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In wireless sensor networks (WSNs), there generally exist many different objective functions to be optimized. In this paper,
we propose a stochastic multiobjective optimization approach to solve such kind of problem. We first formulate a general
multiobjective optimization problem. We then decompose the optimization formulation through Lagrange dual decomposition
and adopt the stochastic quasigradient algorithm to solve the primal-dual problem in a distributed way. We show theoretically
that our algorithm converges to the optimal solution of the primal problem by using the knowledge of stochastic programming.
Furthermore, the formulation provides a general stochastic multiobjective optimization framework for WSNs. We illustrate how
the general framework works by considering an example of the optimal rate allocation problem in multipath WSNs with time-
varying channel. Extensive simulation results are given to demonstrate the effectiveness of our algorithm.

1. Introduction

The layered architecture approach has achieved great success
in traditional wired network design by dividing the whole
architecture into several modules, called layers, each of which
performs a separate functionality. As each layer design only
needs some interface variables from the layer below, the com-
plexity of other layers can be hidden. The layered architecture
approach suggests that the network design can be scalable,
evolvable, and implementable. However, it may have limita-
tions in improvement of efficiency and fairness, and suffer
potential risks of manageability [1], which motivates the
optimization of network design. Chiang et al. [1, 2] propose
an optimization decomposition technique to systematically
understand the network architecture, known as “layering
as optimization decomposition”. They model the network as
an optimization problem and decompose the problem into
many subproblems. They classify the decompositions into
vertical decomposition and horizontal decomposition. Vertical
decomposition layers the network architecture into several
modules and horizontal decomposition provides distributed
algorithms to fulfill the functionality within the modules.

According to the requirements of the applications, the
decomposition may be different, yielding different layers
and distributed algorithms. There are usually two steps in
the process of layering as optimization decomposition: (1)
modeling the network problem as a specific NUM problem,
and (2) exploring the alternative decompositions to design
different modules and distributed algorithms. Most existing
efforts have been put to the second step and simply assume
that the network problems can be modeled by a unified
utility function at the first step [3–6]. However, not all net-
work problems can be modeled by a unified utility function
in a tractable way since there may exist many objectives
to be achieved, such as guaranteeing fairness, maximizing
throughput, reducing packet dropping and delay, prolonging
the network lifetime, and so forth. It may not be possible
to integrate all these objectives into a single unified utility
function, that is, network problems should be formulated as
multiobjective optimization problems.

While the performance of the network can be greatly
enhanced by adopting the NUM approach, the correspond-
ing cost of algorithm implementation also increases. As we
usually design and implement an algorithm for a specific
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application from scratch, the implementation can hardly
be transplantable to other applications. This is especially
aggravated in wireless sensor networks (WSNs) due to the
application-oriented and infrastructureless nature of these
networks. For example, if we design an efficient algorithm for
events monitoring, the network lifetime is the main concern
and the propagation delay can be tolerant, but it is difficult
to apply such algorithm to online query applications, where
the query delay is the primary objective.

In this paper, we utilize the concept of multiobjective
optimization and provide a general framework for a specific
class of applications in WSNs. It is well known that the
TCP/IP reference model, one of the most popular layered
architectures, divides the whole architecture into five layers
(modules), and each layer only communicates with the
layers next to it, while recent work on the NUM approach
divides the architectures according to applications. We first
list all the constraints and objectives which the applications
may have. Then the network architecture is divided into n
modules, each of which has several interface variables with
other modules. In this way, we can inherit the advantages
of both the layered architectures (as we have fixed modules)
and the NUM approach (as each module can communicate
with other modules). We illustrate this in Figure 1, in which
λ and μ are the interface variables (see Section 3 for detailed
definition of λ and μ), and Oi is the objective vector function
in each module i. We transform the objectives of the network
into specific modules through the interface variables. Each
sensor optimizes its own objective vector function to achieve
the global optimal solution of the whole network. In this
way, for different requirements from the network, we do
not redesign the framework, that is, the modules and
interfaces in Figure 1 can be kept unchanged. We only
need to introduce multiobjective methods to optimize the
vector function Oi in each module. This will greatly simplify
network design for WSNs.

In WSNs, some parameters (e.g., the topology of the
networks or channel condition) are time-varying. In [7],
Lee et al. demonstrated that the state of the network can be
more efficiently utilized to improve the performance of the
network (e.g., increasing the throughput and reducing packet
delay), by appropriately exploiting the variability of the time-
varying channels. Also there are measurement errors in the
implementation of distributed algorithms, such as the noisy
feedback [8] or lossy links [9]. Therefore, we also characterize
these random factors in our model. Our contributions in this
paper are summarized as follows.

(1) We formulate a general multiobjective stochastic
optimization problem for WSNs. We decompose
the optimization problem through Lagrange dual
decomposition and adopt the stochastic quasigra-
dient method to solve the primal-dual problem. In
other words, we transform the multiple objectives of
WSNs into the multiple objectives of each individual
sensor node. The global optimal solution can be
obtained when each sensor node maximizes its own
objective vector function. Therefore, our approach

Module 1, O1

Module 2, O2

Module n, On

. . . . . .

Figure 1: An illustration of our proposed framework.

provides a general framework for multiobjective
optimization for WSNs.

(2) We study the stability of the algorithm by using the
knowledge of stochastic programming, and show that
our algorithm for stochastic multiobjective optimiza-
tion problem (ASMOP) can converge to the optimal
solution of the primal problem.

(3) We demonstrate how the general framework can be
applied to different applications, by considering the
rate allocation problem as an example. We introduce
three multiobjective optimization methods: (1) con-
straint method, (2) linear weighted method, and (3)
hierarchical sequence method. The three paradigms
show that although different requirements may lead
to different models [6, 10], we can solve them in the
general framework.

The remainder of the paper is organized as follows: in
Section 2, we discuss related work regarding the NUM prob-
lem and stochastic network utility maximization (SNUM).
We formulate a general mathematical model and design a
distributed algorithm to solve the problem in Section 3, and
the stability of the algorithm is also discussed. We provide
three paradigms in Section 4 to demonstrate the general
framework for different applications. Simulation results are
given in Section 5. We conclude the paper in Section 6.

2. RelatedWork

There are several research works in the literature studying
the NUM problem [4, 11–14]. Kelly et al. were the first
to propose the optimization approach, which provides a
mathematical foundation for NUM problem [11]. In [12],
Chiang adopted the NUM approach to obtain a cross-layer
design including the physical layer and the transport layer.
Zhu et al. [13] considered the energy model in the cross-
layer design. In [1], Chiang et al. provided a mathematical
theory of network architectures. Wang et al. studied joint
interference-aware routing and TDMA link scheduling to
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improve the throughput in multihop wireless networks [15].
Zhang et al. [8] elaborated on the impact of the feedback in
the implementation of distributed NUM algorithms. Since
feedback is often collected using error-prone measurement
mechanisms, for example, biased estimator or unbiased
estimator, they adopted the knowledge of stochastic approx-
imation and proved stability of the algorithms of single-time
scale and two-time scale. Lee et al. utilized the variation
of channels to guide power and rate control in cross-layer
design [7]. In this paper, we formulate a more general math-
ematical model by considering stochastic multiple objectives
in objective functions. We apply our approach to rate
allocation problem in multipath WSNs with time-varying
channels. Rate allocation is a fundamental problem and has
been extensively investigated [16–19]. Low and Lapsley [16]
first introduced the Lagrange dual method to decompose the
problem and proposed two algorithms under synchronous
and asynchronous scenarios. A multipath formulation for
rate control in multi-cast networks was proposed in [20],
and three distributed algorithms were proposed to solve
the problem. The goal is to maximize the aggregate utility.
In [6], Srinivasan et al. considered two objectives: utility
maximization and guaranteeing prespecified network life-
time for multipath wireless ad hoc networks. In [10], Zhu
et al. also focused on the network lifetime and application
performance (utility), and employed the linear weighted
method from the multiobjective optimization to transform
these two objective functions into a single one which was
named to the utility-lifetime tradeoff function.

3. General Multiobjective
Formulation and Solutions

Throughout the paper, we will denote sets by capital letters,
variables by lowercase letters, vectors by bold lowercase
letters, and matrices by bold capital letters. For a vector x,
we denote its ith component by xi and its transpose by xT .
We use capital letters for both the sets and the cardinality of
sets.

Consider S sensing nodes and N sink nodes in the
region of interest. Let Ω be a probability space with a σ-
algebra F of random events, and have a finite set {τm,m =
1, 2, . . . ,M} with the corresponding probability p(τm) ≥
0. There are n objective functions P(i)(x), i = 1, . . . ,n,
defined on the subset χ of a Hilbert space. Let P(x) =
(P(1)(x),P(2)(x), . . . ,P(n)(x)), P(i)(x) = ∑

s∈S f
(i)
s (x). Then

Ps(x) = ( f (1)
s (x), f (2)

s (x), . . . , f (n)
s (x)) is the objective vector

function of sensing node s. Let xs ∈ χs be the column
vector of variables of sensing node s, x = (xT

1 , . . . , xT
S )T , and

gs(·) a column vector function. We can formulate the primal
problem (PP) as follows:

PP : P(x),

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

M∑

m=1

p(τm)
∑

s∈S
gs(xs, τm) ≤ 0,

xs ∈ χs, ∀s ∈ S.

(1)

The objective function, f (i)
s (x), may be a coupled one.

In order to design a distributed algorithm, we introduce
auxiliary variable y to decouple it. Assume that the node

set associated with coupled variables of f (i)
s (x) is H(i)(s), i =

1, 2, . . . ,n. Let H(s) = ⋃n
i=1 H

(i)(s), which denotes the node
set associated with coupled variables of Ps(x) of sensing node
s, then the decoupled primal problem (DPP) can be given by

DPP : P
(

x, y
) = (P1(x, y

)
, . . . ,Pn

(
x, y
))

, (2)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∑

m=1

p(τm)
∑

s∈S
gs(xs, τm) ≤ 0,

yss′ = xs′ ,

xs ∈ χs, yss′ ∈ χs′ ,

∀s ∈ S, s′ ∈ H(s),

(3)

where P(i)(x, y) =∑s∈S f
(i)
s (xs, ys) is the ith decoupled objec-

tive function, and ys = ({yss′ }s′∈H(i)(s)) is the corresponding
vector of auxiliary variables.

In our formulation, the objective functions are determin-
istic, taking the advantage that each sensing node can be
obtained from the network. The constraint set contains the
random factors of the networks, such as message exchange,
and environmental effect. If we know the distribution, p(τm),
m = 1, 2, . . . ,M, of τ, we can transform the problem
into a deterministic one, by calculating the expectation.
However, in WSNs, there is often no prior knowledge about
the randomness from the networks themselves and the
environmental effect. Therefore, we develop an algorithm
without this prior knowledge, which can be achieved by the
stochastic quasigradient method [7].

To decompose the problem, we take Lagrange dual
approach. The Lagrange function [21] of (3) is given by

L
(

x, y, λ,μ, τ
)

=
∑

s∈S
Ps
(

xs, ys
)− λT

M∑

m=1

p(τm)
∑

s∈S
gs(xs, τm)

+
∑

s∈S,s′∈H(s)

uT
ss′
(

xs′ − yss′
)

=
M∑

m=1

p(τm)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

s∈S

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ps
(

xs, ys
)− λTgs(xs, τm)

+xT
s

∑

s′:s∈H(s′)

uss′ −
∑

s′∈H(s)

uT
ss′yss′

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(4)

where Ps(xs, ys) is the objective vector function of sensing
node s. It is a formal expression which can be transformed
into different objective functions for different applications.

We call λ and μ decoupled prices (λ is used to decouple
the coupling of variables and μ is used to decouple the
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coupling of objective functions). Since (4) is separable, we
exploit the decomposable structure of Lagrangian function
and decompose the problem into S subproblems. Maximiza-
tion is achieved in each sensing node s, s ∈ S, with the
knowledge of local variables (xs, ys) and the current state τ,
by solving the following optimization problem DPs.

DPs : max Ps
(

xs, ys
)− λTgs(xs, τ)

+

⎛

⎝
∑

s′:s∈H(s′)

uss′

⎞

⎠

T

xs −
∑

s′∈H(s)

uT
ss′yss′

(5)

s.t.

⎧
⎨

⎩

xs ∈ χs,

yss′ ∈ χs′ .
(6)

At iteration t, each sensing node s updates its resource
variables xs and auxiliary variables ys according to

(
xs, ys

) = Arg max
xs∈χs

yss′∈χs′
DPs. (7)

We proceed to solve the dual problem. Let D(λ,μ, τ) =
maxx,y L(x, y, λ,μ, τ). Then the dual problem (DP) is given
by

min
λ≥0,μ

D
(
λ,μ, τ

)
. (8)

At iteration t, each sensing node can acquire the state
of random variables τ. The stochastic quasigradient method
only needs this current state information of the system and
utilizes it to form the stochastic subgradients of D(λ,μ, τ)
at iteration t. For the dual problem, DP, prices are updated
according to

λ(t + 1) = [λ(t)− α(t)ϑ(t)]+, (9)

μss′(t + 1) = μss′(t)− α(t)νss′(t), s′ ∈ H(s), (10)

where ϑ(t) and νss′(t) are the stochastic quasigradients of
D(λ,μ, τ).

In our algorithm, we set

α(t) = 1
t

, (11)

ϑ(t) = −
∑

s∈S
g(xs(t), τ(t)), (12)

νss′(t) = xs′(t)− yss′(t), s′ ∈ H(s), (13)

where τ(t) is the state of τ at iteration t.
We summarize our algorithm for the general formulation

of stochastic multiobjective optimization problem (ASMOP)
in the Algorithm 1.

To prove that the algorithm can converge to the optimal
solution of the primal problem, we make the following
assumptions.

(1) f (i)
s (·) as well as the objective vector function Ps(·)

(which can be transformed into a single function
in applications), s ∈ S, i = 1, 2, . . . ,n, are twice
continuous differentiable concave functions.

(2) gs(x, τ), s ∈ S, are convex and twice continuous
differentiable functions in x, for all τ ∈ Ω.

Theorem 1. If (1) hold, then from an arbitrary point of x(0) ∈
χ, λ(0) ≥ 0 and yss′(0) ∈ χss′ ,μss′(0), s ∈ S, s′ ∈ H(s),
the sequence generated by (7), (9), and (10) converges. Every
limit point (x∗, y∗, λ∗,μ∗) of the sequence (x(t), y(t), λ,μ) is
primal-dual optimal.

Proof. Let the sequences of iteration {λ(0), λ(1), . . . , λ(t)}
and {μ(0),μ(1), . . . ,μ(t)} be generated by (9) and (10),
respectively. Then to guarantee the convergence of the
algorithm, according to [7, 22], the current stepsize and
quasigradients α(t), ϑ(t), and ν(t) should be chosen such that

α(t) ≥ 0,
∞∑

t=0

α(t) = ∞,
∞∑

t=0

(α(t))2 <∞, (14)

E
{
ϑ(t) | λ(0), . . . , λ(t),μ(0), . . . ,μ(t)

}=∂λD
(
λ(t),μ(t), τ(t)

)
,

(15)

E
{
ν(t) | λ(0), . . . , λ(t),μ(0), . . . ,μ(t)

}=∂μD
(
λ(t),μ(t), τ(t)

)
.

(16)

It can be seen that α(t) = 1/n, t = 0, 1, . . ., satisfy (14). From
[22]; we know that ϑ(t) and νss′(t) from (12) and (13) also
satisfy (15) and (16).

From assumptions (1) and (2), the primal function is
concave and the dual function D is convex in λ and μ for
a fixed τ. From (7), (9), (10), (11), (12), and (13), we can
conclude that the sequence converges to the optimal solution
by solving the dual problem [22]. As the primal problem is
a convex optimization problem, there is no gap between the
primal and dual problems. So the sequence (x∗, y∗, λ∗,μ∗)
generated by the algorithm is primal-dual optimal.

Remarks. Because of multipath routing, the problem, DPs,
may not be strictly concave even if Ps(·) is strictly concave.
This may lead to oscillation of the sequences generated by the
algorithms. There are several ways to cope with this problem.
For example, we can first add some augmented variables to
DPs and adopt the first-order Lagrangian method to solve it
[23].

The main difference of our proposed approach is that
we adopt the knowledge of multiobjective optimization
and provide some potential interfaces for each layer. In
this way, we can take the advantages of both the layered
architectures and cross-layer design. In other words, we can
implement different algorithms in each module according
to specific applications. In Figure 1, λ and μ act as the
interface variables between different modules and sensor
nodes. Through λ and μ, the network architectures can
be decomposed into different modules and each module
fulfills corresponding functionality distributively. From (7),
we can transform the multiple objectives of the whole
network into the multiple objectives of each sensor node.
Optimizing the objective vector function of each sensor node
can achieve the global optimal solution. Therefore, it is very
convenient to implement algorithms in each module i to
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solve the objective vector function independently according
to different requirements.

4. Paradigms of Objective
Optimization inWSNs

In the proposed general framework, Ps(xs, ys) in DPs is
a vector function and can be transformed into a single
function according to different requirements. Therefore,
solving DPs is application-dependent, which provides the
flexibility of solving a class of applications by the general
framework.

In this section, we consider the rate allocation problem
as an example and show how the general framework works.
Rate allocation problem is a well-investigated problem [24],
and has different requirements for different applications.
There are usually three methods to cope with the require-
ments: (1) Constraint Method [6], (2) Linear Weighted
Method [10], and (3) Hierarchical Sequence Method. While
these methods are extensively studied in existing works,
we can integrate these methods together into the general
framework. Hence, our approach can be applied to a class
of applications with different background, which will offer
significant convenience to the designers.

4.1. Preliminary Knowledge. In this section, we give a brief
introduction to the three multiobjective methods.

(1) The constraint method tries to solve the multi-
objective problems by placing the most important
one in the objective function, while other objective
functions are constrained within the constraint set.
In other words, constraint method can solve the
following DPs of each sensing node s. (without loss of

generality, we assume that f (1)
s is the most important

objective function)

DPs : max f (1)
s

(
xs, ys

)− λTgs(xs, τ)

+

⎛

⎝
∑

s′:s∈H(s′)

uss′

⎞

⎠

T

xs −
∑

s′∈H(s)

uT
ss′yss′

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xs ∈ χs,

yss′ ∈ χs′ ,

f
( j)
s
(

xs, ys
) ≤ A

( j)
s , j = 2, . . . ,n,

(17)

where A
( j)
s , j = 2, . . . ,n, are constant constraints

imposed by applications.

(2) The linear weighted method focuses on solving the
multiobjective optimization problems by first associ-
ating each objective function fi(·) with a weight γi
and then taking the weighted sum as a new objective
function. Using linear weighted method to solve DPs,

the variables in each sensing node s are updated
according to

DPs : max
n∑

j=1

γj f
( j)
s
(

xs, ys
)− λTgs(xs, τ)

+

⎛

⎝
∑

s′:s∈H(s′)

uss′

⎞

⎠

T

xs −
∑

s′∈H(s)

uT
ss′yss′

s.t.

⎧
⎨

⎩

xs ∈ χs,

yss′ ∈ χs′ ,

(18)

where γj , j = 1, . . . ,n, are weight coefficients.

(3) The hierarchical sequence method is concerned with
solving the multiobjective optimization problems
sequentially, that is, solving the most important
problem first and then the less important problems.
Let I = {x | xs ∈ χs, yss′ ∈ χs′ } and divide (5) into
n functions Fj(xs, ys), j = 1, 2, . . . ,n. Maximization
is achieved by solving the following n subproblems
sequentially.

DPs :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) F∗1 = max
x∈I

F1(x),

(2) F∗2 = max
x∈I∩{x|F1≥F∗1 }

F2(x),

...

(n) F∗n = max
x∈I∩{x|Fi≥F∗i ,i=1,...,n−1}

Fn(x),

(19)

4.2. Rate Allocation Problem under ASMOP Formulation. In
this section, we consider the rate allocation problem with
two objectives: (1) maximizing aggregate utility and (2)
prolonging the network lifetime.

Assume the sensing nodes can transmit their rates to the
sink nodes over a set L = {1, 2, . . . ,L} of links, each of which
has capacity cl, l ∈ L. Each sensing node s can transmit its
rate through R(s) ⊆ R of the routes. Each route r ∈ R(s)
traverses over a set L(r) ⊆ L of links with a rate xsr . Let
xs be the rate vector of sensing node s, S(l) = {s ∈ S |
l ∈ L(r), r ∈ R(s)} the set of sensing nodes using link l,
and R(s, l) the subset of routes R(s) used by sensing node s
to traverse over link l. We denote the set of sensing nodes
that use sensing node s as an interim relay node by S(s) (not
including the sensing node s itself). Let R(s, s′) be the subset
of routes R(s′) which use sensing node s as a relay node and
S(r) the relay nodes used by route r. Let M be finite number
of state that the channels have and p(τm) the probability of
the state τm, m ∈ M. Each sensing node s is characterized
by three parameters (Us(·), bs, bs), where Us : R+ → R is a
strictly concave utility function, bs ≥ 0 and bs <∞ which are
the required minimum and maximum transmission rates for
each sensing node s, respectively.
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From [11, 16], we know utility maximization can be
formulated as follows.

max
∑

s∈S
Us(xs) =

∑

s

Us

⎛

⎝
∑

r∈R(s)

xsr

⎞

⎠ (20)

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

s∈S

∑

r∈R(s,l)

xr ≤
∑

m∈M
p(τm)cml ,

bs ≤
∑

r∈R(s)

xsr ≤ bs, ∀s ∈,

xsr ≥ 0, ∀s ∈ S, r ∈ R(s),

(21)

where (p(τ1), p(τ2), . . . , p(τM)) describes the distribution of
the states of link channel condition and cml is the capacity
of link l under state τm. We will establish algorithms that
can guarantee convergence without prior knowledge of the
underlying probability distribution of the system channel
state.

The network lifetime is often defined as the time interval
between initialization of the network and the exhaustion
of the battery of the first sensing node. The total power
dissipation, ws, at sensing node s is equal to

ws =
∑

s′∈S(s)

∑

r∈R(s,s′)

(
wre + wt

sr

)
xr +

∑

r∈R(s)

wt
srxr , (22)

where wt
sr and wre are the energy consumptions at sensing

node s for transmitting or receiving unit data flow over route
r, respectively.

Let es denote the initial energy of sensing node s. Its
lifetime Ts is Ts = es/ws. Following [10], we have the energy
model for the network lifetime:

max −
∑

s∈S

1
β − 1

z
β−1
s (23)

s.t. ws = eszs, s ∈ S, (24)

where zs = 1/Ts.
We can have the multiobjective model for rate allocation

problem:

PP : max P =
(
P(1)(x),P(2)(x)

)
(25)

s.t. constraints (21), (22), (24), (26)

where

P(1)(x) =
∑

s

Us(xs),

P(2)(x) = −
∑

s

ω

β − 1
z
β−1
s .

(27)

Here, parameter ω scales the values of the two objective
functions into the same order of magnitude.

4.3. Algorithm Design. Similar to (3), the decoupled form of
(25) is

DPP : max P =
(
P(1)(x),P(2)(x, y

))
(28)

s.t.

⎧
⎨

⎩

yss′r = xs′r ,∀s′ ∈ S(s), r ∈ R(s, s′),

constraints (21), (22), (24),
(29)

where P(2)(x, y) = −∑s(ω/(β − 1))z
β−1
s (x, y) and zs(x, y) is

given by

zses =
∑

s′∈S(s)

∑

r∈R(s,s′)

(
wre + wt

sr

)
yss′r +

∑

r∈R(s)

wt
srxsr . (30)

Then we have the Lagrange function:

L
(

x, y, λ,μ, τ
)

=
∑

m∈M
p(τm)

⎧
⎨

⎩

∑

s∈S

⎧
⎨

⎩
Ps
(

xs, ys
)−

∑

r∈R(s)

xsr
(
λr − μsr

)

−
∑

s′∈S(s)

∑

r∈R(s,s′)

μss′r yss′r

⎫
⎬

⎭
+
∑

l∈L
λlc

m
l

⎫
⎬

⎭
,

(31)

where λr =∑l∈L(r) λl and μsr =∑s′∈S(r) us′sr .
Notice that for given λr , μsr , μss′r , s′ ∈ S(s), r ∈ R(s, s′),

the update for each sensing node s is deterministic, no matter
what the channel condition is. So at iteration t, each sensing
node s updates its rate xs and auxiliary variable ys by solving
the optimization below

DPs : max Ps
(

xs, ys
)−

∑

r∈R(s)

xsr
(
λr − μsr

)

−
∑

s′∈S(s)

∑

r∈R(s,s′)

μss′r yss′r

s.t.

⎧
⎪⎨

⎪⎩

bs ≤
∑

r∈R(s)

xsr ≤ bs, xsr ≥ 0,

yss′r ≥ 0, ∀s′ ∈ H(s), r ∈ R(s),

(32)

where Ps(xs, ys) = (Us(xs),−(ω/(β− 1))z
β−1
s ) is the objective

vector function for sensing node s.
At iteration t, t = 1, 2, . . ., sensing node s first receives λr ,

μsr and μss′r , s′ ∈ S(s), r ∈ R(s, s′), from the network, and
then updates its rate and auxiliary variables according to

(
xs(t), ys(t)

) = Arg max DPs. (33)

Notice that the update of decoupled prices, μ, does not
depend on the channel condition. At each iteration t, with
xs′r , yss′r , s′ ∈ S(s), r ∈ R(s, s′), being collected, the
decoupled price μ is updated according to

μss′r(t + 1) = μss′r(t)− α(t)
(
xs′r(t)− yss′r(t)

)
. (34)

To update price λ, without prior knowledge about the
distribution of the channel state, each sensing node s can
measure channel condition and get the link capacity ĉl(t) for
each link l at time t. Then λ can be updated according to

λl(t + 1) =
[
λ(t)− α(t)

(
ĉl(t)− xl(t)

)]+
. (35)

So far, we have introduced interface variables (μ and
λ) for a fully distributed implementation and provided a
framework for rate allocation in WSNs with time-varying
channels. Next, we show how to apply the framework to
applications under different methods.
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4.4. Paradigms: Applications under Different Methods. (1)
Constraint Method. To maximize the utility of a network
under the condition that the network lifetime exceeds a
prespecified threshold time T , the constraint method can be
used to solve the optimization problem below of each sensing
node s.

DPs : max Us(xs)−
∑

r∈R(s)

xsr
(
λr − μsr

)

−
∑

s′∈S(s)

∑

r∈R(s,s′)

μss′r yss′r
(36)

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zs ≤ 1
T

,

bs ≤
∑

r∈R(s)

xsr ≤ bs, xsr ≥ 0,
(37)

(2) Linear Weighted Method. In [10, 13], Zhu et al.
considered the tradeoff between lifetime and rate allocation.
By introducing the weight parameter, γ, to evaluate the
importance of the two objectives, they can be combined
into a single one. For (29), the desired tradeoff between
network utility and lifetime can be achieved by solving the
optimization problem below.

DPs : max γUs(xs)−
(
1− γ

)
ω

1
β − 1

z
β−1
s
(

x, y
)

−
∑

r∈R(s)

xsr
(
λr− μsr

)−
∑

s′∈S(s)

∑

r∈R(s,s′)

μss′r yss′r

(38)

s.t.

⎧
⎪⎨

⎪⎩

bs ≤
∑

r∈R(s)

xsr ≤ bs, ∀s ∈ S,

xsr ≥ 0, yss′r ≥ 0, s′ ∈ H(s), r ∈ R(s),
(39)

where γ ∈ [0, 1], is the weight coefficient.
(3) Hierarchical Sequence Method. In our rate allocation

paradigm, we have two objectives: (1) find a rate allocation
strategy to maximize the total utility and (2) prolong the
networks lifetime. To the best of our knowledge, this method
has not been applied to the rate allocation problem before.
We can achieve the two objectives by solving the two
subproblems below sequentially.

(i) : I∗ = arg maxUs(xs)−
∑

r∈R(s)

xsrλ
r

s.t.

⎧
⎪⎨

⎪⎩

bs ≤
∑

r∈R(s)

xsr ≤ bs, ∀s ∈ S,

xsr ≥ 0, ∀s ∈ S, r ∈ R(s),

(40)

(ii) : max − ω

β − 1
z
β−1
s
(

xs, ys
)

+
∑

r∈R(s)

xsrμ
sr

−
∑

s′∈S(s)

∑

r∈R(s,s′)

μss′r yss′r

s.t. xs ∈ I∗, yss′r ≥ 0.

(41)
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Figure 2: Topology of the simulated WSN.

It is sufficient to employ optimization methods to solve
(37), (39), or (40), and (41) for different applications, while
λ and μ updates are kept unchanged (according to (34) and
(35)).

5. Simulation Results

5.1. Simulation Setting. We use 9 sensing nodes and 1 sink
node in our simulations. These sensor nodes are randomly
deployed in an area of size 70 × 70 to perform a sensing
task. The randomly generated topology of the sensor nodes
is shown in Figure 2, in which sensing nodes are marked
by triangle icons and the sink node is marked by a square
icon. In our simulations, we only focus on the rate allocation
problem. The study of the routing in the network layer is
beyond the scope of our paper. We assume that there are
15 routes available for data transmission. L(r1) = {l1, l5, l9},
L(r2) = {l1, l4, l13}, L(r3) = {l2, l6, l9}, L(r4) = {l2, l7, l10},
L(r5) = {l3, l8, l10}, L(r6) = {l6, l12, l13}, L(r7) = {l7, l10},
L(r8) = {l8, l10}, L(r9) = {l5, l9}, L(r10) = {l4, l13}, L(r11) =
{l9}, L(r12) = {l12, l13}, L(r13) = {l10}, L(r14) = {l11, l13},
L(r15) = {l13}. Every sensing node s can transmit its sensing
data to the sink node from a set of routes: R(s1) = {r1, r2},
R(s2) = {r3, r4, r5}, R(s3) = {r6, r7}, R(s4) = {r8}, R(s5) =
{r9, r10}, R(s6) = {r11, r12}, R(s7) = {r13}, R(s8) = {r14}, and
R(s9) = {r15}.

We have two objectives: maximizing the aggregate utility
and the network lifetime. For the utility objective, we set
Us(·) = ξs log(·) for each sensor node s, where ξ =
(52, 54, 56, 58, 60, 62, 64, 66, 68). From [10], the function

−∑s(ω/(β − 1))z
β−1
s can have a ratio higher than 0.95

to approximate the original lifetime problem T when
β ≥ 8. In our simulations, we use β = 9. The link
capacities vary from time to time according to a uniform
distribution with the expected capacities of links 1–13 to
be c = (2000, 2000, 2200, 2000, 2000, 2500, 2800, 3500, 3500,
2000, 3000, 2800) (bit/s). For the energy consumption
model, from [10], wre is a constant and wsr = ρ + σd

η
sr ,
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Figure 3: Convergence of the ASMOP algorithm by using con-
straint method.

where dsr is the length of the outgoing link of sensing node
s for transmitting rate of route r. We set ρ = 50 nJ/bit,
σ = 0.0013 pJ/bit/m4, η = 4, wre = 50 nJ/bit. The
initial energy of the sensing nodes 1–9 is set to be e =
(450, 450, 475, 475, 450, 500, 500, 450, 500) (J) and the sink
node (node 10) is assumed to have enough energy. The
minimum and maximum rates of each sensing node are set
to be bs = 100 and bs = 2500, respectively.

5.2. Simulation Results for Paradigms. First, we show the per-
formance of the ASMOP algorithm by using the constraint
method. Let the threshold of the network lifetime T =
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Figure 4: Convergence of the ASMOP algorithm by using linear
weighted method.

800 h. We collect the rate of each route r at each iteration.
For each sensing node s, the rates are updated according
to (37) and the decoupled price μ is updated according to
(34). Each link l first collects information about the channel
condition and computes its corresponding capacity, then
updates its link price according to (35). The results are shown
in Figure 3. Since there are 9 sensing nodes and 15 routes in
our simulations, due to space limitation, we only show the
aggregate rate of each sensing node. In Figure 3, we can be
see that the rates first change sharply and then converge to the
optimal one, which indicates the effectiveness of our ASMOP
algorithm.
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(1) Price update algorithm: At times t = 1, 2, . . ., decoupled prices are updated according to
λ(t + 1) = [λ(t)− α(t)ϑ(t)]+

μss′ (t + 1) = μss′ (t)− α(t)νss′(t), s′ ∈ H(s),
(2) Sensor node s’s Algorithm: At time t = 1, 2, . . ., each sensing node s updates its variables
according to

(xs, ys) = Arg max
xs∈χs

yss′ ∈χs′

DPs

Algorithm 1: ASMOP.

Next, we show the simulation results of the ASMOP
algorithm using the linear weighted method. Here we
set ω = 8.17 × 1026 and γ = 0.7. At each itera-
tion t, each sensing node s updates its rates according
to (39), and the decoupled price λ and μ are updated
as the same in paradigm I. The results are shown in
Figure 4, and similar conclusions can be made as in the
paradigm I.

A similar simulation is performed for the hierarchical
sequence method and the corresponding results are shown
in Figure 5. We can see that the rates change sharply at the
beginning of each iteration, and then converge to the optimal
one in Figure 5.

We further set the threshold of the network lifetime to be
800 h in the simulation for the constraint method and γ =
0.7 for linear weighted method. These two methods mainly
target the energy-constraint in WSNs. For the hierarchical
sequence method, we focus on the utility of the network.
From Figures 3, 4, and 5, it can seen that the rates in Figure 5
are much larger than those in Figures 3 and 4. On the other
hand, as the rates in each sensor node become large, the
energy consumption increases. So the network lifetime under
the hierarchical sequence method is less than that under the
constraint method or linear weighted method. In addition,
different multiobjective methods obtain different network
performances. The results of the three simulations also
demonstrate the efficiency and convenience of our proposed
framework.

6. Conclusions

In this paper, we have proposed a general stochastic
multiobjective optimization framework for WSNs. Our
approach inherits advantages of both layered architectures
and cross-layer design. Therefore, even the requirements and
objectives are changed, it is not necessary to redesign the
optimization framework but to have minor modifications
of specific modules to meet the corresponding require-
ments. Although there may be uncertainty in WSNs, our
approach can still achieve desired performance. In our
future work, we will focus on investigating the general
multiobjective optimization problem, instead of transform-
ing the multiple objectives into a single one. We will
study the distributed algorithms to optimize the objective
vector function under some criteria, for example, Pareto
optimality.
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Figure 5: Convergence of the ASMOP algorithm by using hierar-
chical sequence method.
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