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We consider noncooperative energy-efficient resource allocation in the interference channel. Energy efficiency is achieved when
each system pays a price proportional to its allocated transmit power. In noncooperative game-theoretic notation, the power
allocation chosen by the systems corresponds to the Nash equilibrium. We study the existence and characterize the uniqueness
of this equilibrium. Afterwards, pricing to achieve energy-efficiency is examined. We introduce an arbitrator who determines the
prices that satisfy minimum QoS requirements and minimize total power consumption. This energy-efficient assignment problem
is formulated and solved. We compare our setting to that without pricing with regard to energy-efficiency by simulation. It is
observed that pricing in this distributed setting achieves higher energy-efficiency in different interference regimes.

1. Introduction

Power management and energy-efficient communication
is an important topic in future mobile communications
and computing systems. Currently, 0.14% of the carbon
emissions are contributed by the mobile telecommunications
industry [1]. In order to improve the situation, we study
new algorithms at physical and multiple-access layers. This
includes resource allocation and power allocation. A com-
mon mobile communication scenario is where several com-
munication system pairs utilize the same frequencies and are
within interference range from one another. This setting is
modeled by the interference channel (IFC). The transmitter-
receiver pairs could belong to different operators and these
are not necessarily connected. Therefore, noncooperative
operation of the systems is assumed.

In a noncooperative scenario without pricing, systems
transmit at highest possible powers to maximize their data
rates. Transmitting at high powers, however, is detrimental
to other users, because it induces interference which reduces
their data rates. In such settings, spectrum sharing might
lead to suboptimal operating points or equilibria [2]. The
case of distributed resource allocation and the conflicts in

noncooperative spectrum sharing are best analyzed using
noncooperative game theory (e.g., for CDMA uplink in [3]
and usage of auction mechanisms in [4]). An overview of
power control using game theory is presented in [5]. More-
over, analysis of noncooperative and cooperative settings
using game theory are performed in [6].

Studies have shown that the point of equilibrium in
a noncooperative game is inefficient but can be improved
by introducing a linear pricing [7]. Linear pricing means
that each system has to pay an amount proportional to
its transmit power. This encourages transmission at lower
powers, which reduces the amount of interference and at
the same time leads to a Pareto improvement in the users’
payoffs. Pricing in multiple-access channels has also been
investigated with respect to energy-efficiency in [8]. Studies
in an economic framework demonstrates other advantages of
proper implementation of pricing, for example, it provides
incentives to service providers to upgrade their resources [9]
or increase revenue [10].

In [11], the energy-efficiency of point-to-point commu-
nication systems is improved by sophisticated adaptation
strategies. A coding theoretic approach is proposed in
[12] where “green codes” for energy-efficient short-range
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communications are developed. Recent proposals define a
utility function which incorporates the cost of transmission,
for example, the price of spending power is considered in a
binary variable in [13] and as an inverse factor in [14].

A similar utility function as in this paper is proposed
in [15] for single-antenna systems and used to characterize
the Nash equilibrium for the noncooperative power control
game. Later in [16], the approach is extended to multiple-
antenna channels in a related noncooperative game-theoretic
setting. In [17], distributed pricing is introduced for power
control and beamforming design to improve sum rate.

Different from previous works, we apply linear pricing to
improve the energy-efficiency of an IFC with noncooperative
selfish links to enable distributed implementation. Our
objectives also include global stability and fairness. Com-
pared to the work in [3], we do not assume that the channel
states are chosen such that a unique global stable Nash
equilibrium (NE) exists. Instead, we constrain the prices such
that uniqueness and global stability follows. We derive the
largest set of prices in which both the uniqueness of the
NE and concurrent transmission are guaranteed, which is
then utilized as a constraint in the optimization problem.
The contribution is the derivation of the optimal pricing
for transmit power minimization under minimum utility
requirements and spectrum sharing constraints. If the utility
requirements are feasible (Section 4.4), we derive a closed-
form expression for the optimal prices (Proposition 6).
Another relevant case is to minimize transmit powers such
that rate requirements and global stability as well as fairness
are achieved. These optimal power allocation and prices
are presented in Section 5.3 and feasibility is checked in
Proposition 8.

This paper is organized as follows. In Section 2, the sys-
tem, channel, and the game models are presented. The game
described is then studied in Section 3. Based on uniqueness
analysis of the Nash equilibrium, we formulate and solve
the energy-efficient optimization problem with minimum
utility requirements and with minimum rate requirements
constraints in Sections 4 and 5, respectively. In Section 6,
simulations comparing the setting with and without pricing
are presented. Section 7 concludes this paper.

2. Preliminaries

2.1. System Model. Two wireless links communicate on the
same frequency band at the same time. Transmitter T;
intends to transmit its signal to its corresponding receiver R;,
i € {1,2} (Figure 1). On simultaneous transmission, each
receiver obtains a superposition of the signals transmitted
from both transmitters. Assuming single-user decoding,
the interfering signal is treated as additive noise. This
system model can be extended to multiple system pairs. For
convenience, we focus our analysis on two pairs.

The described competing links belong to different opera-
tors or wireless service providers. We assume that there exists
an entity which can control the operators indirectly by rules
or by changing their utility functions. We could think of
this entity as a national or international regulatory body.
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FIGURE 1: System model.

In contrast to common long-term regulation, the utility
function here changes on a smaller time-scale. The role of
the arbitrator which represents this authority is discussed in
Section 2.3.

A similar model is presented in the context of cognitive
radios in [18], where the primary user decides on the prices
which the secondary users have to pay for their transmission.
The choice of the prices is not only for interference control
but also for revenue maximization. The model in [19]
involves multiple entities, that is, the primary users, who
determine the prices imposed on secondary users to limit
their aggregate and per-carrier interference in a distributed
fashion.

2.2. Channel Model. We consider a quasistatic block-flat
fading IFC in standard form [20]. The direct channel
coefficients are unity. The cross-channel coefficients (CCC),
which are the squared amplitudes of the channel gains, from
T; to R; are denoted as a;;. The noise at the receivers is
independent additive white Gaussian with variance o2. The
inverse noise power is denoted by p, that is, p = 1/0°.
The transmitters and receivers are assumed to have perfect
channel state information (CSI). The maximum achievable
rate at receiver R, analogously R;, is written as

pPP1 ) (1)

Ri(p1,p2) = 1°g2<1+ 1+ pazips

where p;, i € {1,2}, is the transmit power of T;. We assume
no power constraint on the transmitters, thatis, p; € R*. Itis
shown later that the maximum power that would be utilized
is nevertheless bounded due to a pricing factor.

2.3. Game Model. A game in strategic form consists of a set
of players, a set of strategies that each player chooses from,
and the payoffs which each player receives on application of
a certain strategy profile. The players of our game are the
communication links and are denoted by the corresponding
subscript. The pure strategy of each player i, i € {1,2},
is the transmission power p;. The corresponding payoff is
expressed in the utility function

ui(p1, p2) = Ri(p1, p2) —wipi, i=12, (2)

where R;(pi, p2) is given in (1) and y; > 0 is the power
price for player i. The second term in (2) is a pricing term,
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which linearly reduces the utility. This means that a payment
is demanded from the player for the amount of power used.
Without pricing, each user would use as much power as
possible to transmit his signal [21]. The game is written as

G= ({1)2})(R+)R+)){ul)u2})- (3)

We assume all players are rational and individually choose
their strategies to maximize their utilities. The game is
assumed to be static, which means that each player decides
for one strategy once and for all. The outcome of this game
is a Nash equilibrium (NE). An NE is a strategy profile
(pE, pXE) in which no player can unilaterally increase his
payoft by deviating from his NE strategy, that is, for player 1,

w (PN PYE) = ui(pr, pXF), Vpr €R,  (4)

and similarly for player 2.

The best response, br;, of a player i is the strategy or set
of strategies that maximize his utility function for a given
strategy of the other player. Since the player’s utility function
is concave in his own strategy, the best response is unique
and given as the solution of the first derivative being zero.
The best response for player 1 is written as

N
1 1
bri(p2) = (.“1 - I; - 0621172) ,  p2 €RY, (5)

where (x)" denotes max(x, 0). The highest power a transmit-
ter T; may allocate is given as

1 1)
EnaX: - = ) (6)
= (i)

which is achieved when the counter transmitter allocates no
power, that is, p; = 0. Thus, the strategy region of player i
could be confined to [0, pi™**].

The authority that can control the elements of the game
is assumed to determine the power prices, y; and p,. It
receives either utility or rate demands from the users and
checks if they are feasible. If they are, it calculates the prices
and informs the system pairs about the prices imposed on
them. The links will have to pay costs proportional to their
transmit power, that is, y; p; and g, p, (Figure 1). In game-
theoretic notation, this entity is called the arbitrator [22].
The arbitrator is not a player in the game and chooses the
equilibrium that meets certain criteria. In our case, these
criteria would be fairness, energy-efficiency, and minimum
utility requirements or minimum rate requirements. We
assume that the arbitrator also has complete game informa-
tion.

In contrast to the case in which a central controller
decides on the power of the users, the arbitrator imposes
prices such that the users voluntarily set their powers.
Thereby, the arbitrator indirectly determines the power
allocation. In this paper, we study short-term price adap-
tation based on perfect CSI where prices depend on the
instantaneous channel state. Long-term price adaptation
based on partial CSI can also be implemented but is not
considered here but left for future work.

3. Noncooperative Game

In this section, we study the game described in Section 2.3.
This is done by investigating the existence of pure strategy
NEs and characterizing the conditions for uniqueness.

3.1. Existence of Nash Equilibrium. There exists a pure
strategy NE in a game if the following two conditions
are satisfied [23]. First, the strategy spaces of the players
should be nonempty compact convex subsets of an Euclidean
space. Second, the utility functions of the players should be
continuous in the strategies of all players and quasiconcave
in the strategy of the corresponding player.

The first condition is satisfied in our game given in (3)
because the strategy space of player i is [0, p/"™] C R.
The second condition is satisfied for the following reasons.
First, it is obvious that the utility functions are continuous
in the players’ strategies. Second, knowing that all concave
functions are quasi-concave functions [24], we can prove
the concavity of our utility function with respect to the
corresponding player’s strategy by showing that

*uy (p1, p2) _ P’ <0. (7)

opt (1+ poaips + pp1)’

This condition is satisfied for player 1 and similarly for player
2. Next, we analyze the number of NEs that exist and state the
related conditions.

3.2. Uniqueness of Nash Equilibrium. In this section, we
study the conditions that lead to a unique NE. Under these
conditions and considering only the case where the spectrum
is simultaneously utilized by the two systems, we prove that
the best response dynamics are globally convergent. Under
these conditions, the noncooperative systems are guaranteed
to operate in the NE if they iteratively apply their best
response strategies.

Proposition 1. There exists a unique NE if and only if the
following condition is satisfied:

ap, < P1le =) (8a)
L e )
or
o < 2l —m) | (8b)
L mlp ) |
Proof. The proof is given in Appendix A. O

Following the conditions in (8a) and (8b), we can easily
characterize the sufficient conditions for the existence of a
unique NE.

Corollary 2. There exists a unique NE if ajp01 < 1.

If the conditions in (8a) and (8b) are fulfilled simul-
taneously, both transmitters would be transmitting at the
same time. We denote this case as the concurrent transmission
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case. Next, we consider only this case since it is the fair
case where both systems operate simultaneously. The other
cases in which a unique NE exists correspond to one
transmitter allocating maximum transmit power and the
other not transmitting. The concurrent transmission case
satisfies ;o001 < 1, which is the sufficient condition for the
existence of a unique NE given in Corollary 2.

In the concurrent transmission case, the transmitters
operate in the unique NE which is a fixed point of the best
response function. In order to reach the NE, the best response
dynamics must globally converge.

Proposition 3. The best response dynamics globally converge
to the NE in the concurrent transmission case, that is, when
(8a) and (8b) hold simultaneously.

Proof. The proofis given in Appendix B. O

In comparison to the IFC without pricing, the sufficient
conditions for global convergence of the best response
dynamics are identical. The reason for that is, however, not
obvious. The linear pricing in our utility function leads to a
translation of the best response function but as well changes
the interference conditions where concurrent transmission
takes place. This is seen in the conditions in (8a) and (8b)
where the bounds depend on the prices. Therefore, proving
the sufficient conditions for global convergence of the best
response dynamics is necessary in our case.

3.3. Admissible Power Prices. Given aiz,dz;, and p, there
exists a set of pricing pairs that achieves the concurrent
transmission case described above. We define the admissible
power pricing set M, which directly follows from the
simultaneous fulfillment of conditions (8a) and (8b),

(H15p2) 10 <y < p,

() = — et
ME 1"2<!”2(!’l1)_p—ﬂl(1—1/0612)) ‘ ®)
5 X21pp1
N __ cp
p2 > iz (p1) p—pi(l—a)

All prices (41,p42) € M achieve NEs in the concurrent
transmission case. In the case that a0 > 1, the set M
is, however, empty, that is, there exists no power prices that
achieve the concurrent transmission case. This happens since
the upper bound on p, would be less than the lower bound
for any yy, that is, fio(41) < fia(p1). Another observation is
that the set .M is convex only in the case if a5 < 1 and ap; < 1
both hold. This corresponds to the weak interference case. In
the case if one CCC is larger than one, but still the condition
a001 < 1 holds, the set M is not convex.

The unique NE in the concurrent transmission case as a
function of the power prices is calculated as

1 1 « o
NE (4 :K(__Zl_,_ﬂ), (10a)
i (s p2) mp 0
pIZ\IE(‘ul i) _K<1_1_ an +cx12> (10b)
a2 p M P

where (u1,42) € M and k¥ = 1/1 — aj2a2;. Note that the [-]F
can be omitted because the concurrent transmission implies
that the power allocation of both systems are nonzero.

From the arbitrator’s point of view, all price tuples
(> p2) € M lead to stable operating points in terms of
user strategies. By choosing different prices, the arbitrator
can optimize a certain social welfare function. In the next
section, we propose to minimize the total transmit power
under utility requirements.

4. Energy-Efficient Assignment with
Utility Requirements

In this section, we investigate how the power prices are
chosen such that energy-efficiency as well as minimum utility
requirements are satisfied.

4.1. Optimization Problem. The arbitrator decides on the
power prices (y1,42) such that the outcome satisfies the
following conditions.

(C1) The best response dynamics globally converge to the
unique NE.

(C2) Spectrum sharing (concurrent transmission) is
ensured so that it is fair for all users.

(C3) Users transmit at the lowest powers possible satisfy-
ing minimum utility requirement uj,i € {1,2}, to
promote efficient energy usage.

If (41, 42) € M, conditions (C1) and (C2) are automat-
ically fulfilled. Condition (C3) can be achieved by optimiza-
tion. Hence, determining the optimal prices (ui’, ¢5') is done
by solving the following programming problem:

min  P(u1,p2) (11a)
(ﬂbl‘z)

st w(phE pNE) = uf, i (1,21, (11b)

(‘l/ll,[lz) e M. (llc)

The objective function is calculated as

P(ur,pi2) = pr* (s pia) + p5* (p, ha)

_ ((1—0612) (1 -az) 2—0612—0521>
=« + — .
9! H2 P

(12)

The function in (12) is convex in (41, ¢2) only in the weak
interference channel case, that is, a1, a1 < 1. Similarly, the
constraint set M is also only convex in the weak interference
channel case. Thus, the problem in (11a), (11b) and (11c)
is in general not a convex optimization problem. However,
a closed-form solution is possible, which will be shown in
Section 4.3. Before that, we will investigate some interesting
properties of the inverse power prices which will facilitate the
proof of the solution.
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FIGURE 2: ¥ denotes the region of admissable inverse power prices
(@1, ¢2) whereas U, denotes the region where utility requirements
(u}, uy) are fulfilled. The optimal inverse power prices (¢, ¢3 ) is at
the bottom tip of U,,. See text for more explanation.

4.2. Analysis in Inverse Price Space. In the following, we will
substitute the power prices with their inverse ¢; = 1/y; to
ease the analysis with regard to the power allocation and
utility. The power allocation at NE is then written as

1
P (91, 92) =K<¢1—P—oc21<pz+“;‘), (13a)

1
P (91, 02) = K(<P2 - ;) —anpg: + a;) (13b)

The sum power at NE is expressed as

(2 —ap —0621)).

P(¢1,92) =K<(1—¢X12)(P1+(1—¢X21)902— P

(14)

The upper and lower bounds corresponding to fi, and i
in (9) are

P1 1( 1 )
= -—|—-1), 1
P2(91) 0 pl\a (15a)
1
P2(1) = g — ;(0512 - 1). (15b)

The admissable inverse power prices are contained in the
region within the bounds, depicted as ¥ in Figure 2 which
corresponds to M in p-space, defined as the following:

F 2 {(p1,92) : Up <1< oo, 92 <P2(g1)s 92> Pa(o1)}.
(16)

Note that the F region has a simple shape since ¢, and
¢, are affine functions of ¢;. The regions where ¢; < 1/p

or ¢, < 1/p are not of interest because they only yield zero
powers. Equations (15a) and (15b) are linear functions of ¢,
and can be generalized as

¢2(91) =m<p1—%(m—1), (17)

that represents a linear curve that has a slope m (e.g., m of
the upper and lower bounds are 1/a;; and a3, resp.) which
crosses the point at (1/p, 1/p).

We will now look at an important property of the sum
power P in the ¢-space. We substitute (17) into (14) and find
its derivative to ¢; as

dgl)l

= K(l—(X12+m(1 —0621)). (18)

We see that by inserting any m between «;, and 1/az;,
(18) is always positive if appap; < 1. This implies the
following. There is always an increase in P as (¢;,¢,) are
increased along a line with slope m that takes any value
between «;, and 1/a;;.

Definition 4 (Dominating vector by inclination n). A vector
(p1, 42) is said to dominate a vector (v;,7,) by an inclination
of mif yy — v, is nonnegative and (4, — v2)/(p1 — 1) = n.

Corollary 5. For a region where all ¢ = (¢1,¢2) dominate
o* = (¢f, ¢3) by an inclination of m, where m = |12, 1/a1],
P(¢) > P(¢*). This also means that ¢* is the point with the
least sum power for this region.

Next, we will consider the properties of the utility in the
inverse power price space. By inserting (13) into the utility
functions (2) and setting u; = uf,

_ pTW)e1 — In(2)(1 — a21)
In(2)paz

where T'(u) = In(2)apap; — (1 —apa01) W(t(u)), W(u) is the
Lambert-W function and #(u) = —1/21In(2) exp(—uIn(2)).
The Lambert W function satisfies W(z)eW® = z [25].
W(t(u)) increases rapidly from —In(2) towards zero as u
increases from zero. Thus, T(u) decreases towards a positive
constant as u increases. Analogously, by setting u, = 1} the
following holds:

(P2(¢1) > (19)

In(2) (e12p1 + 1 — a12)

@2(g1) DT(55) . (20)
It is noteworthy that both equations here are again linear and
have positive slopes, as illustrated in Figure 2. The region
below the curve specified by (19) is where u; > u] holds.
Similarly, the region above the line defined by (20) is where
u; = u} holds. Thus, requiring both conditions yields the
region U, which is defined as the following:

Uy 2 {(g192) : (g1, 92) = ui, wd™ (91, 92) = 1t

where 1} (g1, 92) =i (pY* (91, 92), Y% (91, 9) ) .
(21)
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Setting uf = 0 and 5 = 0 in (19) and (20) would
return the upper and the lower bounds as in (15a) and
(15b), making U, = F. As u} (u) resp.) is increased,
the slope of the upper (lower) bound decreases (increases).
The point of intersection of these two curves is where both
utility requirements are fulfilled with equality, as indicated by
(@7, ¢>) in Figure 2. The region U, forms an open triangle
which is found within ¥ . This implies that U,, is a subset of
F (Uyc 7).

4.3. Solution. From the properties we have considered above,
it is quite intuitive to conclude that the solution to problem
(11a), (11b) and (11c) is the y pair that corresponds to
(o7, ¢3), where the utility requirements (11b) are fulfilled
with equality.

Proposition 6. The optimal power prices (uf,u3) =
(1/9F,1/93) which solve programming problem (11a), (11b)
and (11c) are given as

p(TW)T(wh) — (n2) anay)

Ui = S (223)
In2(ax1(1 — a12) In2 + T(u5)(1 — az1))

C p(TE)T) - (n2) @)
B 2w (- e In2 + T (1 - )’

These expressions are found by calculating ¢, and ¢, when (19)
equals (20) and then inverting them.

(22b)

Proof. The constraint (11b) is satisfied in U,,. Furthermore,
for (11c) to hold, U, must be a subset of #. This is only
fulfilled if the slopes of the upper and lower bounds of U,
are within a;, and 1/ay;. Otherwise, they would cross @, or
¢2, making U, contain regions outside F. Because of this
property, Corollary 5 holds. Therefore, for any u; > 0 and
uy > 0 that yields a nonempty set U, the intersection of
(19) and (20) yields the inverse power prices with the least
sum power in region U, which correspond to (uf,u3). O

4.4. Feasible Minimum Utility Requirements. We assume that
the arbitrator supports reasonable requirements such that 0 <
uj < oo. Given minimum utility requirements, u] and u5, the
arbitrator should be able to determine if this pair is feasible,
that is, whether there exists a power pricing pair (uf,u3)
that leads to a unique NE that fulfills these requirements
simultaneously. They are infeasible if all pricing pairs lead
to either nonunique NE or a unique NE whose utility tuple
does not fulfill the utility requirements.

Proposition 7. A minimum utility requirement (u},u5) cho-
sen under the conditions above is feasible if and only if the
optimal power prices (uf,uy) calculated in (22a) and (22b)
are in the admissible power prices set M given in (9), that is,
(U us) € M.

Proof. The proof is given in Appendix C. O

Therefore, according to Proposition 7, the arbitrator
checks if (uf,us) € M in order to determine the feasibility
of the minimum utility requirements.

In Section 6, we give numerical simulations on energy-
efficiency comparing the noncooperative setting with pricing
and that without pricing as well as the cooperative setting
with pricing. Before that, we analyze the case with minimum
rate requirements in the next section.

5. Energy-Efficient Assignment with
Rate Requirements

In contrast to the previous section, we now investigate how
the power prices are chosen such that energy-efficiency as
well as minimum rate requirements are satisfied.

5.1. Optimization Problem. The arbitrator decides on the
power prices (y1, 42) such that the outcome satisfies the same
conditions as in Section 4.1 with a modification in (C3),
which we state as following.

(C3) Users transmit at the lowest powers possible satisfy-
ing minimum rate requirement R}, i € {1,2}.

As before, if (41, 2) € M, conditions (C1) and (C2) are
automatically fulfilled. Condition (C3) can be achieved by
solving the following programming problem:

min  P(u1,p2) (23a)
(w1p2)

st Ri(pYE,pYE) = R, i€ (1,21, (23b)

(Mh,uz) €M, (23¢)

where P(u,uz) is defined as in (12). Before we come to
the solution, we present some analysis that will simplify its
derivation.

5.2. Analysis and Feasibility. Unlike in the previous section,
where both power allocation and prices have a direct influ-
ence on whether the utility requirements are fulfilled, only
the power allocation has a direct influence on the fulfillment
of the rate requirements. Therefore, we take a different
approach by first determining the power allocation that
tulfills the rate requirements and simultaneously minimizes
the total power, and then calculate the optimal power prices
(p1, 45 ) that lead the users to this NE.

The relationship between the rate and the transmission
power of every user in (1) can be expressed in matrix form as

the following:
—a21 P
=1z, 24
1/(2R2—1))(p2) S

/(28 — 1)
( —an
where z = (1/p,1/p) . This can be formulated as
(I-T(R)V)p = I'(R)z, (25)

where I is the identity matrix, R = (R1, Ry),

v 0 o I(R) 2R 1 0 (26)
“lap 0) o 0 2Rk_1)
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The power vector that yields the rates (R}, R}) is
p*(R) = (I-T(R)V) 'T(R)z, (27)

or explicitly expressed as

(2B —1) (a1 (2% —1) +1)
p(1 = appon (2R — 1)(2R — 1))’

pi(R) = (28a)

(2R — 1) (a2 (2R = 1) +1)
p(1 = appan (2R — 1)(2R — 1))

p;(R) = (28b)

However, p;/ may be negative. For given rate require-
ments and channel coefficients, we can verify if there
exists a feasible unique power vector (i.e., p = 0, p#0,
where the inequality is componentwise) that fulfills the rate
requirements using the following proposition.

Proposition 8. The rate vector R is feasible if and only if
a0 < 1/(2R1 — 1)(2R2 —1).

Proof. According to Theorem A.51 in [26], for any z > 0,
there exists a unique vector p* = (I — I[(R)V) 'T(R")z >
0 if and only if p(T(R)V) < 1. p(X) = max;lAil,
which is the spectral radius, where A; are the eigenvalues
of the matrix X € R™". p(I'(R")V) is calculated as
VR =1)(2R — 1)ajpay;. This implies that the require-

ments R" are feasible if and only if ajpap; < 1/(28% —1)(2R —
1). O
Proposition 9. The power allocation that minimizes

P(p*(R)) = pi(R) + p5(R) with rate requirements R > R is
given by p*(R") in (27), which fulfills the requirements with
equality.

Proof. The derivatives of P to R, and R, are always positive,
that is,

P (Ltan(2k—1)(1+ap2% -1))
oR; planay 2R —1)(2R —1) — 1)? >0, (29)

0P (1+an (20 —1)(1+an (2R ~ 1))
R~ planant -k -2 o G0

This implies that for any R > R", P(p*(R)) > P(p*(R")). O

Assuming that the powers p;* are feasible and known, it
is straight-forward to determine the prices that should lead
the players to this NE. At NE, where each player chooses the
strategy that maximizes its utility, the necessary condition is
[aui/api]FP* = 0. This implies that

ui = P
1+p(ps +aip?)

or explicitly,

wrpy P —apay (20 —1)(2R -1)) 2R —1

ur(R) = 2R (o (2R — 1) + 1) © 2RipF?
(32a)

% _p(l—oclzoc21(2Rl —1)(2R2—1)) _ 2R

W2 (R) - 2R2(0612(2R‘ _ 1) + 1) - 2Rzp;< !
(32b)

However, these prices do not necessarily lead to a unique
NE. We insert (31) into (9) to derive the condition such that
(Ui, uy) € M. Since p* > 0,0 < pf < p is always valid
whereas

fo (p}) < p3 < 2 (ui) (33)
P p
<
- L+p(pf/an +p3) ~ 1+p(anpi +py)

p (34)

1+ p(anpi + anapy)

is only valid if aj,a21 < 1. Therefore, to ensure that both
feasibility and the uniqueness of the NE are simultaneously
fulfilled, @pa0; < min(1,1/(28 — 1)(2R — 1)) has to be
satisfied.

Suppose apa; > 1, for example, ajpan; = 10. There
are some values of (Ry, R;), for example, (0.3,0.3), which are
feasible but there are no corresponding prices that lead the
players to a unique NE that fulfills the requirements with
equality. This scenario corresponds to strong interference
[27]. Therefore, one solution could be to consider another
decoding strategy which is more complex and leads to a
different achievable rate expression, which has a different
game model.

5.3. Solution. The prices that solve (23a), (23b) and (23c¢) are
given by (ui(R"),u5 (R")) as in (32a) and (32b), provided
that a0, < min(l, 1I/(28 — 1)(28 — 1)), which ensures
the feasibility of the solution and the constraint (23c),
guaranteeing the uniqueness of the NE. The corresponding
NE strategy is pNt = p*(R"), which fulfills (23b) with
equality. Using Proposition 9, we can conclude that this
power allocation also fulfills (23a).

6. Simulations and Discussions

Here, we present numerical simulations on energy-efficiency
comparing the noncooperative setting with pricing and that
without pricing as well as the cooperative setting with pricing
with minimum utility requirements.

The Pareto boundaries for various (a2, ®z1) pairs are
plotted in Figure 3 for the noncooperative case with pricing.
It shows the feasible utility regions, given (a2, ®21), (1}, u5),
p, and the corresponding optimal power prices (uf,p3).
This was done by first obtaining points in the utility region
(u1,uz) according to (2) by randomly varying the powers
p1 and p,, where p; € [0,p"™] and p, € [0, p3™™].
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uz

0.7

(12, 021) [p15 pi2]

-= (0.1,0.1) [0.69, 0.69]
-~ (0.9,0.1) [0.68,0.52]

— (0.9,0.9) [0.46, 0.46]
--- (2.0,0.1) [0.66,0.38]
+ NE

FiGure 3: The Pareto boundaries for various (a5, ay;) as shown in
round brackets in the legend, (uf,u5) = (0.2,0.2) and p = 10 dB.
The corresponding optimal prices as shown in square brackets. The
NE and (uj, u3) are in the identical position.

The scattered points are then grouped into equally spaced
bins in the u; axis. Using the points with the highest u, for
every bin, the Pareto boundary is plotted. Changing only p
does not have any effect on the Pareto boundaries or the NE.
Practically, the operating points along the Pareto boundary
are achievable when the systems cooperate or by repeated
game (Folk theorem) [28].

As expected, the NE in the utility region, which is
calculated by inserting (pYE(uf, u3), pYE(uf, u3)) into (2),
is found exactly at the utility requirements, independently
of the CCC values (a2, a21). The NE is very close to the
Pareto boundaries, indicating that it is indeed very close to
being a Pareto-efficient operating point for various CCCs.
By increasing a1 = a1 simultaneously, the utility region
is expanded in that the intersections at the u; and u, axes
increase. The region is also observed to change from being
convex to being nonconvex as the product aj,a; becomes
larger. The reason for this is that prices are reduced so that
systems can reach the utility requirements at higher CCCs.
Lower prices mean that the maximum utility of a system
is higher, which is achieved when the other system pair
does not transmit. In this case, cooperation among systems
is more advantageous than noncooperation in achieving a
higher sum utility. Note that for a nonconvex utility region,
time-sharing between single-user operating points could be
used to improve the utilities. This requires the knowledge
of the time-sharing schedule at the transmitters and can be
considered in future work.

With regard to the optimal prices, which is shown in
the legend of Figure 3, we observe that the system with the
smaller CCC has to pay less than the one with the larger.
However, if both systems have large CCCs, both pay less.
We regard this pricing scheme as fair. On the one hand, the
system that causes more interference to the other is charged
with a higher price; on the other hand, if both systems suffer
from high interference from each other, both are encouraged

to transmit more power by means of price reduction so that
the utility requirements are met.

An appropriate metric for comparing energy-efficiency is
defined as

. M(bits/loule), (35)

where R; is the transmission rate, as in (1), of system i and
pi the corresponding power allocation. A similar function is
used to measure energy-efficiency for ad hoc MIMO links in
[29]. Figure 4 shows a comparison between energy-efficiency
in the following settings.

(S1) The NE achieved with pricing.

(S2) The NE achieved without pricing. The power allo-
cation is upper bounded by p*** as in (6) for a fair
comparison.

(S3) Both systems cooperatively choose their strategies to
achieve the highest sum utility, that is, u; + u,. The
power allocation here is also upper bounded by p"**
for a fair comparison.

The operating point for the cooperative case was deter-
mined by numerically finding the power allocation that
yields the highest sum utility. The reason for maximizing the
sum utility instead of the energy-efficiency in (35) is that the
former leads to zero transmit powers.

The systems are to cooperate to maximize energy-
efficiency, the result is where both transmit powers are zero.

We see that in the noncooperative case, pricing improves
the energy-efficiency significantly. The amount of improve-
ment increases as the CCCs increase. The results with
cooperation prove to be superior when the CCCs are large,
whereas for low CCCs, noncooperation with pricing yields
better energy-efficiency. One might expect the outcome of
cooperation to be always superior to that of noncooperation.
This is not true here because in the case of cooperation,
the sum utility is maximized instead of E. In our scenario,
systems are only interested in maximizing their sum utility
but not energy-efficiency when cooperating.

7. Conclusions

In this work, we consider two communication system pairs
that operate in a distributed manner in the same spectral
band. In order to improve the system energy-efficiency,
we employ linear pricing to the utility of the systems.
Following that, we study the setting from a noncooperative
game-theoretic perspective, that is, we analyze the existence
and uniqueness of the Nash equilibrium. Based on the
assumption that there exists an arbitrator that chooses the
power prices, we considered the problem of minimizing the
sum transmit power with the constraint of satisfying mini-
mum utility requirements and minimum rate requirements,
respectively. We derived analytical solutions for the optimal
power prices that solve these problems. Simulation results
show that the noncooperative operating points with pricing
are always more energy-efficient than those without pricing.
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F1Gure 4: Comparison of energy-efficiency E with various CCCs. The noncooperative case with pricing (S1) is plotted with blue circles, the
noncooperative case without pricing (S2) with green diamonds, and the cooperative case with pricing (S3) with red squares.

A further extension of this work is to consider the case with
more than two users. This is much more involved because
there is no closed-form characterization of the prices that
induce a globally stable NE. However, sufficient conditions
for a unique NE can be used to define the set M for K users.
For this case, similar programming problems as in (11a),
(11b) and (11c¢) and (23a), (23b) and (23c) should be solved.

Appendix
A. Proof of Proposition 1

The analysis for the uniqueness of the NE in a game can be
done by studying the reaction curves of the players. Here, we
give a simple and geometric derivation.
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FiGure 5: Illustration of the arrangement of the reaction curves. The solid blue line is L (p;) given in (A.1) and the double solid red line is
Iy (p2) given in (A.2). The dashed lines are the corresponding unbounded reaction curves. According to Table 1, (a) corresponds to case 3.
(b) corresponds to case 1 and analogously to case 2. (c) corresponds to case 4 and analogously to case 5. (d) corresponds to case 6. Case 7

occurs when the curves overlap.

max

The reaction curve J; : [0, p;-m"‘] — [0, pi*™*] of a player
i is a function that relates the strategy of player j, j #i, to
the best response of player i in case the best response is a
singleton [30]. The best response of player 1 and analogously
player 2 is given in (5) from which the reaction curve for
player 1 can be written as

.
1 1
Li(p2) = (.”1 - ; - 0621]72) , p2Ee[0,pP*], (A1)

where [x]" represents the Euclidean projection of x on
the interval [0, c0). These bounds are required because the
strategy space of a player is constrained to [0,c0). The
reaction curve L(p;) is similarly calculated for the second
player as

4
1 1
lz( 1): <——0€12 1) > (A2)
p u p p

where p; € [0, p7™™]. An intersection point of the reaction
curves, [1(p2) and L(p1), consists of mutual best responses

which would be a NE strategy profile. Hence, the number of

intersections of the curves is the number of NEs in the game.
Next, we define an unbounded reaction curve by removing
the bound in (A.1) and (A.2):

1 1
L (Pz) =— - - —mp»

_ 0, max , .
mp p2 € [0, p7™¥] (A.3)

~ 11

L(p1) = ————anpi, p1 € [0, pP™]. (A.4)
W op

These curves can aid us in the analysis of the number of
intersection points of the bounded reaction curves and thus
the number of NEs. To do this we would study the position
of the intersection points of the unbounded reaction curves
with the axes. Each unbounded reaction curve intersects the
axes in two points. One point corresponds to p; = 0 and
pj = p7™, i# j. The other point corresponds to p; = 0 and

] bl
1 1 1
o_ - [ - _ =
b aw(m P)

p? defined as
where i # j. These points are illustrated in Figure 5. Utilizing
these points, we can characterize geometrically the number

(A.5)
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F1GURE 6: Illustration of the number of NEs in different interference
regions.

TasLE 1: Conditions for the number of NEs.

Case Condition Number of NEs
M  pl>pM™ A pY=pi™ Unique NE

(2) Py < p™ A PS> pr Unique NE

(3) pl > pr A Py > prex Unique NE

(4  pl=pr A pd<prm 2 NEs

(5) p<pr™ A pY = pr 2 NEs

6)  pl<p™ A p<pP™ 3 NEs

(7)  pt=pM™ A py=pi™ Infinitely many NEs

of NEs in studying the position of p{ with respect to p™®,
i = 1,2. In Table 1, all possible positions of the intersection
points are listed with the corresponding number of NEs.
The arrangement of the reaction curves that resemble the
cases in Table 1, are illustrated in Figure 5. Accordingly, the
condition that fulfills cases one till three in Table 1 is the one
given in (8a) and (8b). In Figure 6, an illustration shows the
number on NEs that exist in dependence on the CCCs. The
region below the dashed line designates where a unique NE
always exists. Moreover, the case of interest in this paper is
marked as “concurrent transmission” which lies below this

dashed line.

B. Proof of Proposition 3

In the case of concurrent transmission which is achieved for
the conditions that (8a) and (8b) hold simultaneously, each
bounded reaction curve in this case is a linear function and is
not piece-wise linear as in the other cases. Therefore, we can
write the best response of player 1 as

1 1
p1 = E_ I; — a1 P2, (B.1)
and for player 2 as
pr= = —anp (.2)
2=, T, T aeb .

This can be written as a system of linear equations in the form

1 1
L oo ||pi| |wm p
[0612 1”132} L _1p (B.3)
e —— 7 p
A P -
b

and then transformed to an algorithm [31, Section 2.6]

p(t+1)=(I-A)p()+b, (B.4)
where p(t) is the outcome at the tth iteration and I is the
identity matrix. The algorithm is globally convergent if the
spectral radius of (I — A) is less than one [31, Proposition
6.1]. The condition, ajpa21 < 1, satisfies this requirement.
Since the concurrent transmission case satisfies a0, < 1,
the best response dynamics are then globally convergent.

C. Proof of Proposition 7

We first define U as the NE utility region which is achievable
for all (u1,p2) € M

U = {(quIE(Ml,Hz),uIZ\‘E(HI,yz)> s (uLpm) € M}, (C.1)

where ulNF (p1, p2) denotes u; (pYE (u1, p2), P (41, i) ), which
is the utility tuple at the unique NE corresponding to (p, y2).
All points in U achieve concurrent transmission. That is,
0 < u?’E(yl,yz) < oo for i = {1,2} as explained above
in Section 3.3. As we see, any (u},u5) € U is feasible by
definition.

From Proposition 1, we see that the only region that
leads to a unique NE with concurrent transmission is when
conditions (8a) and (8b) are satisfied, provided that aj,a,; <
1. Since M is the equivalent formulation of the price region
where these conditions are satisfied, any (y1, 42) ¢ M would
either lead to nonunique NE or to a unique NE without
concurrent transmission. The tuple that leads to a unique NE
without concurrent transmission never satisfies the utility
requirements because u; = 0 for any i is never chosen
as a requirement. Therefore, any (1, ) & M will lead to
infeasible utilities.

Hence, any price tuple (pf (1], ub), p5 (u], uh)) € M leads
to feasible utilities at NE (u}, u5) since all tuples (u1,42) €
M map to U, and any (uf (u],ub), w3 (U], uh)) & M leads to
infeasible utilities.
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