
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 817961, 14 pages
doi:10.1155/2010/817961

Research Article

Adaptive Power Allocation inWireless Sensor Networks with
Spatially Correlated Data and AnalogModulation: Perfect and
Imperfect CSI

MuhammadHafeez Chaudhary and Luc Vandendorpe
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We address the problem of power allocation in a wireless sensor network where distributed sensors amplify and forward their
partial and noisy observations of a Gaussian random source to a remote fusion center (FC). The FC reconstructs the source
based on linear minimum mean-squared error (LMMSE) estimation rule. Motivated by the availability of limited energy in the
sensor networks, we undertake the design of power allocation based on minimization of the reconstruction distortion subject to a
constraint on the network transmit power. The design is based on the following two cases: (i) exact knowledge of the channel gains
and (ii) the estimates of the channel gains. We show that the distortion can be represented as a convex function of the transmit
powers of the sensors. Moreover, we show that the power allocation based on this distortion function does not bear any closed
form solution. To this end, we propose a novel design based on the successive approximation of the LMMSE distortion, which
turns out to be simple, computationally efficient, and exhibits excellent convergence properties. The simulation examples illustrate
that the proposed design holds considerable performance gain compared to a uniform power allocation scheme.

1. Introduction

Wireless sensor networking is an emerging technology which
finds application in many fields including environment
and habitat monitoring, health care, automation, military
applications such as battlefield monitoring and surveillance,
and underwater wireless sensor networks (UWSNs) for
marine environment monitoring [1, 2]. A wireless sensor
network (WSN) consists of spatially distributed sensors that
cooperatively monitor physical or environmental conditions,
for example, temperature, vibration, pressure, motion, or
pollutants.

We consider a system in star topology where sensors
amplify and transmit their noisy observations of a common
source, via some orthogonal multiple access scheme such
as frequency division multiple-access (FDMA), to a central
processing unit called fusion center (FC) which reconstructs
the source in a way that the overall distortion (e.g., mean
squared error) be minimized. Conceptually, the system is
similar to the CEO problem [3, 4].

The sensors in the network have partial and spatially
correlated observations of the underlying source. The corre-
lation exists where sensors measure data in same geograph-
ical location, for example, acoustic sensors that are sensing
a common event produce measurements that are correlated.
In addition, observation noise and communication channel
may not have same conditions across the sensors. Therefore,
transmission of the observations based on uniform power
allocation is not an optimal strategy.

In this paper, we study the problem of adaptive power
allocation given a network power constraint with the
objective to minimize the reconstruction MSE. The optimal
power allocations are jointly determined at the FC which
are then conveyed to the individual sensors via feedback
channels. The communication channels from the sensors
to the FC experience independent flat fading. The channel
from the sensor to the FC is usually estimated using
some training sequence. The receiver noise and the limited
available power means that the channel estimation always
incurs some estimation error. Consequently, the design of
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power allocation scheme should also take into account the
channel estimation errors [5, 6]. In this paper, first we design
the power allocation scheme based on perfect knowledge of
the channel state information (CSI) and subsequently, in the
design, we incorporate the effect of imperfect CSI.

In a sensor network measuring a memoryless Gaussian
source uncoded transmission, that is, amplify and forward
(AF), outperforms the separate coding and transmission
over the multiple-access channel [7–9]. Motivated by this
result, Vuran et al. in [10] considered the estimation of
a random source with distributed sensors and suggested
a sensor selection procedure which exploits the spatial
correlation to minimize the estimation error (based on the
LMMSE estimation criterion). The sensor selection proce-
dure suggests that the sensors with high correlation with
the source and low cross-correlations should be selected.
The procedure does not take into account the fact that even
if a sensor has high correlation with the source and low
cross-correlations with the other sensors, it can still be a
bad selection in terms of energy efficiency if its observation
noise is high and/or the communication channel to the FC
is bad. A recent related work appears in [11]. Bahceci and
Khandani in [12] proposed a power allocation scheme where
each sensor observes a separate source albeit correlated.
Reference [13] presented a power scheduling scheme for
sensor networks to detect a source based on the binary
hypothesis testing rule which exploits the correlation in the
observation noises at the sensors. Other works like [14–18]
proposed power allocation schemes for parameter estimation
in wireless sensor networks without considering the spatial
correlation. In this paper, we present a novel framework
which incorporates adaptive power allocation (APA) in the
network by taking into account the spatial correlation and
cross-correlations of the observations, observation quality,
and communication channel to the FC. The power allocation
design also takes into account the channel estimation errors.

We assume that the FC reconstructs the underlying
source using linear minimum mean squared error (LMMSE)
estimation rule. The power allocation design is based on
minimization of the reconstruction distortion subject to a
constraint on the total transmit power of the sensors. Due
to the spatial correlation among the sensor observations,
the design of the power allocation scheme based on the
given optimization problem presents a unique challenge
because the LMMSE estimation/reconstruction error of the
underlying source contains nonlinearly coupled optimiza-
tion variables. Herein, first we prove that the estimation
distortion can be represented as a convex function of the
sensor transmit powers, then we show that the power
allocation design based on this distortion function turns out
to be complicated and does not bear a closed solution. Sub-
sequently, we propose a novel design based on the successive
approximation of the LMMSE estimation distortion. The
resulting power allocation algorithm is simple, computation-
ally efficient, and exhibits excellent convergence properties.
The proposed designs hold considerable performance gain
compared to a uniform power allocation scheme. To the
best of our knowledge, in the present literature, there is
no such work on the design of power allocation for the

sensor network under consideration which jointly exploits
spatial correlation, observation noises, channel gains, and
their estimation errors.

The rest of the paper is organized as follows. Section 2
describes the system set-up. The power allocation problems
and their solutions are presented in Sections 3 and 4,
respectively for perfect and imperfect knowledge of the CSI.
Section 5 evaluates performance of the power allocation
designs. Section 6 concludes the work.

2. SystemModel

Consider the system model shown in Figure 1 in which
N spatially distributed sensors observe an unknown zero-
mean real Gaussian random source s ∼ N (0, σ2

s ), and
communicate with the fusion center (FC) via orthogonal
multiple-access channels. Each sensor has a partial and noisy
observation of the source, and sends an amplified version of
it to the FC. The FC collects the signals from all sensors and
reconstructs the source according to a given fidelity criterion,
for example, minimum mean-squared estimation error. The
si ∼ N (0, σ2

si), and ni ∼ N (0, σ2
ni), respectively, denote the

partial observation of the source s and the noise corrupting
this observation such that the noisy observation at sensor i is

xi(t) = si(t) + ni(t), i = 1, . . . ,N. (1)

The estimation of the source is done on a sample by sample
basis, and its procedure is same for all samples. Therefore,
for clarity, in the subsequent formulation we drop the time
index. We assume that the sensors amplify and forward their
observations to the FC via orthogonal channels where each
channel experiences flat fading independent over time and
across sensors.

The optimality of the AF scheme is established for
the Gaussian network with nonorthogonal multiple-access
channel from the sensors to the FC [7]. However, for the
network with orthogonal multiple-access channel it has been
shown in [19, 20] that the separate source channel coding
outperforms the AF scheme. The optimality of the coded
source-channel communication in general requires coding
over long block lengths and will require some data processing
at the sensors. This will increase the power consumption at
the sensors and will lead to longer processing delays which
may not be tolerable in many applications. Therefore, due to
simplicity, low latency, and ease of implementation, in this
paper we adopt the AF transmission strategy.

The received signal at FC from sensor i is

zi = hi
√
P′i xi + wi = hi

√
P′i (si + ni) + wi, ∀i, (2)

where
√
P′i is a amplifying factor and wi ∼ CN (0, σ2

wi
) is

a circularly-symmetric Gaussian receiver noise. The fading
channels {hi}Ni=1 between the sensors and the FC are hi ∼
CN (0, σ2

hi
), for all i with gain factors {gi = |hi|}Ni=1 which are

Rayleigh distributed. Noting that hi = gie
jθhj , we can write

(2) as

zie
− jθh j = gi

√
P′i (si + ni) + wie

− jθh j , (3)
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where the exponential term e− jθh j can be merged into the
variable wi without changing its statistical properties—due
to the circular-symmetry property of wi [21]. Since the
underlying source s and the noisy observation xi = si +
ni are real-valued, therefore, we only need to consider the
component of the noise wi which is in-phase with the
observation xi, that is,

zi = gi
√
P′i (si + ni) + wi, ∀i, (4)

where wi ∼ N (0, σ2
wi

) and σ2
wi
= 0.5σ2

wi
.

For the analysis in this work, we assume that the
observation noise ni, ∀i (similarly the receiver noise wi, ∀i)
is independent across the sensors and is also independent of
wi, ∀i (ni, ∀i). Moreover, we assume that the source s, the
observation si at sensor i, the observation s j at sensor j, the
observation noise ni at the sensor, and the receiver noise wi at
the FC are jointly Gaussian across sensors (∀i and ∀ j) with
zero mean and covariance (Λs,si,s j ,ni,wi) specified by

Λ =

⎛
⎜⎜⎜⎜⎜⎝

σ2
s σsσsiρsi σsσsj ρs j 0 0

σsσsiρsi σ2
si σsiσsj ρi j 0 0

σsσsj ρs j σsiσsj ρi j σ2
s j 0 0

0 0 0 σ2
ni 0

0 0 0 0 σ2
wi

⎞
⎟⎟⎟⎟⎟⎠
. (5)

We also assume that the samples of s, si, ni, and wi are
individually independent in time.

In (5), the correlation coefficient ρsi represents the
correlation between s and si and the coefficient ρi j denotes
the correlation between si and s j . The values of these
correlation coefficients depend on the distance of the sensors
w.r.t. the position of the source s and w.r.t. each other,
respectively, and can be characterized as follows:

ρsi =
Cov

{
S, Si

}

σsσsi
= e−(dsi/θ1)θ2

,

ρi j =
Cov

{
Si, Sj

}

σsiσsj
= e−(di j /θ1)θ2

,

(6)

which is a power exponential model for correlation [10, 22].
In (6), dsi is the distance between the source s and sensor
i, and di j is the distance between the sensors i and j.
The parameter θ1 > 0 controls how fast the correlation
decays with distance and is called range parameter. The other
parameter θ2 is called a smoothness or roughness parameter
which is 0 < θ2 ≤ 2. Equation (6) shows that the correlation
decays with distance with limiting values of 1 and 0 as
dsi(di j) → 0 and dsi(di j) → ∞, respectively. Therefore, the
correlation changes with the change in the elative positions
of the source and the sensors. The change may happen due
to movement of either the sensors or the source or both, for
example, an animal may kick a sensor node to a different
location. We assume that the relative positions of the sensors
with respect to each other and the underlying source are
perfectly known. Moreover, we assume that the positions
remain unchanged for at least one estimation cycle.

Based on the correlation model, therefore, we can say
that the FC in essence is interested to reconstruct the source
s which is located at a specific location by collecting obser-
vations from spatially distributed sensors where correlation
of the observations with the source and among the sensors,
respectively, depends on the spatial location of the sensors
w.r.t. the source and w.r.t. each other. Note that the location
of the source and the sensors can be in two or three
dimensional space.

The equation (4) can be written equivalently in matrix-
vector notation as follows:

z = H(si + n) + w, where

H = diag
(
g1

√
P′1, . . . , gN

√
P′N

)
,

z = [z1, . . . , zN ]T , si = [s1, . . . , sN ]T ,

n = [n1, . . . ,nN ]T , w = [w1, . . . ,wN ]T ,

(7)

where [· · · ]T denotes the matrix-vector transpose opera-
tion. At the FC, the optimal estimator in minimum mean-
squared error (MMSE) sense is the conditional mean of s
given the observation z, that is, ŝ = E[s | z], where E denotes
the mathematical expectation. Under the jointly Gaussian
assumption of the s and z, the conditional mean estimator
turns out to be linear and is called linear minimum mean-
squared error estimator (LMMSEE). Therefore, we seek the
estimate of the source like ŝ = ∑N

i=1 aizi = aTz which can be
written as [23]

ŝ = cszC−1
z z, (8)

where aT = [a1, . . . , aN ] = cszC−1
z is a row-vector of

LMMSEE weighting coefficients. The resultant distortion
of the estimate ŝ in comparison to the original signal s is
measured by the mean-squared error and is given by [23]

D = E{s,si ,ni ,wi|gi,∀i}
[

(s− ŝ)2
]
= Cs − cszC−1

z czs

= σ2
s − cTH(HCH + Cw)−1Hc,

(9)

where C = Csi + Cn, c = E[sis], Csi = E[sisTi ], Cn = E[nnT],
and Cw = E[wwT]. The estimation distortion D can also be
written as follows:

D = σ2
s − cTC−1c + cT

(
HC−1

w HC + I
)−1

C−1c, (10)

which is obtained by using the Woodbury identity for matrix
inversion [24] (see Appendix A). Let Y = HC−1

w H, where
HC−1

w H = diag(g2
1 P′1/σ2

w1
, . . . , g2

N P′N/σ2
wN

). Now we can write
(10) as

D = σ2
s − cTC−1c + cT(YC + I)−1C−1c. (11)

Theorem 1. The estimation distortion function in (11) is
convex over P′i , for i = 1, . . . ,N .

Let p′ = [P′1, . . . ,P′N ]T be a vector of the transmit power
of the sensors. The proof of the theorem consists in showing
that the Hessian of the distortion function in (11) with
respect to p′ is positive semidefinite. To this end, a detailed
proof is given in Appendix B.



4 EURASIP Journal on Wireless Communications and Networking

n1

n2

nN

s1

s2

sN

x1

x2

xN

y1

y2

yN

h1

h2

hN

So
u

rc
e

(s
)

w1

w2

wN

z1

z2

zN

ŝ
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Figure 1: Block diagram of the system.

Remark 1. The reconstruction distortion is upper bounded
by the variance of the source σ2

s , and lower bounded by the
variances of the observation noises and spatial correlation
and cross-correlation values as given by

σ2
s − cTC−1c ≤ D ≤ σ2

s . (12)

The lower-bound distortion is achieved when the obser-
vations of the sensors are received at the FC via ideal
communication channels which can be verified by setting
g2
i P

′
i /σ

2
wi
= ∞, for all i in (11). Note that it is not possible

to achieve distortion less than D0 = σ2
s − cTC−1c. Moreover,

when observation noise variances are {σ2
ni}

N
i=1 = 0 then the

lower bound distortion reduces to D0 = σ2
s − cTC−1

si c. The
achieved distortion is equal to the upper bound value (i.e.,
D = σ2

s ) when either no signal is received at the FC from the
sensors or the observations are uncorrelated with the source
s or both, which can be verified from (11).

3. Power Allocation with Perfect CSI

In this section, we assume that the channel state information
(CSI), that is, the channel gains {hi}Ni=1 are perfectly known
at the FC. The case of imperfect CSI is considered in the next
section.

3.1. Minimization of the Distortion Subject to the Power
Constraint. We base our adaptive power allocation design on
the following optimization problem.

Prob. Minimize the distortion D(P′1, . . . ,P′N ) subject to

N∑

i=1

Pi =
N∑

i=1

P′i σ
2
i ≤ Ptot,

P′i ≥ 0, ∀i,
(13)

where Pi = P′i (σ2
si + σ2

ni) = P′i σ
2
i denotes the total power in

the transmitted signal of sensor i. The sum power constraint

in (13) enables a fair comparison between the networks of
different sizes. Moreover, for a sensor network which forms
part of a bigger network where each subnetwork performs
different sensing task but share the same frequency band to
transmit observations, to limit the interference between the
subnetworks, the total power emitted from each subnetwork
is upper bounded. Furthermore, recent studies have shown
that the ICT (Information and Communication Technology)
power consumption is a significant contributor to the global
warming [25]. Therefore, in the context of sensor networks,
putting cap on the total power consumption conserves
energy and limits the contribution to the global warming.

Since the optimization problem in (13) is convex (the
objective is convex and the constraints are linear), therefore
we can use the Lagrangian method of multipliers to find the
optimal P′i ’s [26]. The Lagrangian cost function is

f
(
P′i , λ

) = D + λ

⎛
⎝

N∑

i=1

P′i σ
2
i − Ptot

⎞
⎠−

N∑

i=1

μiP
′
i , (14)

where λ and {μi}Ni=1 are dual variables or Lagrange multipli-
ers. The associated Karush-Kuhn-Tucker (KKT) conditions
are

∂ f

∂P′i
= − g2

i

σ2
wi

cT(YC+I)−1JiC(YC+ I)−1C−1c + λσ2
i − μi = 0,

(15)

λ

⎛
⎝

N∑

i=1

P′i σ
2
i − Ptot

⎞
⎠ = 0, λ ≥ 0,

N∑

i=1

P′i σ
2
i ≤ Ptot, (16)

μiP
′
i = 0, μi ≥ 0, P′i ≥ 0, ∀i, (17)

where Ji is a diagonal matrix with unity at (i, i)th place and
all other elements are equal to zero.

The expression in (15) is a complicated function of the
optimization variables. Therefore, a closed form solution
for this problem is not tractable. However, we can resort
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1: Initialize λ[0] and P′i
[0] for i = 1, . . . ,N

2: Set κ = 0
3: While (|D[κ] −D[κ−1]| ≥ ε) do � where κ denotes the

while loop iteration index
4: κ = κ + 1
5: Find P′i

[κ], i = 1, . . . ,N , by numerically solving (15),
for example, using bisectional search method

6: Update λ using gradient method as follows:

λ[κ+1] = max{λ[κ] + α[κ](
N∑
i=1
P′i

[κ]σ2
i − Ptot), 0} ∗

7: Calculate D[κ]

8: end while

Algorithm 1

to numerical methods (e.g., bisectional search over P′i ’s
in (15) and gradient method to update λ) to find the
optimal P′i , i = 1, . . . ,N in an iterative manner as outlined
under Algorithm 1. From (17), note that the active sensors
P′i > 0 have corresponding Lagrangian multipliers μi = 0.
The sensors with P′i = 0 are removed from the system.
The parameter α[κ] in ∗ denotes the step-size. Since the
objective function of the optimization problem is convex
and bounded and the constraints are linear, therefore the
algorithm can achieve convergence to the absolute minimum
(the KKT point) of the problem provided the step-size α[κ]

is selected properly [27]. Unfortunately, Algorithm 1 will be
computationally quite expensive (unless the network size is
small) due to

(i) a number of matrix inversions involved in (15) while
numerically searching for P′i , i = 1, . . . ,N in each
iteration;

(ii) the dependence of the convergence properties on the
step-size α[κ] [27, 28].

In the sequel, based on a successive approximation
(SA) principle, we present a novel quasianalytical solution
of the optimization problem which is simple and the
associated algorithm is computationally efficient compared
to Algorithm 1, exhibits remarkable convergence properties,
and achieves distortion very close to the global optimum of
the Algorithm 1 with no appreciable performance gap. This
so-called SA-based design can be viewed as the joint opti-
mization of the transmit powers and the modified LMMSE
coefficients as we will see in the subsequent development.

According to the idea of successive approximation, a
modified function is constructed from the given function
in some special way [29–31]. Then that modified function
is solved iteratively/successively to find the solution for
the underlying problem. The solution obtained by the SA
approach can be viewed as quasianalytical solution. We apply
the idea of successive approximation to the reconstruction
distortion function and solve the problem of power alloca-
tion in the sensor network. To this end, at the FC, to form the
estimate ŝ = ∑N

i=1 aizi of the source s and to characterize the

resultant mean-squared distortion D, we proceed as follows.
We can write the distortion D as

D = E{s,si ,ni ,wi|gi ,∀i}
[

(s− ŝ)2
]

= σ2
s +

N∑

i=1

a2
i

(
g2
i Pi′σ

2
i + σ2

wi

)
− 2

N∑

i=1

aigi
√
P′i σsσsiρsi

+
N∑

i=1

N∑

j /= i

aiajgig j
√
P′i P

′
jσsiσsj ρi j ,

(18)

and by solving ∂D/∂ai = 0, we get the following expression
for the LMMSE weighting coefficients:

ai = βiγi, ∀i. (19)

The variables βi and γi are, respectively, defined as follows:

γi =
gi
√
P′i

g2
i P

′
i σ

2
i + σ2

wi

, ∀i, (20)

βi = σsσsiρsi −
N∑

j /= i

β jγ jg j
√
P′jσsiσsj ρi j , ∀i, (21)

where σ2
i = σ2

si + σ2
ni . With (20) and (21), the distortion in

(18) simplifies to

D = σ2
s −

N∑

i=1

βiγigi
√
P′i σsσsiρsi

= σ2
s −

N∑

i=1

g2
i P

′
i

g2
i Pi′σ

2
i + σ2

wi

βiσsσsiρsi.

(22)

Equation (21) forms a set of N coupled equations which
constitute the Wiener-Hopf equation for the LMMSE filter
coefficients (βi, for all i). If we know the transmit powers
{P′i }Ni=1 then for given covariance Λs,si ,s j ,ni,wi and the channel

gains {gi}Ni=1, we can find the coefficients {βi}Ni=1 by solving
(21). For the solution, it is convenient to employ the matrix-
vector form as follows:

β = R−1c, (23)

where β = [β1, . . . ,βN ]T , c = [σsσs1ρs1, . . . , σsσsN ρsN ]T ,

[R]i j = γjgj
√
P′jσsiσsj ρi j for i /= j, and [R]i j = 1 for

i = j. Note that [R]i j denotes the (i, j)th element of
the matrix R. However, the point here is that we do
not know the transmit powers {P′i }Ni=1. The following
subsection presents an alternative solution to the problem
of optimizing the transmit powers of the sensors under
the network-wide power constraint such that the distortion
D be minimized. Therein, to derive an algorithm for the
solution of P′i , the underlying idea is to assume β as constant.
Based on this assumption, we derive an iterative algorithm
which computes β using the values of {P′n}Nn=1 from the
previous iteration. This successive approximation (SA) of
the distortion function in (22) makes the solution of the
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power allocation problem simple and easy to compute as
will be seen in the ensuing development. Note that the
resulting design for power allocation can be viewed as a joint
optimization of {βi}Ni=1 and {P′i }Ni=1.

3.2. Minimization of the Distortion Subject to the Power
Constraint-SA. Herein, we solve the optimization problem
in (13) based on the distortion function D in (22) and
using the successive-approximation principle outlined in the
preceding subsection. For given βi ≥ 0, it is easy to verify
that the distortion function is convex with respect to the
optimization variables P′i , i = 1, . . . ,N . Therefore, the KKT
conditions are sufficient for optimality [26] which are given
as follows:

− σ2
wi
g2
i βiσsσsiρsi(

g2
i P

′
i σ

2
i + σ2

wi

)2 + λσ2
i − μi = 0, (24)

λ

⎛
⎝

N∑

i=1

P′i σ
2
i − Ptot

⎞
⎠ = 0, λ ≥ 0,

N∑

i=1

P′i σ
2
i ≤ Ptot,

(25)

μiP
′
i = 0, μi ≥ 0, P′i ≥ 0, ∀i. (26)

Solving (24) for active sensor i (i.e., P′i > 0, μi = 0 from
(26)), we get

P′i =
1

ζiσ
2
i

(√√√ ζiβiσsσsiρsi
λσ2

i

− 1

)+

, (27)

for i = 1, . . . ,N , where ζi: = g2
i /σ

2
wi

denotes the channel SNR
for sensor i and (x)+: = max(x, 0). Based on (27), following
observations are in order.

(1) There exists a cut-off value ζ (o)
i = (4βiσsσsiρsi)/(λσ

2
i )

such that for ζi ≤ ζ (o)
i , the power allocation policy

follows waterfilling on channel SNR, that is, P′i
increases with increasing ζi; and for ζi > ζ (o)

i , the
power allocation is according to inversion in the
channel SNR, that is, increasing ζi decreases P′i .

(2) The sensors with higher observation noise variances
are given less power. For sensor i, in the limiting case
σ2
ni → ∞ (i.e., σ2

i → ∞) then P′i → 0.

(3) The sensors with weak correlation with the source are
allotted less power. For instance, if ρsi → 0 then P′i →
0.

Combining the aforementioned points we can see that the
final power allocation policy for the sensors depends on the
spatial correlations, variance of the observation noises, and
the channel SNRs. Moreover, we see that depending on the
values of these system parameters some of the sensors may

be switched-off altogether. For sensor i to be active, following
condition must hold:

ζiβiσsiρsi
σ2
i

>
λ

σs
, (28)

which stems from the fact that P′i > 0 if sensor i is active. Let
K denotes the set of active sensors defined as follows:

K =
{
k | ζkβkσsk ρsk

σ2
k

>
λ

σs

}
. (29)

Since the problem is convex, the minimum of the objective
function occurs at the sum power constraint boundary, that
is, the constraint is active. Therefore, the transmit powers
P′k, k ∈ K must satisfy the power constraint with equality,
that is,

∑
k∈K P′kσ

2
k = Ptot, which gives

λ =
⎛
⎝
∑

k∈K
√
βkσsσsk ρsk/(ζkσ

2
k )

Ptot +
∑

k∈K 1/ζk

⎞
⎠

2

. (30)

Based on the solution from (27) through (30),
Algorithm 2 can be proposed which iteratively optimizes
the transmit powers {P′i }Ni=1 and the variables {βi}Ni=1, while
minimizing the reconstruction distortion subject to the
power constraint. If during iterations any sensor does not
fulfill the condition in (28), it is switched off and the
algorithm continues with the remaining sensors until the
convergence criterion is fulfilled. Regarding the convergence
properties of the algorithm, consider the following.

(i) Since in each iteration (successive approximation)
we are minimizing a convex function over the
convex-set of the transmit powers {P′i |

∑N
i=1 P

′
i σ

2
i ≤

Ptot and P′i ≥ 0, i = 1, . . . ,N}, therefore the
optimality of the transmit powers {P′i }Ni=1 in each
approximation (for given {βi}Ni=1) combined with

the optimality of {βi}Ni=1 for given {P′i }Ni=1 as per
(23) means that the algorithm achieves monotonic
decrease in the distortion, that is,

D
(
P′i

[κ+1]; β[κ+1]
i , i = 1, . . . ,N

)

≤ D
(
P′i

[κ+1]; β[κ]
i , i = 1, . . . ,N

)

≤ D
(
P′i

[κ]; β[κ]
i , i = 1, . . . ,N

)
(31)

and consequently it does converge to a unique
minimum point.

(ii) The algorithm consistently arrives at the same com-
bination of the transmit power tuple (P′1, . . . ,P′N )
and achieves the same minimum distortion for a
wide range of different initialization points. In other
words, we can say that the algorithm exhibits start
point independence (for a wide range of initializa-
tion points). Moreover, the algorithm asymptotically
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1: Initialize P′i
[0] for i = 1, . . . ,N

2: Calculate β[0]
i for i = 1, . . . ,N

3: Set κ = 0
4: while (|D[κ] −D[κ−1]| ≥ ε) do� where κ denotes the

while loop iteration index
5: κ = κ + 1
6: For i = 1, . . . ,N determine transmit power as follows:
7: if Condition in (28) is true then
8: Determine P′i

[κ] from (27)
9: else
10: P′i

[κ] = 0
11: end if
12: For i = 1, . . . ,N update β[κ]

i from (23)
13: Calculate D[κ]

14: end while

Algorithm 2

achieves the lower-bound distortion D0 with increas-
ing transmit power Ptot. In Section 5, we illustrate
the monotonic decrease, start point insensitivity,
and the asymptotic convergence to D0 with several
simulation examples. There we also show that the
convergence may be achieved in as few as two or three
iterations.

(iii) We have shown that the original problem is convex
and therefore the objective function has a global
minima under the power constraint which can
be achieved by Algorithm 1. Now the question is
how closely does the successive approximation-based
algorithm converge to the global minimum value?
The simulation examples in Section 5 show that the
distortion achieved by both algorithms are extremely
close and the performance gap between the full-
optimization and the successive approximation based
algorithms is virtually negligible.

It is a quite remarkable that the algorithm exhibits such
excellent convergence properties which illustrates that the
proposed successive approximation strategy works quite well.
Finally, compared to the power allocation Algorithm 1, the
ease of computation and simplicity of the design based on the
successive approximation principle can be appreciated from
the simple and elegant structure of (27)–(30).

4. Power Allocation with Imperfect CSI

Heretofore, we have assumed perfect knowledge of the chan-
nel gains {hi}Ni=1. However, in practice, we have estimates

{ĥi}
N

i=1 of the actual channel gains. One way to estimate
the channel is by a training sequence whereby each sensor
transmits a known sequence of data symbols called pilots.
Then based on the received data, the FC estimates the
channel. Let ti denote the pilot symbol transmitted by
sensor i in the channel estimation phase. The corresponding

received signal is ri = hiti + wi and based on which the

LMMSE estimate ĥi of hi is

ĥi = E{hi ,wi}
[
hir

∗
i

]

E{hi ,wi}
[
|ri|2

] , ri =
σ2
hi
t∗i

σ2
hi
|ti|2 + σ2

wi

ri, (32)

where (· · · )∗ denotes the complex conjugate operation. The

variance of the estimation error Δhi: = hi − ĥi is

δ
2
i = E{hi ,wi}

[∣∣∣hi − ĥi
∣∣∣2
]
= σ2

hi
σ2
wi

σ2
wi

+ σ2
hi
|ti|2

, (33)

wherein |ti|2 is power of the transmitted pilot. Note that the
variance of channel estimation error is finite for finite |ti|2
and σ2

wi
. The actual channel can be represented as a sum of

the estimate and the estimation error, that is,

hi = ĥi + Δhi, (34)

where Δhi ∼ CN (0, δ
2
i ). Such an approach to model the

channel estimation error can be viewed as the Bayesian
approach [6].

One way to design the power-scheduling scheme is

by replacing hi and gi, respectively, by ĥi and ĝi in the
formulations of the foregoing section. This constitutes a
naive-approach because it ignores the error in the channel
estimate. An alternative design originates by substituting
(34) in (2) as follows:

zi = ĥi
√
P′i (si + ni) +

√
P′i (si + ni)Δhi + wi︸ ︷︷ ︸

:=ui

,
(35)

in which ui can be viewed as total receiver noise
corresponding to sensor i with E{si ,ni,wi,Δhi}[ui] = 0,

E{si ,ni ,wi ,Δhi}[|ui|2] = P′i (σ2
si + σ2

ni)δ
2
i + σ2

wi
, for all i, and

E{si ,s j ,ni ,nj ,wi,wj ,Δhi,Δhj}[uiu
∗
j ] = 0, for all i /= j. Noting that

ĥi = ĝie
jθĥi , we can write

zie
− jθĥi = ĝi

√
P′i (si + ni) + uie

− jθĥi , (36)

where the exponential term e− jθĥi can be absorbed into
ui, that is, into the Gaussian variables Δhi and wi without
changing their statistical properties—thanks to their circular
symmetry. Since the underlying source s and the observation
si + ni are real-valued, as a consequence only the part of the
noise ui in-phase with the sensor observation is relevant for
estimation of the source s. Therefore, we can write

zi = ĝi
√
P′i (si + ni) + ui, (37)

where ui = R{ui} =
√
P′i (si+ni)Δhi+wi, Δhi ∼ N (0, δ2

i ) and
wi ∼ N (0, σ2

wi
). Following a procedure similar to Section 3,

it can be shown that the mean-squared reconstruction
distortion of the estimate ŝ = ∑N

i=1 aizi with respect to s is
given by

D̃ = E{s,si ,ni ,wi,Δhi,|ĝi ,∀i}
[

(s− ŝ)2
]

= σ2
s −

N∑

i=1

βiγiĝi
√
P′i σsσsiρsi,

(38)
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where

ai = βiγi,

βi = σsσsiρsi −
N∑

j /= i

β jγ j ĝ j
√
P′jσsiσsj ρi j ,

γi =
ĝi
√
P′i

ĝ2
i P

′
i σ

2
i + P′i σ

2
i δ

2
i + σ2

wi

, ∀i.

(39)

The solution of the optimization problem in (13) with
the objective to minimize the distortion D̃ defined in (38)
subject to the constraint on the total network power can be
obtained by using the method of Lagrangian multipliers and
is outlined as follows.

P′k =
1(

1 + δ2
k /ĝ

2
k

)
ζ̂kσ

2
k

⎛
⎜⎝

√√√√ ζ̂kβkσsσsk ρsk
λσ2

k

− 1

⎞
⎟⎠

+

, (40)

(1) The power allotted to sensor k is for k = 1, . . . ,N ,

where ζ̂k: = ĝ2
k /σ

2
wk

defines the channel SNR based on
the channel estimate.

(2) For sensor k to be active, that is, P′k > 0, the following
condition:

ζ̂kβkσsk ρsk
σ2
k

>
λ

σs
(41)

must hold, otherwise it is switched-off.

(3) The index-set K of the active sensors is

K =
⎧⎨
⎩k |

ζ̂kβkσsk ρsk
σ2
k

>
λ

σs

⎫⎬
⎭. (42)

(4) The Lagrangian multiplier λ is

λ =

⎛
⎜⎜⎝

∑
k∈K

√
βkσsσsk ρsk/(

(
1 + δ2

k /ĝ
2
k

)2
ζ̂kσ

2
k )

Ptot +
∑

k∈K 1/
(

1 + δ2
k /ĝ

2
k

)
ζ̂k

⎞
⎟⎟⎠

2

, (43)

which is determined such that the power constraint be
satisfied with equality.

Based on (40)–(43), the power allocation for the
sensors can be obtained using the procedure outlined
under Algorithm 2. (The power allocation design under
Algorithm 1 can similarly be extended to the imperfect
CSI case.) Note that the convergence properties of the
algorithm with perfect CSI also applies to the imperfect CSI
case. Moreover, the above power allocation design exhibits
robustness to the channel estimation errors compared to the
naive approach as shown in the subsequent section.

Remark 2. We can observe that as δ2
k → 0 then ĝk → gk

for k = 1, . . . ,N and (40)–(43), respectively, converges to the
power allocation design with perfect CSI in (27)–(30).

5. Performance Evaluation and Discussion

Through simulation examples, this section corroborates the
analytical findings and illustrates the effectiveness of the
proposed adaptive power allocation (APA) designs under
Algorithms 1 and 2 for the perfect and imperfect CSI
cases. We assume without any loss of generality that σ2

s =
{σ2

si}
N
i=1 = 1. In the simulations, the distortion is calculated

from 105 realizations of the underlying source, partial
observations, and observation and receiver noises according
to the covariance Λs,si ,s j ,ni ,wi . The simulation examples focus
on the successive approximation-based power allocation
design unless stated otherwise. In the figures, log(· · · )
denotes the logarithm with base 10.

5.1. Spatial Correlation. In order to show the efficacy of
our design, we compare its performance with a uniform
power allocation-based design. In the figures, the designs are,
respectively, denoted as APA (Adaptive Power Allocation)
and UPA (Uniform Power Allocation). Moreover, {Pi}Ni=1 =
Pu = Ptot/N for the UPA design.

We consider two sensor networks, respectively, compris-
ing N = 3 and N = 500 sensors which are uniformly
distributed in a 100 × 100 grid with the source s at its
center. Figure 2 plots the distortion achieved by the SA-
based APA design and compares it with the UPA design.
The distortion is averaged over 104 independent realiza-
tions (drawn from a uniform distribution) of the sensors
deployment. The figure shows that our proposed design
outperforms the UPA scheme and the achieved distortion
monotonically approaches the lower-bound distortion value
D0 with increasing Ptot. For given θ1, we can observe that the
distortion decreases with increasing the number of sensors
and the performance gap between the APA and UPA designs
also increases. Moreover, we can see that increasing the value
of θ1 decreases the distortion. This is because, for given
deployment, the spatial correlation of the sensors with the
source (and with each other) improves with increasing θ1

[c.f. (6)]. Note that at low value of θ1, the distortion is
high and the performance gap between the APA and UPA
designs is very small. However, as the value of θ1 increases
the distortion decreases and the performance gap between
the APA and UPA increases. However, we can see that with
increasing the value of θ1 further the performance gap starts
decreasing. This is because for very small value of θ1 the
sensors have very low correlation with the source and for very
large value of θ1 the correlation is high for all sensors, and in
these extreme cases the UPA scheme is as good as the APA
scheme.

Next, for the sake of illustration, we focus on the network
with three sensors, that is, N = 3, and we consider the
following two examples:

(i) Ex1: (dX1 , dX2 , dX3 ) = (−0.3, 0, 0.8) and (dY1 ,dY2 ,
dY3 ) = (0, 1.6, 0),

(ii) Ex2: (dX1 , dX2 , dX3 ) = (−0.1, 0, 1.5) and (dY1 ,dY2 ,
dY3 ) = (0, 5, 0),
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Figure 2: θ2 = 1, (σ2
ni ,hi, σ

2
wi

)N
i=1
= (0.01, 1, 10), and (C1)θ1 = 1, (C2)θ1 = 10, (C3)θ1 = 102, and (C4)θ1 = 103.

where (dXi , dYi) gives the position of sensor i with respect
to the origin in the XY-plane. Note that we can view these
examples as specific realizations of the deployment of the
sensors. Assuming the source at the origin and for θ1 = θ2 =
1 in (6), we obtain the following spatial correlation values:

(i) Ex1: (ρs1 , ρs2 , ρs3 ) = (0.7408, 0.2019, 0.4493) and
(ρ12, ρ13, ρ23) = (0.1963, 0.3329, 0.1671),

(ii) Ex2: (ρs1 , ρs2 , ρs3 ) = (0.9048, 0.0067, 0.2231) and
(ρ12, ρ13, ρ23) = (0.0067, 0.2019, 0.0054).

The simulations in the sequel are based on these two exam-
ples. We have taken these examples for purely illustrative
purpose and they in no way limit the generality of our
designs. For zero-observation noise variances, the spatial
correlation lower bounds the reconstruction distortion at
D0(0.4038, 0.1796), where first value is for Ex1 and the
second value is for Ex2. The distortion in the subsequent
simulation examples cannot be below this value no matter
how high the transmit power becomes.

Figure 3 shows that the proposed design gives recon-
struction distortion which is less than that achieved by
the uniform power allocation. This superior performance
originates from the reason that the proposed design assigns
all or more power to the sensor(s) with better correlation
properties. This is contrary to the UPA scheme which gives
equal importance to all sensors regardless of the correlation
structure and thereby wasting power. For both examples,
note that the achieved distortion decreases monotonically
with increasing Ptot but is never less than the lower-bound
value D0(0.4086, 0.1875).

For Ex1 and Ex2, Figure 4 shows that with different
initial values of {P′k}Nk=1, Algorithm 2 converges to the

same distortion value (0.5817 for Ex1 and 0.2646 for Ex2).
Moreover, at the convergence, the power distribution among
the sensors is 10 log (P1,P2,P3)Ex1 = (13.8913, 0, 8.5279)
and 10 log (P1,P2,P3)Ex2 = (19.8403, 0, 5.5743), respec-
tively, for Ex1 and Ex2 in all cases irrespective of the
initialization point of the algorithm. Note that in one
iteration the distortion reaches fairly close to the minimum
value. Nevertheless, after the second or third iteration there
is virtually no appreciable change in these values. This
observation extends to all simulation examples presented
herein.

Figure 5 compares performance of the proposed APA
designs under Algorithms 1 and 2 which shows that the
distortion curves produced by the two algorithms are
extremely close and the performance gap is negligible. This
is quite remarkable result especially when viewed in combi-
nation with the simplicity and computational efficiency of
Algorithm 2 compared to Algorithm 1.

The simulation examples in the sequel only treat the
APA design based on the successive approximation (SA)
without including comparison with the APA design under
Algorithm 1 and the UPA scheme. Nevertheless, in all
the instances, the SA-based design closely achieves the
performance of the design in Algorithm 1 and outperforms
the UPA scheme except in a symmetric case where both
designs (APA and UPA) converge. In the symmetric case, the
correlations, variances of the observation and the receiver
noises, and the channel gains are same across all sensors.

5.2. Channel SNR. Assuming fixed channel gains (no fad-
ing), {hi}Ni=1 = 1 and {σ2

ni}
N
i=1 = 0.01, we consider the follow-

ing cases: (Cw1){ζi}Ni=1 = −10 dB, (Cw2){ζi}Ni=1 = −3.98 dB,
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Figure 3: (σ2
ni ,hi, σ

2
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)N
i=1
= (0.01, 1, 10).
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Figure 4: Algorithm convergence behavior for different initialization points (P′1,P′2,P′3)[0].

(Cw3){ζi}Ni=1 = 0 dB, (Cw4){ζi}Ni=1 = 10 dB, (Cw5){ζi}Ni=1 =
−20 dB, and (Cw6){ζ1, ζ2, ζ3} = {−30, −10, −20}dB.
Figure 6 shows that for given Ptot the distortion decreases
with increase in the so-called channel SNR and vice versa.
Note that in each case the achieved distortion monotonically
approaches the lower-bound value (D0 = 0.4086) with
increasing Ptot. Figure 6(b) shows how the total power Ptot

is distributed among the sensors in Cw5 and Cw6. The

figure shows that in Cw5, the sensors with better correlation
properties are given more power, which is due to the fact
that, in this case, the system is symmetric with respect to all
other system parameters. However, the case Cw6 is different
where the channel SNRs are not same across the sensors. For
this case the figure shows that the power allocation policy
follows sensor selection and waterfilling with respect to the
SNR until the next sensor is turned on, after which point the



EURASIP Journal on Wireless Communications and Networking 11

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
SE

(D
)

0 5 10 15 20 25 30 35 40

10 log (Ptot)

Ex1

Ex2

Algorithm 1
Algorithm 2

Figure 5: Performance comparison of the APA designs.

power allocation is according to the channel inversion. These
examples show that the power allocation policy is jointly
determined by the spatial correlation values, variance of the
observation noises, and the channel SNRs.

5.3. Observation Noise. Herein, we assume that {hi}Ni=1 =
1, {σ2

wi
}N
i=1 = 10, and consider the following cases:

(Cn1){σ2
ni}

N
i=1 = 0.01 and D0 = 0.4086, (Cn2){σ2

ni}
N
i=1 = 0.1

and D0 = 0.4484, (Cn3){σ2
ni}

N
i=1 = 1 and D0 = 0.6652,

and (Cn4){σ2
n1

, σ2
n2

, σ2
n3
} = {1, 0.01, 0.1} and D0 = 0.6160.

Figure 7 shows that increasing the variances of the obser-
vation noise at the sensors, increases the reconstruction
distortion. Moreover, in each case, the achieved distortion
D decreases monotonically with the transmit power Ptot and
approaches D0 at high transmit power.

5.4. Imperfect CSI. We assume that the communication
channels {hi}Ni=1 from the sensors to the FC undergo inde-

pendent Rayleigh fading such that {σ2
hi
}N
i=1

= 1. Moreover,

we assume that {σ2
ni}

N
i=1 = 0.01 and {σ2

wi
}N
i=1 = 10. The

simulations in Figure 8 illustrate the achieved distortion
when we have (i) perfect knowledge of the CSI, that is,

{δ2
i }Ni = δ2 = 0 and (ii) the estimates of the channels

with estimation error variances δ2 = 0.01 and δ2 = 0.1.
The distortion is averaged over 2 × 106 realizations of
the source and the corresponding partial observations, the
observation and receiver noises, and the channel gains. From
the figure we can see that the channel errors increase the
reconstruction distortion. Moreover, the proposed design
(Rob in the figure) shows robustness to the channel esti-
mation errors compared to the naive approach (Nav in the
figure).

6. Conclusions

In this paper we have investigated the joint adaptive power
allocation design for the sensors to transmit their observa-
tions to the FC with the goal to reconstruct the underlying
source with minimum distortion subject to a constraint on
the total network power. We demonstrated the effectiveness
of our proposed design with a few simple examples where
we vary one parameter while keeping all others the same
across sensors. In practice, the correlation, observation
noises, and the SNRs of the communication channels may
simultaneously vary across sensors. Consequently, the power
allocation policy is a nontrivial function of all these factors.
Our proposed design incorporates them in (quasi)analytical
expressions. We showed that the power allocation problem is
convex which does not bear closed-form analytical solution.
We showed that the problem can be solved by an iterative
numerical procedure which is computationally expensive
unless the network size is small. Then, based on the suc-
cessive approximation principle, we proposed a novel power
allocation design which is simple and easy to compute, and
exhibits excellent convergence properties. We demonstrated
that our proposed design outperforms a scheme based
on the uniform power allocation except in a symmetric
case where both designs converge. The performance gain
may be large for a relatively large sensor network with
high heterogeneity in the spatial correlation, observation
quality, and the channel gains. In the proposed design,
we also incorporated the case when imperfect knowledge
of the channel gains is available. We demonstrated that
the proposed design exhibits robustness to the channel
estimation errors relative to a naive approach. The future
work may consider the extension to the nonorthogonal
channels from the sensors to the FC. Moreover, optimizing
the performance such as reconstruction distortion or the
power consumption over a priori given network life can
be investigated. We only considered the power required
for transmitting the observations to the FC, where as the
future work may also include the power consumed in the
sensing, preparing the observation for transmission and in
the receiving processes.

Appendices

A. Proof of Reconstruction Distortion in (10)

From (9), we can write

D = σ2
s − cTH(HCH + Cw)−1Hc

= σ2
s − cT

[
H(HCH + Cw)−1HC

]
C−1c.

(A.1)

Let A−1 = I (where I denotes identity matrix), V = HC,
U = H, and B−1 = Cw, then the Woodbury identity [24]

(A + UBV)−1 = A−1 − A−1U
(
VA−1U + B−1)−1

VA−1 (A.2)
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Figure 6: Effect of channel SNR—Ex1.
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gives

(
I + HC−1

w HC
)−1 = I− IH(HCIH + Cw)−1HCI,

H(HCH + Cw)−1HC = I− (
I + HC−1

w HC
)−1

,

(A.3)

which after substitution in (A.1) gives (10).
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B. Proof of Theorem 1

The vector of the transmit powers is p′ = [P′1, . . . ,P′N ]T and
we know that the estimation distortion is given by

D = σ2
s − cTC−1c + cT(YC + I)−1C−1c, (B.4)

which can be written as

D = σ2
s − Tr

{
C̃
}

+ Tr
{
C̃(YC + I)−1

}
, (B.5)

where C̃ = C−1ccT and Tr{A} denotes the trace of matrix A.
In moving from (B.4) to (B.5) we have used the invariance
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property of Tr under cyclic permutations, that is Tr(ABC) =
Tr(BCA) = Tr(CAB). [24].

In order to prove that the function D is convex over
p′, we derive its Hessian and then show that it is positive
semidefinite. To this end, first we calculate the first-order
derivative of D with respect to each component of p′, that
is, ∂D/∂P′k for k = 1, . . . ,N as follows:

∂D

∂P′k
= Tr

{
C̃

(
∂(YC + I)−1

∂P′k

)}

= − g2
k

σ2
wk

Tr
{
C̃(YC + I)−1ekeTkC(YC + I)−1

}
.

(B.6)

In (B.6), we have used ∂Z−1/∂[Z]kk = −Z−1ekeTk Z
−1, where

ek = (e1, . . . , eN )T with ei = 1 for i = k and ei = 0 for
i /= k, i = 1, . . . ,N [24].

Now we take the derivative of (B.6) with respect to P′l for
l = 1, . . . ,N as follows:

∂2D

∂P′k∂P
′
l

= − g2
k

σ2
wk

Tr

{
C̃
∂(YC + I)−1ekeTkC(YC + I)−1

∂P′l

}

= g2
k g

2
l

σ2
wk
σ2
wl

Tr
{
C̃(YC + I)−1ekeTkC(YC + I)−1eleTl C(YC + I)−1

+C̃(YC+I)−1eleTl C(YC+I)−1ekeTkC(YC+I)−1
}

= g2
k g

2
l

σ2
wk
σ2
wl

Tr
{
eTkC(YC+I)−1eleTl C(YC+I)−1C̃(YC+I)−1ek

+eTl C(YC+I)−1ekeTkC(YC+I)−1C̃(YC+I)−1el
}

= g2
k g

2
l

σ2
wk
σ2
wl

{(
eTkC(YC+ I)−1el

)

(
eTl C(YC+I)−1C̃(YC+I)−1ek

)
+
(
eTl C(YC+I)−1ek

)

(
eTkC(YC+I)−1C̃(YC+I)−1el

)}

(B.7)

where we have used ∂UV/∂z = U∂V/∂z + ∂U/∂zV and
Tr(ABC)=Tr(BCA). Now let R = diag (g2

1 /σ
2
w1

, . . . , g2
N/σ

2
wN

)
T

and Ỹ = (YC + I)−1 then the Hessian of D can be written in
the following form:

∂2D

∂p′2
=
(
RCỸR

)
◦
(
CỸC̃Ỹ

)T
+
(
RCỸR

)T ◦
(
CỸC̃Ỹ

)
,

(B.8)

where A◦B denotes the Hadamard or Schur product of A and
B. Note that R, C, C̃, and Ỹ are positive semidefinite matrices.
We know that the product of the positive semidefinite
matrices is also a positive semidefinite matrix and the
Hadamard product of positive semidefinite matrices is also
a positive semidefinite matrix. Therefore, we can conclude

that the Hessian ∂2D/∂p′2 is also positive semidefinite which
establish, the convexity of the function in (11) with respect
to the transmit powers P′i , i = 1, . . . ,N .
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