Scheme 2, the probability of not detecting an
error is at most (1/q)", where w is the source rate.

To prove this theorem, we first prove the following two
lemmas.

Lemma 3. Given the vector a and scalar value c, the probability
of randomly choosing a vector v € [y such that the inner
productv -a = cis1l/q.

Proof. The number of points on the hyperplane {v € [} |
v-a=c}isq""'. And the cardinality of the field F} is ". So
the probability of choosing a vector v such that v-a = cis
q/q" = 1/q. O
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Lemma 4. The probability of randomly choosing a vector v &
[y such that

vV-a =
V-a =0

(8)
V-a, =y

is at most (1/q)", where the vectors a;,1 < i < n and scalar
values ¢;, 1 < i < n are fixed and independent.

Proof. By Lemma 3, we randomly choose a vector v € [}
such that v-a; = ¢; with probability 1/g. Then the probability
that choosing an appropriate vector v € [Fj such that v
satisfies (8) is at most (1/g)". O

Now we prove Theorem 2.

Let v1,V2,...,V, be the w packet vectors transmitted,
each of which consists of d + 1 symbols from a finite field [,
and is a column vector. The first d entries are data symbols
and the rest one is the redundant hash symbol. It can be
represented as

i=1,...,w, 9)

where v; denotes the data. The hash symbol h; = w(vi,
Vi,Z,---:Vi,d)y i= 1,...,60.

The matrix Ts is the local encoding kernel of source node,
and let

(up,u,...,uy) = (Vi,V2,...,V)Ts, (10)

(ﬁl)ﬁb---)ﬁw):(GI)GZMH)Gw)TS- (11)

So the hash symbols satisfy

(s s s ha) = (BB h) T, (12)

where hy, denotes the hash symbol of u;. Therefore, hy, =
h; + h, because u; = v; + v, from (3). Notice that the
hash function is not a linear function, that is, hy, # hy4v, -
When the adversary modifies some pseudopacket u;, he has
to modify the hash symbol hy, such that the sink nodes can
not detect the modification. The proof can be completed by
two steps.

Step 1. We suppose that only the first pseudopacket u; is
modified and the new pseudopacket is denoted by u]. Let
u; = u; + Au; and hy, = hy, + Ahy,. Au; is known to the
adversary.

The adversary wants to know Ahy, . By the representation
of Tg!in (4), we have

(1= ) — - — yug
+yu, + (1 — y)Auy, i=1,
, A S A R Bl A e
Vi =) .
+(1=p)ui+yu, —yAuy, i=2,...,0—1,
ylup+uy + - - - +uy-; —uy)
+yAuy, 1= w.
(13)
So even only one of u, is modified, all the packets v;,i =
1,...,w will be changed. From (13), we have
(I=yp)Awy, i=1,
Av; = § —yAuy, i=2,...,0—1, (14)
yAuy, i=w.

Firstly, suppose that Au;; #0and Auy j =0, = 2,...,d.
Then, by the definition of hash function in (5),

4 4
Ahi = h; — h; = W(Vi,lavi,buwvi,d) =W (Vi1 Vigs - Vid)

2(1 - y)vl,lAul,l

+(1 _Y)ZAM%,I) i=1,
=2pvitAury +y*Auty,  i=2,0 01,
2pve1Auy + yzAuil, i= w.

(15)

In (15), vi1, i = 1,...,w, are unknown to the adversary
except for y and Au;;. Moreover, Ah; is unknown to
the adversary, but fixed. By Lemma 4, the probability of
constructing an appropriate Ah; satisfying (15) is at most
(1/q)".

Secondly, suppose that u;,; and u;, are modified. Let
ui,l = uy + Auy, and u'l,z = w1, + Auy . Then,

Ah;=h; —h; = ¢<V{)],V;’2,Vi,3 . ,v,-,d) — ¢ (Vit> Vigs- o> Vid)
(2(1 = y) (vi1Auyy + vipAuy )

+(1- y)z(Auil + Auiz), i=1,
) =2y (vipAuyy + vipAu,) + y? (Auil + Auiz),
i=2,...,0—1,

2y (Vo Aury + Voo Aug ) + P (Auil + Auiz),

i=w.
(16)
From (16), the probability of randomly choosing the right

vi1 and v, for constructing logical hash symbols is also at
most (1/g)* by Lemma 4.
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Thirdly, when the adversary modifies more data symbols
of u;, by the similar method, we can prove that the
probability of constructing the logical hash symbols is at
most (1/g)".

Step 2. When the adversary modifies more pseudopackets u;
at one time, from the similar method above, the probability
of constructing the logical hash symbols is no more than
(1/g)".

From the proof of Theorem 2, we have the following two
corollaries.

Corollary 1. The probability of not detecting an error is not
related to both the number of modified packets Auw; and the
symbols of one pseudopacket, but the cardinality of F, and the
source rate.

Corollary 2. If the redundant hash symbol in the packet is
a constant or a linear function of the data symbols, then the
scheme can not defend the Byzantine modification.

Proof. First, when the hash symbol is a constant. The
adversary only modifies the data symbols and keeps the hash
symbols unchanged. Then the receivers can not detect the
modification.

Second, when the hash symbol is a linear function of the
data symbols, we have

hu; = hi +hw = (Il)(vi) +¢(Vw)
=¢(Vi+tvy), i=1...,0w—1, (17)

hy, = ¢(vi + -+« +vy_1 +AVy).

By (15), Ah; = hi —hi = hy _y, = ¢(v; = Vi) = ¢(Av;). Au; are
known by attackers. So, by the relationship between Av; and
Auj, Ah; are easily calculated and this scheme canot defend
Byzantine modification. O

3.3. Against Wiretapping and Byzantine Attacks. Further,
by combining with Scheme 1, we can improve Scheme 2
to against wiretapping attack. Before sending out u;, i =
L,...,w, the source encrypts the last packet 1, and denotes
the encrypted packet by €. The aim is to prevent wiretapper
from recovering any original packets.

Scheme 3 provides not only security but also authentic-

ity.

Scheme 3. Initialization: For each packet v;,1 < i < w, the
source calculates the hash values h;,1 < i < w, and obtains
the augmented packets v;,1 < i < w, by concatenating the
hash value h; to each original packets v;.

Step 1. The source takes Ts as its local encoding kernel.
Computes (Uy,...,0,) = (¥1,...,V,)Ts and encrypts U,
using AES cryptsystem ( Here we use symmetry cryptsystem.
Because if we use asymmetry cryptsystem, by the public key

the adversary may successfully modify all the pseudopackets
at the same time when he controls w edge disjoint paths.) to
get ¢ = Eaps(Uy). Then sends out Uy, ..., Uy_1,¢.

Step 2. Based on the Jaggi’s construction of network coding
for wired networks and Rajawat’s for wireless network, we
can construct the codes for the intermediate nodes.

Step 3. Each sink node first decodes the received packets and
gets Uf,...,U,_;, ¢, then gets U, = Dups(¢’) by decrypting

¢'. Verify whether h; = Z?zlv{,jz,l <i< wlfh =

Z?Zl v; jz for all i, there does not exist modification on the

transmission. They get the original packets v1,...,V, by T5'.

These three schemes are based on Jaggi’s construction
for wired networks and Rajawat’s construction for wireless
networks. Actually, we can also use Ho’s random network
coding [21]. In Scheme 2, the only change is to randomly
choose the local encoding kernels from a large finite field.
Except for the change in Scheme 2, in Schemes 1 and 3
the packets from the source will be appended with an
w-dimensional identity vector, the global encoding kernel,
before being sent out. However, random network coding for
wireless networks requires a large alphabet size to render
networks robust to link failures.

Example 5. We construct a secure network code on the
wireless network in Figure 1(a) to detect Byzantine modifica-
tions. Suppose the base field is Fs. Let A = 3 ¢ {0,1 mod 5}.
Theny=(2-1- 3)"! = 2. So the AONT matrix Ts, which
is used to encode the two original packets at the source node

s, 1s
11
n- (1) "

Suppose the packets v; and v, will be sent to the sink
nodes y and z. The two encoded packets (pseudopackets)
from the source are

(u; w) = (viv2)Ts = (vi + Vv + 3v2). (19)

Then the pseudopackets transmitted on the edges are
shown in Figure 3. When an adversary wiretaps any one of
A = {6LY)L GO (w0}, {0 p), (6 2)Hs {(w,2)1,
he can not get any meaningful information about packet v,
or v,. If we encrypt the packet u,, then the adversary can get
nothing even when he wiretaps all the channels.

Letv; = (1234)7,9, = (324 4)7. The last symbol is
the hash symbol and calculated using the hash function in
(4). The two augmented pseudopackets are

(u, up) = Ts = (20)

W N

13 0
22 3
3 4 0l
4 4 1
Suppose that an adversary modifies the data packet 4,

and let @, = (3 42 3)". Then, the receiver can decode the
packet vectors and get vi = (124 HT ¥ =223  1tis
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F1GURE 3: The source node s transforms the packets v; and v, by Ts,
and sends the outputs u; = v; +v, and u, = v; + 3v; to sink nodes
yandz.

easy to verify that4#14+4+16 mod 5=1land4#4+4+

9 mod 5 = 2. So the receivers can find that the packets are
modified.

4. Conclusion

For secure transmission, if only the information-theoretic
approach is used, some bandwidth has to be given up
or a high computation complexity is necessary. As to
cryptographic approach, all the packets have to be encrypted
against wiretapping. Even if the data is hashed and appended
with its hash value, one may not detect the modifications
when the adversary modifies the data and its hash value
simultaneously. To address these problems, we combine
the information-theoretic approach with cryptographic
approach to design secure network coding. On one hand,
we do not give up any network capacity to achieve the same
security as that of Cai and Yeung. More importantly, our
Scheme 1 does not require any restrictions on the wiretap-
ping sets compared with that of Cai and Yeung. It means
that our secure network coding is suitable for both wired net-
works and wireless networks. On the other hand, we decrease
the resource consumptions of encryption and decryption.
Furthermore, based on some simple hash function, our
Scheme 2 is designed to detect the Byzantine modification.
It can achieve a high detection probability with only one
hash symbol and low computation complexity. In the end,
combining the two schemes above we propose Scheme 3
which provides not only security but also authenticity.
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