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This paper addresses the problem of joint resource allocation in general wireless networks and its practical implementation aspects.
The objective is to allocate transmit powers and receive beamformers to the users in order to maximize a network-wide utility
that represents the attained QoS and is a function of the signal-to-interference ratios. This problem is much more intricate than
the corresponding QoS-based power control problem. In particular, it is not known which class of utility functions allows for
a convex formulation of this problem. In case of perfect synchronization, the joint power and receiver control problem can
be reformulated as a power control problem under optimal receivers. Standard gradient projection methods can be applied to
solve this problem. However, these algorithms are not applicable in decentralized wireless networks. Therefore, we decompose the
problem and propose a convergent alternate optimization that is amenable to distributed implementation. In addition, in real-
world networks noisy measurements and estimations occur. Thus, the proposed algorithm has to be investigated in the framework
of stochastic approximation. We discuss practical implementation aspects of the proposed stochastic algorithm and investigate its

convergence properties by simulations.

1. Introduction

Two central mechanisms for resource allocation and inter-
ference management in wireless networks are power control
and beamforming. In order to ensure a high utilization
of wireless resources, transmit powers and beamformers
should be optimized jointly to exploit interdependencies
between them. As is widely known the overall network can
be optimized with respect to different optimization goals. In
general, there exist two main approaches that are typically
used. The classical QoS-based approach aims at satisfying a
certain quality-of-service (QoS) requirement with minimum
power. To circumvent the feasibility problem a related
approach is to solve the so-called max-min SIR-balancing
problem. In contrast to this stands the utility-based resource
allocation problem where the network operator aims at
optimizing a weighted aggregate utility so as to maximize
the overall network performance. By appropriately choosing
the utility function one can trade overall system efficiency
against fairness. Widely known are the a-fair strictly concave
utility functions introduced by [1].

In decentralized wireless networks, however, in addition
to efficiently managing wireless resources the two challenging
tasks are to distributedly assign these resources and to apply
stochastic algorithms that deal with noisy measurements and
estimations. Thus in this paper we focus on the following
problem: maximizing an aggregate utility jointly over powers
and receive beamformers in real-world decentralized wireless
networks.

1.1. Related Work. Classical QoS-based power control has
been studied extensively (e.g., [2—4]). It aims at allocating
transmit powers to the users such that each user meets its
SIR target. Provided that the SIR requirements are feasible
there exist iterative distributed algorithms that attain the
target SIR [3, 5, 6]. Note, that a closely related approach
to the classical approach is to maximize the minimum
SIR [7-10]. In contrast to the classical QoS-based power
control, the objective of utility-based power control is to
optimize the overall network performance with respect to
some aggregate utility function [11-18]. Recently distributed
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utility-based power control algorithms have been developed
by [14, 16-18]. In [17] the problem of joint power control
and end-to-end congestion control is addressed where the
power control part is a special case of the power control
problem in [14]. The approach of [16] is a game-theoretic
one. References [16, 17] apply a flooding protocol to pass
locally available quantities to other nodes. The authors of
[18] interpret the utility-based power control problem as a
joint optimization of powers and SIR assignment over the
feasibility region. They proposed a distributed power control
and SIR assignment algorithm for the uplink in a multicell
wireless network. In contrast [14] proposed a distributed
utility-based power control algorithm for general wireless
networks applying the notion of the adjoint network and
thus avoiding to use a relatively expensive flooding protocol.
In addition, the authors touched the problem of stochastic
approximation and show how to deal with it in practice.

Independently from and simultaneously to our work the
authors of [19] have proposed a distributed utility-based
joint power control and receive beamforming algorithm for
cellular uplinks applying the scheme of [18]. Apart from that,
so far most work on joint power control and beamforming
has focused on the QoS-based resource allocation, especially
on the so-called max-min SIR-balancing and its related
problem. For example in [20-22] the duality between uplink
and downlink channels is exploited. Another strategy was
proposed by [23, 24] showing that the problem can be
embedded in semidefinite and conic optimization programs.
The work of [25] extended the publication [22] to solve
the max-min SIR-balancing problem under general power
constraints.

However, apart from [15] the above set of publications
considered only the deterministic case. First works incorpo-
rating imprecise knowledge of received waveforms can be
found in [26-28]. Recently, stochastic algorithms for joint
QoS-based power control and receive beamforming and their
convergence analysis have been proposed by [29, 30].

1.2. Summary of Main Results and Paper Organization. In the
following we consider the problem of joint power control
and receive beamforming in order to maximize a certain
aggregate utility function that represents the QoS attained
and is a function of the SIR. However, in contrast to the pure
power control problem [14], it is not known which class of
utility functions allows a convex formulation of this joint
optimization problem and thus enables an efficient global
solution in distributed wireless networks. In particular,
in case of the logarithmic function, the aggregate utility
function appears to have relatively many local maxima.
Now, in this paper, under the assumption of perfect
synchronization we first reformulate the joint power and
receiver control problem as a pure power control problem
under optimal receivers. This follows from the fact that an
optimal receiver can be obtained in closed-form solution for
any power vector. However, an efficient implementation of
the equivalent gradient projection algorithm is notoriously
difficult to achieve in decentralized wireless networks. Thus,
we decompose the problem into two coupled subproblems

and propose an alternating algorithm that converges to
a stationary point. If we confine our attention to utility
functions whose relative concavity is larger than that of
the logarithmic function, numerical experiments suggest
that then the proposed algorithm may converge to a global
maximum for a large set of initial SIRs.

In contrast to [15] which touches the problem briefly
this paper provides a more detailed analysis. In addition it
is devoted to practical implementation aspects that are com-
pletely missing so far. As already mentioned, in real-world
networks noisy measurements and estimations occur. We
embed the proposed alternating algorithm into the frame-
work of stochastic approximation. In particular, we discuss
in detail the imprecise knowledge of received waveforms
and the influence of step size control on the convergence
properties. Finally we provide extensive simulations on the
convergence behavior as well as performance comparisons
with pure power control schemes.

Potential applications of the resource allocation scheme
presented in this paper are envisaged for example in wireless
mesh networks to control transmit powers and beamformers
of base stations (mesh routers). These base stations create a
wireless backbone via multihop ad hoc networking and have
practically unlimited energy supply.

2. System Model and Problem Statement

2.1. System Model. We consider a general multiple-antenna
wireless network with an established network topology, in
which all links share a common wireless spectrum. All users
are equipped with M > 2 antennas. Let K > 2 users compete
for access to the wireless links and let K = {1,...,K} denote
the index set of all users. Assume that k € K is arbitrary but
fixed and define u; := ugk) = (u(llfl),..., uglzl) € CM to be the
effective transmit vector of transmitter [ € K associated with
receiver k. The effective transmit vector u; is the product of
the channel matrix between transmitter / € K and receiver k
and its transmit beamformer. It determines the “direction” of
the transmit signal. The effective transmit vector is assumed
to be arbitrary but fixed, which implies that the channels
and transmit beamformers are fixed. In contrast, the receive
beamformers acting as linear receivers should be jointly
optimized with transmit powers of the users. We use vy € CM
and px = 0 to denote the receive beamformer and transmit
power of user k, respectively. The receive beamformers of
all users are collected in the receive beamforming matrix
V = (vi,...,vk) € CM*K and their transmit powers in the
power vector p = (p1,..., px) € RK (In what follows, R,
and R,; denote the set of nonnegative reals and positive
reals, resp.). The transmit powers of the users are subject to
individual power constraints Py,...,Px > 0 so thatp € P
must hold, where P = (p € RK : Vipr < Pr) c RK
Furthermore, since the signal-to-interference ratio (SIR) is
independent of the norm of the receive beamformers, we can
assume that ||vk]l, = 1 for each 1 < k < K, and hence
V = {V = (vi,...,vk) € C"K . ¥ |lvcll, = 1} denotes
the set of all beamforming matrices. Note that both P and
V are compact sets, so is also their Cartesian product P X V.
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Finally, we define P, = P n RX,. In words, P, is the set of
positive power vectors satisfying the power constraints.

The main figure of merit is the SIR at the output of each
receiver. Using the above notation and considering the fact
that all users are perfectly synchronized, the SIR of user k is
given by

PkGrk
SIRk (p, Vi) := >
(P ) Sic1 14k PiGii + 02

(1)

where 62 > 0 is the variance of independent zero-mean
additive Gaussian noise, and Gx; = [{vk,w)|?> is the
attenuation of the power from transmitter of user / to receiver
of user k where (vi,u;) denotes the inner product of the
vectors Vi, u;. Note that the SIR of user k depends only on
the kth receive beamformer vg.

2.2. Problem Statement. One way to control both transmit
powers of the users and their receive beamformers is to
apply a utility-based framework. Let U(SIR(p,vk)) be the
utility of user k that represents the QoS level of user k under
power vector p and receive beamformer vi. Other typical
interpretations include the degree of user satisfaction with
the received SIR or the revenue of the network operator.
Throughout the paper we assume that U satisfies the
following conditions.

(A.1) U : Ry — Qs a twice continuously differentiable,
strictly increasing and strictly concave function of the
SIR where Q is an open interval on the real line such
that U7 : Q — Ryy.

(A.2) limy, . gU(x) := 400 = lim, . oU'(x) = —oo.
(A.3) U,(x) := U(e*) is convex on R.

Since R, is an open set, all these assumptions imply that the
first derivative U’(x) is positive on R., that is, there are no
isolated points x > 0 such that U’ (x) = 0.

The joint utility-based power control and receive beam-
forming problem can be written as follows. Given any weight
vector w = (wy,...,wg) > 0, we search for a power vector

p* € P and a beamforming matrix V* = (v{,...,vg) such
that
(p*,V*) = arg max G(p, V), 2)
(p,V)ePxv
where
G(p,V) = >, wikU(SIRk(p, V). 3)
keK

Since the noise variance is strict positive, standard arguments
can be used to show that with our choice of the utility func-
tions, the maximum exists. The convexity discussion of this
problem, the development of a distributed algorithm, and
its implementation in real-world environments with noisy
measurements together with the performance evaluation by
simulations will be the main tasks of this paper.

3. A Class of Utility Functions

Suppose that the utility function U : Ryy — Q is further
confined to satisfy

xU" (x) -
Ux) ~ 7

rix,U) = — (4)

where U'(x) > 0 and U"(x) < 0, x > 0 denote the first
and second derivatives of U, respectively. Then, we know that
[15], for any fixed V € V, G.(s, V) := G(e%, V) is concave in
the logarithmic power vector s := log p € S with p € P, and

S:={s=logp:peP;} cRK (5)

Here and hereafter, log p, p € RX,, and ¢%, s € RK, are
defined component-wise. Since the logarithm is a bijection
from R;; onto R and p* > 0, there is a one-to-one
relationship s* = log p* between optimal power vectors p*
and optimal logarithmic power vectors s*. The motivation
beyond this substitution is the following fact [15].

Lemma 1. r(x, U) = 1 if and only if U(e*) is concave on R.

Since U(x), x > 0, is twice continuously differentiable,
U(e*), x € R, is concave if and only if e*(U" (e¥)e* +
U'(e*)) = 0, x € R. This in turn holds if and only if
U”(x)x+U’(x) < 0, which is equivalent to (11) since U’ (x) >
0 for all x > 0.

Therefore, for G.(s, V) to be concave in s, it is sufficient
that SIRi(e®) is a log-concave function of s € RK. In
economics, the quantity r(x,U) = 0 is known as the
coefficient of relative risk aversion [31] and is used to
measure the relative concavity of U(x). The larger the value
of r(x,U) = 0 is, the larger is the relative concavity of U(x)
at x > 0, and therefore a better fairness performance (at
the cost of the throughput performance) can be expected.
A prominent example of a function that satisfies (4) is the
logarithmic function U(x) = log(x), x > 0, in which case
r(x,U) =1, x >0.

Now the question is what happens if we use this class
of utility functions in the joint power control and receive
beamforming problem (2). First note that this problem can
be written as a power control problem because

e *
L max Glp,V) = maxG(p, V* (p))

(6)

= max G(p, V*(p)),
peP:

where V*(p) = (vi(p),...,vi(p)) is used to denote an
optimal receive beamforming matrix for a given p > 0 and
the last step follows from (A.2). Obviously, since the SIR
of user k depends only on the kth receive beamformer, one
obtains

max G(p,V) = > max wiU (SIRk(p,vk))
vev Slvila=1

= > weU(SIR} (p)),
keK

(7)
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where

SIR{ (p) := max SIRk(p, vk) (8)

Vil =1

is the SIR under an optimal receive beamforming (see
Section 4) and the last step follows since U(x),x > 0, is a
strictly increasing function and w is a positive vector. Now,
using the substitution s = log p, p € P, (in accordance
with the power control problem of [15]) and

F(s):= > wiU(SIR{ (), )
keK

it follows that a solution to (2) is any pair (p*,V*) € P, XV
given by p* = ¢*" and V* = V*(p*) where

*

s* = arg max F(s). (10)

seS

In words, as in [15], the problem reduces to a power control
problem except that now each SIR is assumed to attain its
maximum overall receive beamformers.

Unfortunately, the condition (4) is not sufficient for F(s)
defined by (9) to be a concave function of s € S. A simple
counter example is constructed in the appendix for U(x) =
log(x), x > 0. Numerical experiments show that if U(x) =
log(x), x > 0, then the gradient projection algorithm is not
globally convergent, that is, it in general converges to a local
maximum which is not global. Given V and P, the aggregate
utility function seems to have relatively many local maxima.

A simple idea is to further restrict the class of utility
functions by requiring larger values of r(x, U) for all x > 0.
For instance, we could demand that

r(x, U) > 1. (11)

This excludes the logarithmic function and implies that
U(e*) is strictly concave. A class of utility functions that
satisfies (11) are the following functions

xl—(x

U9 (x) := = a>2 aecN. (12)

Indeed, it may be easily verified that r(x, U@®) = @, and
hence (11) holds for all « > 2, & € N. Another example is

Ux) = log[ x>0, (13)

=l
(I+x) 1
in which case r(x,U) = (1 +2x)/(1 +x) € (1,2). So, at
low values of x > 0, the function in (13) behaves like the
logarithmic function. In contrast, as x increases, it is similar
to the negative inverse function. Numerical experiments with
the utility function (13) suggest that in this case, the gradient
projection algorithm (see Section 4.1) converges to a global
maximum for a relatively large set of initial SIR values. When
compared with the logarithmic utility function, convergence
to a local point was observed in significantly fewer cases.
However, we can show that F(s) with (13) is not concave in
general and the standard gradient projection algorithms are
not globally convergent for all initial SIR levels.

An interesting problem is whether a global convergence
(if not for all starting points, then at least for most of them)
of the gradient projection algorithm can be achieved by
requiring that (x, U) = ¢, x > 0, for some sufficiently large
constant ¢ > 2. Increasing the constant ¢ leads to utility
functions with larger relative concavities. In particular, as
shown below, if there is a utility function for which each
addend in (9) is concave on RX, then F(s) is concave for all
utility functions with a larger coefficient r(x, U).

Observation 1. Let ¢ : Riy — Q; be any utility function
for which (4) holds, and suppose that each addend in F(s)
with U(x) = g(x), x > 0, is concave on RX. Then, F(s) with
U(x) = f(x), x > 0, is concave for any utility function f :
Riy — Q,suchthatr(x,g) <r(x, f) forall x > 0.

Since g and f are bijective utility functions, there is
a twice continuously differentiable and strictly increasing
function h : Q; — Q, such that f(x) = h(g(x)), x > 0.
So, the observation follows if h(x) is concave. Considering
the fact that f'(x) = h'(g(x))g’'(x) with ¢g'(x) > 0 for
all x > 0, the second derivative of f(x) yields f"(x) =
h”(g(x))(g’(x))2 + f(x)g" (x)/g'(x), x > 0. By r(x,g) <
r(x, f), we have f"(x)g'(x) < f'(x)g"(x), x > 0, so that
[ (x) = b (g(x))(g’ (x))* + f"(x), x > 0. This implies that
h’(g(x)) <0, x >0, and hence one obtains "' (x) < 0, x €
Q, due to the bijectivity of g.

Applying this observation to the class in (12) reveals
that if there was some & > 2 such that U®(SIR{ (e%)) is
concave on RX for each k € K, then the problem (10) would
be a convex problem for all U)(x) with « < «'. Then,
as discussed in the following section, we would be able to
efficiently and arbitrarily close approximate the max-min fair
rate allocation for any power constraints.

3.1. An Arbitrarily Close Approximation of the Max-Min
Fair Allocation. Reference [1] introduced the class of utility
functions in (12) to obtain different tradeoffs between
throughput and fairness performance in wireline commu-
nications networks. In particular, it was shown that if each
source is assigned the utility function U@ (x), x > 0, then
the corresponding rate allocation tends to the max-min rate
allocation as « — oo, For a large family of modulations
determining the relationship between data rates attainable
on wireless links and the SIR at the receiver output, this
result carries over to our setting. To be precise, assume that
® : Ry — R; is a one-to-one continuously differentiable
function that maps the SIR values onto the data rates. A
common assumption is that ®(x) = log(1 + x), x = 0. By
this model, the set of all simultaneously achievable data rates
is

C={x=0:Vixx < O(SIR{ (p)), p € P} (14)

which is a (connected) compact set since ®(SIRk(p, vk)) is
continuous on the compact set P x $M~1, where SM~! is the
unit sphere in CM. This yields the following observation (see
[15] and [1, Lemma 3]).
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Observation 2. Let w > 0 be arbitrary, and let U =
U@ be given by (12). Then, (®(SIRf (p*),..., D(SIRE (p*))
converges to a max-min fair rate allocation as « — .

By the observation, p* = e with U(x) = U®(x)
converges to the max-min power allocation as « tends
to infinity [22]. Moreover, for every a, VF(s) exists and
is continuous on RX so that efficient gradient projection
algorithms could be used to approximate the max-min power
allocation for any power constraints if the algorithms were
global convergent for some sufficiently large « (as discussed

before).

4. Utility-Based Power Control and
Beamforming Algorithm

In this section, we derive a gradient projection algorithm
for the problem (19) and prove its convergence. To this
end, let us first identify optimal receive beamformers. By
(8), an optimal receive beamformer of user k is exactly that
beamformer for which the kth SIR attains its maximum.
Hence,

pkkaukukHvk
vi(p) = arg max ~—————, (15)
¢ e Vizi(p)vi
where
Z(p) = > puuf + 0’1 (16)

I#k

is positive definite since o? is positive. As a consequence, the
inverse matrix of Zx(p) exists regardless of the choice of the
effective transmit vectors u; and p € P. Note that the SIR
can be written in this compact form due to the assumption
of perfect synchronization. An optimal receive beamformer
v (p) can be easily found when the SIR is rewritten as a
Rayleigh quotient to obtain [32]

Vi (p) = akZ; ' (p)ug, (17)

where ¢; > 0 is a constant chosen such that ||v;(p)ll, = 1.
Consequently, with an optimal beamformer, the SIR of user
k is equal to

SIR} (p) = prufl Z; ' (p)ux. (18)

From this, it follows that

*

s* = arg maxF(s)

seS
(19)
= arg max > wkU(eSkufZ,zl(es)uk),
$€S  keK

and (s* = log p*),
V* = (aZ{' (p*)uy,..., ek Zg' (p*)uk) €V, (20)

with appropriately chosen constants ¢i,...,cx > 0.

If we assume the utility function (13) or the functions
(12), then F(s) in (19) can be written using the inverse of

Z(p) = Zk(p) + pruruy (21)

which is independent of the index k. Indeed, by the Sherman-
Morrison formula [33], it follows that

Z7' (p)weu'Z7 (p) px

lel (P) = Z71 (P) + 1— PkUkHZ_l (P)uk > (22)
and hence
SIRIT (p) _ Hry—1

So, if U(x) = log(x/(1 + x)), x > 0, the aggregate utility
function in (9) yields

F(s) = > wk log(eskukHZ’l(es)uk)
keK

= Z Wi log(eskufadj(Z(es))uk) (24)
keK

— [Iwll; log det(Z(e®)).

Choosing U(x) = U@ (x) given by (12) gives

1 1—e*ufl Z71(e%)u ot
F(s) = —— s 25
0153 m( L ) 25)

where a > 2 and the constant 1/(1 — «) can be neglected as it
has no impact on the maximizer.

4.1. Gradient Projection Algorithm. All partial derivatives of
SIR; (e%) with SIR} (p) given by (18) exist and are continuous
functions on RX because the inverse matrix Z; ' (¢*) exists for
all s € RK, regardless of the choice of the effective transmit
vectors, and the entries in Z;'(e*) vary continuously with
the entries in Z(e®). Hence, we can consider a gradient
projection algorithm with a constant step size § > 0
(sufficiently small)

s(n+1) = I[s(n) + SVF(s(n))], s(0) € RX,  (26)
where TI;(x) is the projection of x € RK on the closed
convex set S [34, 35] and the kth partial derivative VF(s) =
(0F/0sy)(s) yields

ViF(s) = weU' (SIR (%)) SIR} (e°)
(27)

>

2
— % Z wiet U’ (SIR/ (%)) ‘uﬁZfl(es)uk
I#k

where the following identity was used. For an invertible and
differentiable matrix function A(x), there holds

dA'(x)
dx

dA(x)
dx

—A (%) A (x). (28)
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Hence, due to the individual power constraints on each user
Vi sk < log Pk, the algorithm (26) takes the form

scn+1)= min<|long,sk(n) +6 {wk U’ (SIR} (€%))SIR} (&%)

—e%> wie U’ (SIR/ (e*)) ’uf{Zfl (e*)uk ‘ 2} })
I+k
(29)

where SIR} (¢) is defined by (18).

Lemma 2. For a sufficiently small step size § > 0, the sequence
{p(n)} generated by the algorithm (29) with p(n) = e
converges to a local stationary point.

Proof. By standard results [34, 35], the gradient projection
algorithm converges to a stationary point for sufficiently
small values of § > 0 if F(s) is bounded above, continuously
differentiable on S, and the gradient VF(s) is Lipschitz
continuous on any bounded subset of S. The first condition
is clearly satisfied due to the power constraints. The second
condition holds as well since, by assumption, the utility
function U(x) is twice continuously differentiable. Hence,
the Hessian of F(s) is bounded in the matrix 2-norm on any
bounded subset of S. This implies that VF(s) is Lipschitz
continuous on any bounded subset of S [36, page 70]. O

Note that the maximum feasible step size in the algorithm
may depend on the choice of the starting point s(0).

5. Distributed Implementation

The computation of the gradient in (29) might be too
expensive to be implemented in a distributed environment.
In this section, we slightly modify the algorithm so that
it can be implemented in a distributed manner. The basic
idea is to increase the value of the function G(p,V) in
the following alternating fashion. For some given receive
beamforming matrix V(n) and power vector p(n), a new
power vector p(n + 1) is chosen such that G(p(n),V(n)) <
G(p(n+1),V(n)). Then, the beamforming matrix is updated
by V(n+1) such that G(p(n+1),V(n)) < G(p(n+1),V(n+1)).
This alternating process is repeated until convergence.

Let us first consider the power vector update. To this end,
let V be fixed and define Fy(s) := G(e*, V). Then, the power
vector can be updated according to the following algorithm

se(t+ 1) = min|log Py, s(t) + 8,(1) VB (s(1) |, t € N
(30)

forA some s(0) € RK, where, with some abuse of notation,
VFyr(s(t)) is used to denote a noisy estimation of the
gradient vector VFy(y)(s(t)) and {5,(t)} with 8,(¢) > 0is
an appropriately chosen sequence of diminishing step sizes
[37]. If {sk(t)},Lzl is a sequence generated by (30) for some
L > 1, then we put s(n + 1) = (s;(L),...,sx(L)). Note
that the estimate Vkﬁv(t)(s(t)), k € K can be computed

in a distributed manner using the adjoint network of
[15]. This scheme enables each transmitter to estimate its
current update direction from the received signal power. This
mitigates the problem of global coordination of the trans-
mitters when carrying out gradient-projection algorithms
in distributed wireless networks. More precisely, instead
of each node sending its message separately as in case of
classical flooding protocols, nodes transmit simultaneously
(only coarse synchronization is required) over the adjoint
network such that each node can estimate its gradient
component from the received power. The price for this are
possible estimation errors that usually can be dealt with
a diminishing step size [37] as is shortly discussed in the
following Section 5.1.

Now assume that s = log p is fixed. Distributed algo-
rithms for computing optimal receive beamformers defined
by (17) are widely established. These algorithms are based
either on blind or pilot-based estimation methods [38]. In
the latter case, if X is a pilot symbol of user k with zero
mean and E[|X;|?] = e%, and 1y € CM represents the
observations at receiver k, then v; given by (17) minimizes
the mean square error 6x(vy) = E[|xXx — (vk,1%)|?] over
CM, where x > 0 is a normalizing constant chosen such that,
in the minimum, ||vk|l, = 1. For practical implementation,
we can assume k¥ = 1, and then normalize the beamformers
so that their [>-norms are equal to one. Besides note that
the expectation is taken with respect to r® := (1, X),
which depends on the logarithmic power vector s € RX.
Now if the convex function 6k (vy) was explicitly known, then
the algorithm (with the complex gradient operator V which
gives the direction of steepest ascent of 6 : CM — R.)

vi(t+1) = vi(t) = Sk VO (v (1)), keK, teNy, (31)

would converge to v defined by (17) for a sufficiently
small step size 6x > 0. The problem is that the function
Ok is usually not known since the distribution of ry is not
known [38]. Therefore, V6 (vi(n)) cannot be computed and
the algorithm must be modified using the framework of
stochastic approximation [37]. The idea is to consider the
functions O (Vi) = [kXg — (vk, 1) |? for all ¥'® as noisy
estimations of 0 (vy). Then, under some conditions on the
estimation error and for any v¢(0) € C¥, the algorithm

vi(t+1) = v (t) — 5k(t)ver(k)(t)(vk(t)), t e Ny (32)

converges to v; (in some probabilistic sense), provided that
the step size 8 (t) > 0 with lim; . 8k (£) = 0and >/, 8 (£) =
+00 is chosen suitably [26].

Now combining these two ingredients leads to the
following joint power control and receive beamforming
algorithm. At the beginning of every frame, s(0) and V(0)
are set to be equal to the current transmit powers and receive
beamformers. Then, all users concurrently execute N > 1
updates of their transmit powers and receive beamformers.
The nth update consists of the following intermediate steps.

(i) For fixed V(n) and some L > 1, each user k €
K generates a sequence {s,((l) }-, by carrying out (30)

and defines sg(n+ 1) = sgf).
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FiGureg 1: Convergence behavior of the distributed algorithm in case of noisy measurements for different values of y, ¢; = 30 and ¢, = 0.5.

(ii) For some L > 1 and with E[|Xi|?] = e*"*D each
user k € K executes L iterations of the algorithm (32)

to obtain the sequence {v,((l) 1 Tt defines vi(n+1) =

Vo,
The convergence of the algorithm (in some probabilistic
sense) strongly depends on the choice of the step sizes in (30)
and (32) as well as on the properties of the estimation errors
in (30) and (32). However, we point out that the algorithm
is motivated by the following observation. If the estimates in
(30) are known perfectly meaning that we can use 8,(t) = J,
for sufficiently small §, > 0 and (31) is used instead of (32),
then the sequence {(s(1n),V(n))} generated by the resulting
algorithm converges to a stationary point. This is because,
under this assumption, (30) and (31) are both monotonic,
and hence we have (for all n € Ny)

G(p(n),V(n)) < G(p(n+1),V(n)) (33)
<G(pn+1),V(n+1)).

This implies that the sequence {G(p(n), V(n))} is monotoni-
cally increasing, provided that the step sizes are sufficiently
small. Moreover, it is bounded since G(p(n),V(n)) <
G(p*,V*) for all n € Ny. Therefore, the algorithm converges
to a stationary point. In addition, verifying the second order

sufficiency conditions would show that this stationary point
is also a local maximizer for the problem (2).

Due to scarce resources in wireless networks, it is
reasonable to choose the number of updates N = 1 in every
frame. In addition, instead of transmitting pilot signals in
the intermediate step (ii), the optimal receive beamformers
can be estimated during the data transmission using some
blind estimation method (see [38] and references therein).
So, at the beginning of every frame, the step (i) is executed
only once. Then, the resulting transmit powers are used for
data transmission. During this time, the receive beamformers
are updated online after each transmitted symbol. However,
numerical experiments suggest that the scheme should not
exclusively rely on blind methods to estimate the optimal
receivers with a sufficient accuracy.

5.1. Stochastic Approximation View. As already mentioned,
in real-world networks estimation errors and other distorting
factors as quantization noise occur. Now the interesting
question is, what is the impact of these stochastic noisy mea-
surements on the convergence properties. Does the proposed
algorithm still converge and under what conditions? In the
case of such uncertainties, the proposed algorithm has to be
analyzed in the context of stochastic approximation theory.
In the following we give several interesting insights. However,
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FiGgure 2: Convergence behavior of the distributed algorithm in case of noisy measurements for different values of the step sizes c;, ¢, and

y=0.5.

the topic is too broad to be discussed in all details. We also
refer to [37] as a comprehensive reference.

We assume that the estimated gradient component
Vﬁv(t) (s(t)) is a random variable of the form

ViFvi(s(t)) = ViFy (s(t) + Mi(t), (34)

where Mi(t), k € K is the estimation noise process that
fulfills the following conditions:

(A.4) The estimation noise process depends on the receiver
noise process which is assumed to be a martingale
difference that is uncorrelated with transmit symbols
and has a finite variance.

(A.5) The estimation noise is zero mean and exogeneous,
in the sense that M(¢), k € K is independent of the
iterate value.

Assuming these two conditions one can deal with the
estimation noise applying a diminishing step size sequence
that satisfies §,(t) > 0 with lim;..8,(¢) = 0 and
20 0,(t) = +oo. A typical choice for a step size sequence
is for instance d,(t) = ct” for some y € (0,1]. The choice of
the step size is central to the effectiveness of the algorithm as
is shown by simulations in the next section.

In the previous algorithm the powers and beamformers
are updated in parallel, meaning that the power control
algorithm does not wait for the convergence of the receive
beamformers and vice versa. Thus the convergence of this
practical stochastic algorithm is only verified by simulations
presented in the following section. In addition, note that
condition (A.5) is not necessarily fulfilled by the distributed
power control algorithm. Thus the estimates Vkﬁv(t)(s(t))
may be biased by some by (f) meaning that Vkﬁv(t)(s(t)) =
ViFy (s(t)) + Mi(t) + bi(t). Simulation results indicate that
the algorithm still converges to a contraction region around
the optimal point provided that the bias is bounded by a
scaled version of the true gradients.

6. Numerical Results

6.1. Influence of Step Size Control. In the following, we
show exemplarily the convergence behavior of the proposed
scheme for U(x) = —1/x, x > 0 and a random channel
realization. We consider a wireless system with M = 2
transmit and receive antennas, and K = 4 users operating
at a SNR level of 30dB. The weight vector is w = 1.
The noisy measurements of the gradient are assumed to be

VkFAv(t)(s(t)) = ViFvp(s(t)) + z, k € K, where z is an



EURASIP Journal on Wireless Communications and Networking 9

Mean square error of SIR
S

0 . , A
0 500 1000 1500 2000

Number of iterations

"""" Biased
—— Unbiased

—0.04
[ —-0.05 :.«"“
- —0.06
-0.07
0 500 1000 1500 2000
Number of iterations
— Optimum
"""" Biased
—— Unbiased
35 T T T T
~
%)

10 1 1 1 1

0 200 400 600 800

1000 1200 1400 1600 1800 2000

Number of iterations

FiGure 3: Convergence behavior of the distributed algorithm in case of noisy measurements y = 0.4, ¢; = 40, ¢, = 1 for the biased and

unbiased case.

independent zero-mean Gaussian random variable (and thus
tulfils the conditions of a martingale difference noise) whose
variance 02(t) depends on ¢ and is 10 percent of the absolute
gradient value. We have L = 1 and L = 16 steps in (i)
and (ii), respectively. Hence, during each iteration step n, the
algorithm performs 1 power control step and estimates the
beamformers using 16 pilot symbols. The diminishing step
sizes for the intermediate steps are 8,(t) = ¢1/(t + 1)’ and
Ok(t) = c/(t + 1)’ for some positive constants cj,c; and
some exponent y € (0,1]. Figure 1 depicts the aggregate
utility, the mean square error of the SIR, and the SIR for
two users over the number of iterations n for different values
of y to show the influence of the diminishing step size. As
can be easily seen, if the step size vanishes fast the algorithm
converges much slower than with a slowly decreasing step
size. However, the behavior is very smooth causing nearly
no oscillations in contrast to a slowly decreasing step size.
Figure 2 depicts the aggregate utility, the mean square error
of the SIR, and the SIR for two users over the number
of iterations n for different values of ¢; and ¢, and a
fixed y = 0.5 to show the influence of the start step size
values. Here a higher (but sufficiently small) start step size
leads to a faster but oscillating convergence compared to
lower start step sizes with a slow but smooth convergence
behavior.

Summarizing, we state the following. It is important,
that the step sizes ¢; and ¢, are sufficiently small to ensure
that the algorithm does not diverge. Besides the decrease
of the step sizes adjusted by exponent y should be not too
small to avoid a very slow convergence speed. In case of a
dynamic environment where the channel changes over time,
y should be chosen to be able to follow the channel changes.
This is paid with a more oscillating behavior. Finally note
that the length of the pilot sequences also depends on the
number of users because the link-specific pilot sequence is
typically a pseudo-noise sequence with good autocorrelation
properties.

6.2. Influence of Biased Gradient Estimators. In Figure 3
a convergence example is depicted for the case that the
estimates Vkﬁv(t)(s(t)) are biased by some by(t). Fur-
ther independent simulations suggest that the proposed
algorithm converges to a contraction region around the
optimal point if the bias is small enough. Otherwise the
algorithm may diverge. However, the conditions on the bias
to ensure convergence to a contraction region remain an
open question.

6.3. Comparison with Pure Utility-Based Power Control. In
this last section, we compare utility-based power control with
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joint utility-based power control and receive beamforming.
In Figure 4 the maximum and minimum SIRs are depicted
as a function of a representing the concavity of the utility
function chosen. The figures show that a significant perfor-
mance gain can be achieved by a joint optimization. Note
that in this simulation example only a total throughput of
4.3 can be supported if the users transmit with maximum
power and receive with a filter that is matched to the channel.
In addition, the simulations confirm that with increasing
concavity («) the utility-based resource allocation strategy
achieves fairness at the expense of a decreasing throughput
performance. For « — oo max-min fairness is achieved.

Finally, in Figure 5 we show the performance gains that
can be achieved in an exemplary wireless mesh network
(Downlink) where the base stations are connected wirelessly
with an Access Point (AP). More precisely, the total network
throughput and the delay performance are depicted over
the arrival rate. For a fixed routing and a fixed scheduling
strategy we compare the static resource allocation, that
adapts the beamformers to the channel and transmits with
maximum available transmit powers, with the utility-based
power control and with the joint utility-based power control
and receive beamforming for U(x) = log(x). The weights are
chosen to represent the queue differences in order to support
low delays. As can be easily seen the joint resource allocation
outperforms the utility-based power control.

7. Conclusions

We proposed a framework for joint power control and
receive beamforming in wireless networks, with the goal
to maximize some aggregate utility function of the SIRs.
The paper is a step to better understand the problem
of utility-based power control and receive beamforming.
We especially give insights into practical implementation
issues and exemplarily show the effects of noisy estimations
(unbiased and biased) as well as the influence of step
size control on the convergence properties. However, the
interesting theoretical issue of global convergence seems to
be further unresolved.

Appendix

We show that F(s) given by (9) is not concave in general
when U(x) = log(x), x > 0. To this end, consider the 2-user
case with w = 1 so that F(s) = >;_, log(e*ul'Z; 'u;) where
Z, = e*upud! +0?land Z, = e"ujuf! + 021 Define |lu, |5 =
e >0, uzll3 = ¢z > 0and [(u,u) |2 = ¢ = 0. Without
loss of generality, assume o> = 1. Using the Sherman-
Morrison formula [33] yields Z;! = (I + e2uyulf )
I-(e2/(1+e2cy))upul and Z;! is obtained in an equivalent
way. Therefore,

cptelp

1 +e2
Py ,
1+es1cqy

+ eS¢y

c
F(s) =51 + s, +log 11 (A.1)
where p = ¢j1¢22 — ¢12. Assume that u; # u; and ¢ > 0, in
which case p > 0. Now taking the second derivative either
with respect to s; or s, shows that F is not concave in general.
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