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The end-to-end performance of multibranch dual-hop wireless communication systems with nonregenerative relays and equal
gain combiner (EGC) at the destination over independent Nakagami-m fading channels is studied. We present new closed form
expressions for probability distribution function (PDF) and cumulative distribution function (CDF) of end-to-end signal to noise
ratio (SNR) per branch in terms of Meijer’s G function. From these results, analytical formulae for the moments of the output
SNR, the average overall SNR, the amount of fading, and the spectral efficiency are also obtained in closed form. Instead of using
moments-based approach to analyze the asymptotic error performance of the system, we employ the characteristic function (CHF)
method to calculate the average bit error probability (ABEP) and the outage probability for several coherent and noncoherent
modulation schemes. The accuracy of the analytical formulae is verified by various numerical results and simulations.

1. Introduction

Wireless relaying systems in which mobile terminals are
employed to retransmit information from a source to a
destination have attracted great attention as they can provide
cooperative diversity [1, 2]. Exploiting the advantages of
spatial diversity without the need of physical antenna arrays,
the relaying systems can not only extend the coverage of
microwave communications but also mitigate the effects of
fading. In such systems, there are two typical kinds of relays.
If the relay decodes the signal and transmits the decoded
version to the destination, it is called a “regenerative” relay.
On the other hand, if the relaying node just amplifies
and retransmits the source signal to the next node, it
is called a “non-regenerative” relay. Due to their simpler
implementation, non-regenerative relay networks have been
investigated more than any other relaying systems.

In the most recent literature, a lot of work has been done
on the performance analysis of cooperative relay systems.
In [3, 4], the end-to-end performance of one of branch
dual-hop relaying systems operating in Rayleigh fading
channels is analyzed. When the channels are characterized
by generalized Nakagami-m fading, refernces [5, 6] propose

mathematical methods to study the performance of a single
relaying link system. Due to the use of only one relay, the
diversity of these systems is limited. The performance of
the relay system can be enhanced by utilizing many relays.
In [7], the error performance of a multibranch dual-hop
relay system in Rayleigh fading channels is studied. An
asymptotic approach to analyze general cooperative links is
introduced in [8]. The lower bound of the error performance
of a cooperative dual-hop wireless system in Nakagami-m
fading channels is derived in [9]. The common denominator
in these papers is that the diversity combiner used at the
receiver is the maximal ratio combiner (MRC). Therefore,
the moment generating function (MGF) approach can be
used to analyze the performance. However, the optimal
MRC requires amplitude and phase estimates of the channel
simultaneously. On the other hand, equal gain combining
(EGC) offers a significant practical advantage because it
provides performance comparable to MRC, but with much
less complexity.

The performance of EGC has also been investigated
by many researchers. In particular, a convergent infinite
series for the complementary distribution function and the
probability density function (PDF) of a sum of independent
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random variables is derived in [10]. This series is then
used to derive the bit error rate and the complementary
distribution function of the SNR at the output of an L-
branch EGC system [11]. A characteristic function (CHF)
approach to study the performance of EGC over Rayleigh
channels is proposed in [12–14]. This idea was later extended
to compute the average symbol error rate of a broad class
of modulation schemes in different fading environments
[15, 16]. A moments-based approach to calculate the per-
formance of equal gain diversity is presented in [17, 18].
This method employs the Padé approximants to approximate
the truncated series of MGF from which the average bit
error probability (ABEP) and the outage probability Pout are
obtained. However, to the best of authors’ knowledge, there
is no published work on the performance of L-branch dual-
hop cooperative systems with non-regenerative relays and
EGC at the receiver. The reason is that the derivation of the
distribution of the sum of relaying branch envelopes is a very
difficult task.

In this paper, we focus on multibranch dual-hop
non-regenerative relay systems working in slow and flat
Nakagami-m environments. Among the nonselective fading
models, Nakagami distribution is the most flexible because
it does not only match the bulk of empirical data, but also
includes the Rayleigh and one-sided Gaussian distributions
as special cases. Using a special function, Meijer’s G function,
we provide an alternative expression for the PDF of end-
to-end SNR. This is the key contribution of this paper,
from which we can derive some important performance
parameters such as moments of the overall SNR, amount
of fading (AoF), and spectral efficiency (SE) in closed
form expressions. Once the closed form formulae of the
moments of SNR are obtained, we can use the moments-
based approach to compute the approximate performance
of the relay system. However, to get expressions for the
ABEP and Pout, we employ the CHF method as in [12,
13, 16]. The main contributions of this paper include the
following: (a) derivation of closed form formulae for the
moments of the overall SNR, (b) derivation of the CHF of
the fading envelope, which can be expressed in product and
polar forms, (c) derivation of the analytical expressions for
the ABEP for coherent and noncoherent schemes, and (d)
evaluation of the outage probability of the system in terms of
one integral, which can be computed easily.

The remainder of the paper is organized as follows. We
first illustrate the relay system and the channel model in
Section 2. The average probability statistics, APEB, and Pout

are derived in Section 3. Some typical numerical and sim-
ulation results are presented in Section 4. Finally, Section 5
concludes the paper.

2. System and Channel Model

A cooperative system is considered in which a source node
transmits signals to a destination node with the help of L
intermediate relay nodes, as shown in Figure 1. We assume
that all the channels used for information transmission in
this system are orthogonal to each other. The source first
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Figure 1: A multibranch dual-hop relay system with L relay nodes.

broadcasts the signal to the destination and the L relays. The
ith relay then amplifies the received signal and forwards it to
the destination. Let s be the transmitted symbol with energy
per symbol Es, the baseband signal received at the destination
directly from the source is

yD0 = h0s + n0, (1)

where h0 and n0 are the fading factor and the noise of
the direct link, respectively. Similarly, the received baseband
signal at the destination via the ith relay can be given as

yDi = h2i
{
gi(h1is + n1i)

}
+ n2i, (2)

where h1i, h2i and n1i, n2i are the fading factors and the
noise samples of the first and second hops of the ith branch,
respectively. The amplifying factor of the ith node is gi. In
this paper, we assume that n0, n1i, and n2i are independent
and identically distributed (i.i.d) complex Gaussian random
variables (RVs) with the same single-sided power spectral
density N0. The fading factors h0, h1i, and h2i follow slow
and flat Nakagami-m fading, that is, their amplitudes have
a central chi-squared distribution as in [19, (2.20)]

p|h|(|h|) = 2mm|h|2m−1

ΩmΓ(m)
exp

(

−m|h|2
Ω

)

, (3)

where m is the Nakagami-m fading parameter related to
fading severity (m ≥ 0.5), Ω = E(|h|2), E is the expec-
tation operator, and Γ(·) is the Gamma function defined
in [20, 8.310] . Furthermore, we assume that the fading
characteristics among relay branches are independent. For
the simplicity of the analysis, we assume that the fading
parameters of the first and the second hops in the same
branch are taken to be identical, that is, m1i = m2i and
Ω1i = Ω2i.

The end-to-end signal-to-noise ratios (SNRend) of the
direct transmission and the ith branch are

γ0 = |h0|2Es
N0

, (4)

γi = g2
i |h2i|2|h1i|2Es(
1 + g2

i |h2i|2
)
N0

. (5)
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Assume that the relay node is able to estimate the channel
state information (CSI) in the first hop, the amplifying gain
gi of the ith relay is then chosen as

gi = 1
√
|h1i|2 + N0

≈ 1
|h1i| . (6)

Due to transmission power constraints, we want retransmis-
sions to have the same power. The above choice of amplifying
gain gi will invert the fading effect of the first hop and
the retransmitted signals from the relays will have the same
power. Replacing (6) in (5), the SNRend of the ith branch can
be written as

γi = γ1iγ2i

γ1i + γ2i
, (7)

where γ1i = |h1i|2Es/N0 and γ2i = |h2i|2Es/N0. As |h0|, |h1i|
and |h2i| have Nakagami-m distribution, the individual
SNRs γ0, γ1i and γ2i will have Gamma distribution [19,
(2.21)]

pγ
(
γ
) = mmγm−1

γmΓ(m)
exp

(

−mγ

γ

)

, (8)

where γ = ΩEs/N0. Since γ0 represents the end-to-end SNR
of the direct link, pγ0 (γ0) has the same distribution as pγ(γ),
that is,

pγ0

(
γ0
) = mm0

0 γm0−1

γ0
m0Γ(m0)

exp

(

−m0γ0

γ0

)

. (9)

The end-to-end SNR of the ith relay branch has the form of
the half harmonic mean of two i.i.d Gamma RVs, its PDF is
derived in [5, Appendix A] as

pγi
(
γi
) = 2αi

√
πγ(3αi−3)/2

i

β(3αi−1)/2
i Γ2(αi)

exp

(

−2γi
βi

)

Wαi/2,−αi/2

(
4αi
βi

)

,

(10)

where W(·) is the Whittaker function defined in [20,
(9.222)], αi = mi, and βi = γi/mi. Here, by applying the
formula in [21, page 442], we can rewrite (10) in terms of
Meijer’s G function as

pγi
(
γi
) = AiG

2,0
1,2

(
λiγi|mi−1/2

mi−1,2mi−1

)
, (11)

where we denote

Ai = mi
√
π

γi · 22mi−3 · Γ2(mi)
,

λi = 4mi

γi
,

(12)

with mi = m1i = m2i, γi = γ1i = γ2i and G(·) is Meijer’s G
function defined in [20, (9.301)]. With the help of [22, (26)],
the corresponding cumulative distribution function (CDF)
of γi is evaluated in closed form as

Pγi
(
γi
) = AiγiG

2,1
2,3

(
λiγi|0,mi−1/2

mi−1,2mi−1,1

)
. (13)
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Figure 2: PDF of Z with different values of m.

In this paper, the EGC combiner is employed at the receiver.
The output of various branches is first cophased and
weighted equally before being summed to provide the total
output. The overall SNR at the output of the EGC combiner
is

γEGC =
Es
(
|h0| +

∑L
i=1|h2i| · gi · |h1i|

)2

N0

[
1 +

∑L
i=1

(
1 + |h2i|2g2

i

)] . (14)

Substituting gi = 1/|h1i|, γEGC can be written as

γEGC =
Es
(
|h0| +

∑L
i=1|h2i|

)2

N0

[
1 +

∑L
i=1

(
1 + |h2i|2/|h1i|2

)] . (15)

Due to the presence of |h2i|2/|h1i|2 in the denominator, the
above form of γEGC is mathematically intractable. A more
simpler expression is required for further analysis.

With the assumption that |h1i| and |h2i| have the same
fading parameters, that is, mi = m1i = m2i and Ωi = Ω1i =
Ω2i, we define the term |h2i|2/|h1i|2 in the denominator of
(15) as a new RV, Zi, whose PDF is independent of Ωi. The
PDF of Zi is given by

pZi(zi) =
Γ(2mi)
Γ2(mi)

· zmi−1
i

(1 + zi)
2mi

. (16)

Its mean and variance are mi/(mi−1) and mi(2mi−1)/(mi−
2)(mi − 1)2, respectively. For proof see Appendix A.

The PDFs of Zi with different values of mi are plotted in
Figure 2. It shows that the PDF of Zi only depends uponmi. It
is clear from the figure that the PDFs tend to acquire similar



4 EURASIP Journal on Wireless Communications and Networking

shapes for larger values of mi. Therefore, if mi = m, for all
i ∈ {0, 1, . . . ,L} or all values of mi being large, all the signal
branches will experience similar fading. Eventually, the noise
characteristics in each branch would be the same, except the
direct link due to single-hop transmission. Hence, including
the direct link, the total noise term is roughly L + 1 times the
multiple of N0. An appropriate scaling or normalization of
the noise leaves only L + 1 in the denominator. The received
signal amplitude from each relay can be approximated as the
square root of the received SNR which absorbs N0 in it. A
similar approximation is also used in [23]. It leads to the fact
that instantaneous output SNR of EGC can be approximated
as [23]

γEGC ≈
(∑L

i=0
√
γi
)2

L + 1
. (17)

3. Performance Analysis

3.1. Moments of Output SNR. In this section, we derive
closed form expression for the moments of output SNR.
Once this formula becomes available, we can evaluate the
average output SNR, the amount of fading, and the spectral
efficiency of the relay system.

Using (17), the nth moment of the EGC output SNR is
defined as

μEGC
n = E

[
γnEGC

] = 1
(1 + L)n

E

⎡

⎢
⎣

⎛

⎝
L∑

i=0

√
γi

⎞

⎠

2n
⎤

⎥
⎦. (18)

Expanding the argument of the expectation operator in the
above using multinomial identity in [22, 24.1.2] , we get

μEGC
n = (2n)!

(1 + L)n
E

⎡

⎢
⎢
⎢
⎣

2n∑

k0,...,kL=0
k0+···+kL=2n

γk0/2
0 · · · γkL/2L

k0! · · · kL!

⎤

⎥
⎥
⎥
⎦
. (19)

Let the input signals to the EGC be uncorrelated, in this case
the mean product in (19) can be expressed as a product of
the means, as given below

μEGC
n =

2n∑

k0,...,kL=0
k0+···+kL=2n

⎛

⎝
i=L∏

i=0

E
[
γki/2i

]

ki!

⎞

⎠. (20)

Each term in (20) can be obtained as below
For the direct link having Nakagami-m distribution, the

moment of γ0 is

E
[
γk0/2

0

]
= Γ(m0 + k0/2)

Γ(m0)

(
γ0

m0

)k0/2

. (21)

For the relaying link, the moment of γi can be derived from
the definition

E
[
γki/2i

]
= Ai

∫∞

0
γki/2i G2,0

1,2

(
λiγi|mi−1/2

mi−1,2mi−1

)
dγi

= Ai

λki/2+1
i

Γ(mi + ki/2)Γ(2mi + ki/2)
Γ(mi + ki/2 + 1/2)

.

(22)

The integral in (22) is obtained using [20, 7.811.4] . Substi-
tuting (21) and (22) in (20), we get the moment of the output
SNR of the EGC in the closed form as

μEGC
n = (2n)!

(1 + L)n

×
2n∑

k0,...,kL=0
k0+···+kL=2n

⎡

⎣Γ(m0 + k0/2)
k0!Γ(m0)

(
γ0

m0

)k0/2

×
L∏

i=1

Ai

ki!λ
ki/2+1
i

×Γ(mi + ki/2)Γ(2mi + ki/2)
Γ(mi + ki/2 + 1/2)

]
.

(23)

3.1.1. Average Output SNR. As the receiver employs EGC
with independent input branches, the average output SNR,
after some mathematical manipulations, can be obtained in
the closed form by setting n = 1 in (23) as

γEGC =
1

1 + L

⎡

⎣
L∑

i=0

γi + 2
L∑

i=1

i−1∑

j=0

γ1/2
i γ1/2

j

⎤

⎦, (24)

where γ1/2
i and γ1/2

j can be found from (21) and (22) by
putting k0 = ki = 1.

3.1.2. Amount of Fading (AoF). The amount of fading (AoF)
or fading figure associated with the fading PDF is defined
as a measure of the severity of the fading and is typically
independent of the average fading power. Mathematically, it
can be defined as

AoF = var
(
γEGC

)

(
E
[
γEGC

])2 =
μEGC

2

γ2
EGC

− 1, (25)

where var(γEGC) is the variance of the EGC output SNR.
From (23) with n = 2 and (24), the AoF of the EGC receiver
operating Nakagami-m fading channels is obtained as
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AoF

=
4!
∑4

k0,...,kL=0

k0+···+kL=4

[
(Γ(m0 +k0/2)/k0!Γ(m0))

(
γ0/m0

)k0/2∏L
i=1

(
Ai/ki!λ

ki/2+1
i

)
(Γ(mi+ki/2)Γ(2mi+ki/2)/Γ(mi+ki/2 + 1/2))

]

[∑L
i=0 γi + 2

∑L
i=1

∑i−1
j=0 γ

1/2
i γ1/2

j

]2 −1.

(26)

3.1.3. Spectral Efficiency (SE). The AoF can be used to study
the spectral efficiency (SE) of a flat fading channel in a very
noisy region. In this low power region, it is easy to see that
the minimum bit energy over noise level required for reliable
communication is−1.59 dB. The slope of the SE versus Es/N0

in b/s/Hz per 3 dB at (Es/N0)min is

S0 = 2
(
E
[
a2
])2

E[a4]
= 2γ2

EGC

μEGC
2

, (27)

where a is the EGC output amplitude. Substituting (25)
in (27), the slope of the SE in a very noisy region can be
expressed in a useful form as

S0 = 2
AoF + 1

. (28)

3.2. Average Bit Error Probability (ABEP). After evaluating
the moment of the EGC output SNR in a closed form, the
moments-based approach [17] can be applied to evaluate
the performance of the considered system with the EGC
in Nakagami-m fading channels. However, this method can
only provide asymptotic measures for ABEP and Pout because
of the truncation in Padé approximation. Due to the compact
form PDF of γi in (11), the approaches in [12, 16] can be
used. These methods basically exploit Gil-Palaez’s Lemma 1
to get the exact expressions for ABEP and Pout.

3.2.1. For Coherent Detection (BPSK, BFSK). The ABEP for
coherent detection such as binary phase shift keying (BPSK)
and binary frequency shift keying (BFSK) has a generic form
in terms of Gaussian Q function as

Pe = E
[
Q
(√

2gγEGC

)]
= E

[
Q
(√

Gr
)]

, (29)

where G = 2g/(1 + L) with g = 1 and 0.5 for coherent BPSK
and BFSK, respectively, and r = ∑L

i=0 ri with ri = √
γi. The

PDFs of ri can be derived using the PDFs of γ0 and γi in (9)
and (11), respectively. For proof see Appendix B

pr0 (r0) = 2A0r
2m0−1
0 exp

(

−m0

γ0

r2
0

)

,

pri(ri) = 2AiriG
2,0
1,2

(
λir

2
i |mi−1/2

mi−1,2mi−1

)
.

(30)

To obtain the error performance, the CHF of the decision
variable r is considered. By definition, the CHF of r is given
by

φr(t) = E
[
exp

(
jrt
)] =

∫∞

0
e jrt pr(r)(t)dt. (31)

Based on the assumption that all the input signals through
different branches are mutually uncorrelated, we get the CHF
of r as

φr(t) = φr0 (t)
L∏

i=1

φri(t), (32)

where φr0 (t) and φri(t) are the CHFs of the direct and the
ith branch, respectively. By substituting pr0 (r0) from (30) to
(31), the value of φr0 (t) can be obtained in terms of Meijer’s
G function. See Appendix C for proof

φr0 (r0) = Φ∗
0

[
c0(t) + j sign(t)d0(t)

]
, (33)

where

Φ∗
0 =

√
π

Γ(m0)
,

c0(t) = G1,1
1,2

⎛

⎝ γ0t
2

4m0

∣
∣
∣∣
∣

1−m0

0,1/2

⎞

⎠,

d0(t) = G1,1
1,2

⎛

⎝ γ0t
2

4m0

∣∣
∣
∣
∣

1−m0

1/2,0

⎞

⎠,

(34)

and sign(·) is the sign function. Similarly, by using the PDF
of ri in (30), CHF of ri can also be determined in terms of
Meijer’s G function. Proof can be seen in Appendix C

φri(ri) = Φ∗
i

[
ci(t) + j sign(t)di(t)

]
, (35)

where

Φ∗
i =

2π
[4miΓ2(mi)]

,

ci(t) = G1,2
2,3

⎛

⎝ t2

4λi

∣
∣
∣
∣∣

1−mi,1−2mi

0,1/2−mi,1/2

⎞

⎠,

di(t) = G1,2
2,3

⎛

⎝ t2

4λi

∣
∣∣
∣
∣

1−mi ,1−2mi

1/2,1/2−mi,0

⎞

⎠.

(36)

Substituting (33) and (35) in (32), we can rewrite φr(t) in the
product form as

φr(t) =
L∏

i=0

Φ∗
i

[
ci(t) + jdi(t)

]
, (37)



6 EURASIP Journal on Wireless Communications and Networking

or in a polar form as

φr(t)=
L∏

i=0

Φ∗
i

[
c2
i (t)+d2

i (t)
]1/2

exp

⎛

⎝j
L∑

i=0

tan−1
[

sign(t)di(t)
ci(t)

]
⎞

⎠.

(38)

After getting the CHF of the decision variable, its PDF
can be determined by taking inverse Fourier transform and
eventually the ABEP can be evaluated. It is obvious that
evaluating the inverse Fourier integral is not an easy task.
Therefore, we exploit the relationship between the CHF and
its CDF in order to measure the exact ABEP of coherent
detection. This expression was derived by Gil-Palaez in 1951,
which is restated here for convenience.

Lemma 1 (Gil-Palaez]). Let F(x) be a one-dimensional CDF
and let φ(t) be the corresponding CHF with a real variable t,
then

F(x) = 1
2
− 1

π

∫∞

0

Im
[
φ(t)e− jtx

]

t
dt, (39)

where Im(·) denotes the imaginary part.

Using this lemma and an alternative exponential integral
formula for the Gaussian Q function [24, (14b)], the ABEP
can be written in terms of the CHF of r as in [16, (3)]

Pe = 1
2
− 1

π

∫∞

0

Im
[
φr
(√

2Gt
)]

tet
dt. (40)

By substituting (37) in (40), the ABEP for coherent detection
can be represented in a product-sum integral form. For the
case L = 1, the ABEP is given by

Pe = 1
2
− Φ∗

0 Φ
∗
1

2π

∫∞

0

c0(t′)d1(t′) + c1(t′)d0(t′)
tet

dt, (41)

where t′ = √2Gt. For the two-branch system, the ABEP is

Pe = 1
2
− Φ∗

0 Φ
∗
1 Φ

∗
2

2π

×
∫∞

0
[c0(t′)c1(t′)d2(t′) + c0(t′)c2(t′)d1(t′)

+ c1(t′)c2(t′)d0(t′)

−d0(t′)d1(t′)d2(t′)]
dt

tet
.

(42)

Similarly, substituting (38) in (40), we derive the ABEP as

Pe = 1
2
−
∏L

i=0Φ
∗
i

2π

×
∫∞

0

L∏

i=0

[
c2
i (t′) + d2

i (t′)
]1/2

sin

⎛

⎝
L∑

i=0

tan−1 di(t
′)

ci(t′)

⎞

⎠ dt

tet
.

(43)

Though the above result is not in the closed form; however,
it is useful for the ABEP because it involves only one-
fold integral which can be evaluated using any numerical
integration technique or software.

3.2.2. For Noncoherent Detection (DBPSK, NCFSK). For
noncoherent detection, the ABEP has a generic formula as

Pe = E
[
0.5 exp

(−g∗γEGC
)] = E

[
0.5 exp

(−G∗r2)], (44)

with g∗ = 1 and 0.5 for DBPSK and NCFSK, respectively,
and we set G∗ = g∗/(L + 1). By expressing the PDF of r in
terms of φr(t) and rearranging the integral order, we obtain
the ABEP as in [13, (26)]

Pe = 1
4π

∫∞

−∞
φr(t)

∫∞

0
e−G

∗r2
e− jrtdr dt. (45)

The inner integral can be derived from [20, (3.896)], from
which we can express Pe as a sum of integrals

Pe = 1
8
√
πG∗

∫∞

−∞
φr(t)e−t

2/4G∗dt

− j

8πG∗

∫∞

−∞
1F1

(

1;
3
2

;− t2

4G∗

)

tφr(t)dt,

(46)

where 1F1(·) is the confluent hypergeometric function
defined in [20, 9.14.1] . Since the functions ci(t) and di(t) are
even, the expression for ABEP can be further simplified. For
example, in case of L = 1, using the product form of CHF of
r given in (37), the above expression can be written as

Pe = Φ∗
0 Φ

∗
1

4
√
πG∗

∫∞

0
[c0(t)c1(t)− d0(t)d1(t)]e−t

2/4G∗dt

+
Φ∗

0 Φ
∗
1

4πG∗

∫∞

0
[c0(t)d1(t) + c1(t)d0(t)]

×1F1

(

1;
3
2

;− t2

4G∗

)

t dt.

(47)

In case of two branches, that is, L = 2, the ABEP becomes

Pe = Φ∗
0 Φ

∗
1 Φ

∗
2

4
√
πG∗

×
∫∞

0
[c0(t)c1(t)c2(t)− c0(t)d1(t)d2(t)

−c1(t)d0(t)d2(t)− c2(t)d0(t)d1(t)]e−t
2/4G∗dt

+
Φ∗

0 Φ
∗
1 Φ

∗
2

4πG∗

×
∫∞

0
[c0(t)c1(t)d2(t) + c0(t)c2(t)d1(t)

+c1(t)c2(t)d0(t)− d0(t)d1(t)d2(t)]

×1F1

(

1;
3
2

;− t2

4G∗

)

t dt.

(48)

These formulae can be easily used to calculate the ABEP in
noncoherent signal detection with EGC at the receiver. In the
simulation results presented in Section 4, these integrals are
evaluated using Mathematica software.
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3.2.3. Outage Probability Pout. Setting γth as a specific
threshold, the outage probability is defined as the probability
that the output SNR γEGC falls below γth, that is,

Pout = P
(
γEGC ≤ γth

)

= P

⎛

⎜
⎝

(∑L
i=0
√
γi
)2

L + 1
≤ γth

⎞

⎟
⎠

= P

⎛

⎝
L∑

i=0

√
γi ≤

√
(L + 1)γth

⎞

⎠

= P
(
r ≤ γ̃th

)
,

(49)

where γ̃th =
√

(L + 1)γth.
Using Lemma 1, the outage probability in (49) can be

given as

Pout = 1
2
− 1

π

∫∞

0

Im
[
φr(t)e− jγ̃tht

]

t
dt. (50)

Exploiting the polar form of CHF of r, we get the expression
for the outage probability as

Pout = 1
2
−
∏L

i=0Φ
∗
i

π

×
∫∞

0

L∏

i=0

[
c2
i (t) + d2

i (t)
]1/2

× sin

⎛

⎝
L∑

i=0

tan−1 di(t)
ci(t)

− γ̃tht

⎞

⎠dt.

(51)

For simpler numerical implementation, the outage probabil-
ity can be expressed in one product-sum integral form. For
instance, in case of L = 1, Pout is

Pout = 1
2
− Φ∗

0 Φ
∗
1

π

×
∫∞

0

[A] cos γ̃tht−[c0(t)c1(t)−d0(t)d1(t)] sin γ̃tht

t
dt,

(52)

whereA denotes [c0(t)d1(t)+c1(t)d0(t)]. Similarly, for L = 2,
Pout can be formulated as

Pout = 1
2
− Φ∗

0 Φ
∗
1 Φ

∗
2

π

×
∫∞

0
{[c0(t)c1(t)d2(t) + c0(t)c2(t)d1(t)

+c1(t)c2(t)d0(t)− d0(t)d1(t)d2(t)] cos γ̃tht

− [c0(t)c1(t)c2(t)− c2(t)d0(t)d1(t)

−c1(t)d1(t)d2(t)− c0(t)d1(t)d2(t)] sin γ̃tht
}dt

t
.

(53)
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Figure 3: Average overall end-to-end SNR for L = 1, 2, and 3 in
Rayleigh and Nakagami-m fading channels.

4. Numerical and Simulation Results

In order to verify the accuracy of the derived expressions,
several numerical results and simulations are presented in
this section. Each performance criterion is evaluated in two
different fading environments. In the first case, we consider
Rayleigh fading as a special case with mi = 1 and γi =
γ, for all i = 0, . . . ,L. In the other case, to illustrate
diversity, Nakagami-m fading with different parameters for
each branch is considered. In this situation, we assume m0 =
0.5, m1 = 1.5, m2 = 2, and m3 = 2.5 as fading parameters.
The average SNR per hop for the direct link and the relaying
branches is assumed to be γ0 = γ, γ1 = 1.2γ, γ2 = 1.5γ and
γ3 = 2γ.

Figure 3 shows the average overall end-to-end SNR
versus the average SNR per hop in Rayleigh and Nakagami-m
fading, respectively. First, we use (23) to obtain the average
statistics of the moments of end-to-end SNR. Then, (24) is
used to calculate the average overall end-to-end SNR. This
figure proves that the analytical results presented for the
average end-to-end SNR of a multibranch dual-hop relay
system are very precise as the numerical results coincide with
the simulation results in both fading environments.

In Figure 4, we illustrate the ABEP versus the average
SNR per hop in Rayleigh fading environment for coherent
BPSK and noncoherent DBPSK relay systems, respectively.
Comparative curves using MRC are also shown. The analyti-
cal results for the ABEP of coherent modulation schemes are
obtained by presenting the CHF of the total fading envelope
r in product form and then taking the infinity range integrals
such as (41) and (42). However, due to the complication
of the integrand, it is difficult to take numerical integral
over (0,∞). Fortunately, the integrand approaches zero as
t approaches infinity. Hence, it is a converging integral.
Therefore, instead of evaluating the integral over (0,∞),
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Figure 4: Average bit error probability for BPSK and DBPSK for
L = 1, 2, and 3 using EGC and MRC in Rayleigh fading channels.
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Figure 5: Average bit error probability for BPSK and DPSK for L =
1, 2, and 3 using EGC and MRC in Nakagami-m fading channels.

we approximately evaluate it over (0, tmax), where tmax is
chosen so that the truncation of the integrand is as small
as possible and the numerical value remains almost the
same. However, the choice of tmax does not follow any hard
and fast rule, rather it depends upon the system configu-
ration. Despite this approximation, Figure 4 shows that the
analytical results closely match the computer simulations
in case of coherent BPSK, regardless of the number of
branches. However, the simulation results for DBPSK follow
the numerical ones with a very small difference for all SNR
regions.
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Figure 6: Outage probability for BPSK for L = 1, 2, and 3 using
EGC and MRC in Rayleigh fading channels.
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Figure 7: Outage probability for BPSK for L = 1, 2, and 3 using
EGC and MRC in Nakagami-m fading channels.

Figure 5 depicts the ABEP of the coherent BPSK and
noncoherent DBPSK, respectively, in Nakagami-m fading
channels with the parameters stated above. Comparative
curves using MRC are also shown. A similar trend as in
Rayleigh channels is also observed in Nakagami-m channels.
It is emphasized here that when the values of m for all the
considered branches are close together, the simple form of
the overall SNR for EGC in (17) can be applied.

We also simulate Pout in order to testify the numerical
result of (51). In Figures 6 and 7, we plot Pout versus the
normalized outage threshold in Rayleigh and Nakagami-m



EURASIP Journal on Wireless Communications and Networking 9

environments, respectively. It is evident that in both cases,
the numerical results nearly coincide with the simulation
results.

5. Conclusion

This paper investigated the performance of a multi-
branch dual-hop non-regenerative relay system operating in
Nakagami-m fading environment. We presented the PDF
of the end-to-end SNR in terms of a special function
called Meijer’s G function. We then derived the closed
form expressions for the moments of the overall SNR, the
amount of fading, and the spectral efficiency. We obtained
the analytical expressions for the average bit error probability
and the outage probability for coherent and noncoherent
modulation schemes using characteristic function approach.
The obtained formulae are presented in only one-fold
integral form which is simple to evaluate. The accuracy of
these formulae is verified by extensive computer simulations.

Appendices

A. Derivation of PDF of Zi

Let s1i = |h1i|2 and s2i = |h2i|2, then zi = s2i/s1i. By using the
PDF of |h| in (3) and [25, Section 5-2], the PDFs of s1i and
s2i are obtained as

pSji
(
s ji
)
= mmi

i smi−1
ji

Ωmi
i Γ(mi)

exp
(
−misji

Ωi

)
j = 1, 2. (A.1)

Now using [25, (6-43)] and (A.1), we can derive the PDF of
Zi as

pZi(zi) =
∫∞

0
s1i pS2i(zis1i)pS1i(s1i)ds1i

= m2mi
i zmi−1

i

Ω2mi
i Γ2(mi)

∫∞

0
s2mi−1

1i exp
(
−mi

Ωi
(1 + zi)s1i

)
ds1i.

(A.2)

Using and simplifying [20, (3.381.4)], we obtain the PDF
of Zi as in (16). The moments of zi are derived from its
definition as

E
[
zni
] =

∫∞

0
zni pZi(zi)dzi

= Γ(2mi)
Γ2(mi)

∫∞

0

zmi+n−1
i

(1 + zi)
2mi

dzi.

(A.3)

Using [20, (3.194.3)] with constraint mi > n, we obtain the
moments of zi as

E
[
zni
] = Γ(2mi)

γ2(mi)
B(mi + n,mi − n), (A.4)

where B(·, ·) is the Beta function defined in [20, (3.380)].
Using [20, (8.384.1)], we can further simplify the moments
of zi in terms of Gamma functions

E
[
zni
] = Γ(mi + n)Γ(mi − n)

Γ2(mi)
. (A.5)

Utilizing the first and second moments of zi, we get the
average and the variance of zi as

E[zi] = mi

mi − 1
, with mi > 1,

var(zi) = mi(2mi − 1)

(mi − 2)(mi − 1)2 , with mi > 2.
(A.6)

B. The PDF of ri

In [25, Section 5-2], it is shown that if a RV x has a PDF
pX(x), then another RV y such that y = √

x has PDF as
follows

pY
(
y
) = pX

(
y2
)

∣
∣
∣1/2

√
y2
∣
∣
∣
= 2ypX

(
y2). (B.1)

Applying the above equation, we derive the PFDs of r0 = √γ0

and ri = √γi as

pr0 (r0) = 2A0r
2m0−1
0 exp

(

−m0

γ0

r2
0

)

,

pri(ri) = 2AiriG
2,0
1,2

(
λir

2
i

∣∣mi−1/2
mi−1,2mi−1

)
.

(B.2)

C. The CHF of ri

The CHF of r0 is calculated as

φr0 (t) =
∫∞

0
e jtr0 pr0 (r0)dr0

= 2A0

∫∞

0
r2m0−1

0 e jtr0 exp

(

−m0

γ0

r2
0

)

dr0

= 2A0
√
π

[∫∞

0
r2m0−1

0 G1,0
0,2

(
t2r2

0

4

∣
∣
∣∣
∣

·

0,1/2

)

×G1,0
0,1

(
m0

γ0

r2
0

∣
∣∣
∣
∣

.

0

)

dr0

+ j sign(t)
∫∞

0
r2m0−1

0 G1,0
0,2

(
t2r2

0

4

∣
∣∣
∣
∣

.

1/2,0

)

×G1,0
0,1

(
m0

γ0

r2
0

∣∣
∣
∣∣

.

0

)

dr0

]

.

(C.1)
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By putting z0 = r2
0 , the integrals are reduced to

φr0 (t) = A0
√
π

[∫∞

0
zm0−1

0 G1,0
0,2

(
t2z0

4

∣
∣
∣
∣∣

.

0,1/2

)

×G1,0
0,1

(
m0

γ0

z0

∣
∣
∣∣
∣

.

0

)

dz0

+ j sign(t)
∫∞

0
zm0−1

0 G1,0
0,2

(
t2z0

4

∣
∣∣
∣
∣

.

1/2,0

)

×G1,0
0,1

(
m0

γ0

z0

∣∣
∣
∣
∣

.

0

)

dz0

]

=
√
π

Γ(m0)

⎡

⎣G1,1
1,2

⎛

⎝ γ0t
2

4m0

∣
∣∣
∣
∣

1−m0

0,1/2

⎞

⎠

+ j sign(t)G1,1
1,2

⎛

⎝ γ0t
2

4m0

∣∣
∣
∣
∣

1−m0

1/2,0

⎞

⎠

⎤

⎦.

(C.2)

Similarly the CHF of ri can be derived as

φri(t) = 2Ai

∫∞

0
rie

jtriG2,0
1,2

(
λir

2
i

∣
∣mi−1/2
mi−1,2mi−1

)

= 2Ai

[∫∞

0
ri cos(tri)G

2,0
1,2

(
λir

2
i

∣
∣mi−1/2
mi−1,2mi−1

)
dri

+ j
∫∞

0
ri sin(tri)G

2,0
1,2

(
λir

2
i

∣
∣mi−1/2
mi−1,2mi−1

)
dri

]
.

(C.3)

By putting zi = r2
i and using [22, (13)], the CHF of ri can be

written as

φri(t) = Ai
√
π
[∫∞

0
G2,0

1,2

(
λizi|mi−1/2

mi−1,2mi−1

)

×G1,0
0,2

(
t2

4
zi

∣∣
∣
∣
∣

.

0,1/2

)

dzi

+ j sign(t)
∫∞

0
G2,0

1,2

(
λizi|mi−1/2

mi−1,2mi−1

)

×G1,0
0,2

(
t2

4
zi

∣
∣
∣
∣∣

.

1/2,0

)

dzi

]

= 2π
4mΓ2(mi)

⎡

⎣G1,2
2,3

⎛

⎝ t2

4λi

∣
∣
∣
∣∣

1−mi ,1−2mi

0,1/2−mi,1/2

⎞

⎠

+ j sign(t)G1,2
2,3

⎛

⎝ t2

4λi

∣
∣∣
∣
∣

1−mi ,1−2mi

1/2,1/2−mi,0

⎞

⎠

⎤

⎦.

(C.4)

Acknowledgment

This work is partly supported by the Australian Research
Council Discovery project DP0879401.

References

[1] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative
diversity in wireless networks: efficient protocols and outage
behavior,” IEEE Transactions on Information Theory, vol. 50,
no. 12, pp. 3062–3080, 2004.

[2] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation
diversity—part II: implementation aspects and performance
analysis,” IEEE Transactions on Communications, vol. 51, no.
11, pp. 1939–1948, 2003.

[3] M. O. Hasna and M. S. Alouini, “End-to-end performance
of transmission systems with relays over Rayleigh fading
channels,” IEEE Transactions on Wireless Communications, vol.
2, no. 6, pp. 1126–1131, 2003.

[4] T. A. Tsiftsis, G. K. Karagiannidis, and S. A. Kotsopoulos,
“Dual-hop wireless communications with combined gain
relays,” IEE Proceedings: Communications, vol. 152, no. 5, pp.
528–532, 2005.

[5] M. O. Hasna and M. S. Alouini, “Harminic mean and end-to-
end performance of transmission systems with relays,” IEEE
Transactions on Communications, vol. 52, no. 1, pp. 130–135,
2004.

[6] D. A. Zogas, G. K. Karagiannidis, N. C. Sagias, T. A. Tsiftsis, P.
T. Mathiopoulos, and S. A. Kostopoulos, “Dual-hop wireless
communications over nakagami fading,” in Proceedings of the
IEEE Vehicular Technology Conference (VTC ’04), vol. 4, pp.
2200–2204, May 2004.

[7] P. A. Anghel and M. Kaveh, “Exact symbol error probability
of a cooperative network in a Rayleigh-fading environment,”
IEEE Transactions on Wireless Communications, vol. 3, no. 5,
pp. 1416–1421, 2004.

[8] A. Ribeiro, X. Cai, and G. B. Giannakis, “Symbol error
probabilities for general cooperative links,” IEEE Transactions
on Wireless Communications, vol. 4, no. 3, pp. 1264–1273,
2005.

[9] T. A. Tsiftsis, G. K. Karagiannidis, S. A. Kotsopoulos, and F.-
N. Pavlidou, “BER analysis of collaborative dual-hop wireless
transmissions,” Electronics Letters, vol. 40, no. 11, pp. 679–681,
2004.

[10] N. C. Beaulieu, “An infinite series for the computation of
the complementary probability distribution function of a sum
of independent random variables and its application to the
sum of Rayleigh random variables,” IEEE Transactions on
Communications, vol. 38, no. 9, pp. 1463–1474, 1990.

[11] N. C. Beaulieu and A. A. Abu-Dayya, “Analysis of equal gain
diversity on nakagami fading channles,” IEEE Transactions on
Communications, vol. 39, no. 2, pp. 225–234, 1991.

[12] Q. T. Zhang, “Outage probability in cellular mobile radio due
to nakagami signal and interferers with arbitrary paramters,”
IEEE Transactions on Vehicular Technology, vol. 45, no. 2, pp.
364–372, 1996.

[13] Q. T. Zhang, “Probability of error for equal-gain combiners
over Rayleigh channels: some closed-form solutions,” IEEE
Transactions on Communications, vol. 45, no. 3, pp. 270–273,
1997.

[14] Q. T. Zhang, “A simple approach to probability of error
for equal gain combiners over Rayleigh channels,” IEEE
Transactions on Vehicular Technology, vol. 48, no. 4, pp. 1151–
1154, 1999.

[15] A. Annamalai, C. Tellambura, and V. K. Bhargava, “Equal
gain diversity receiver performance in wireless channels,” IEEE
Transactions on Communications, vol. 48, no. 10, pp. 1732–
1745, 2000.



EURASIP Journal on Wireless Communications and Networking 11

[16] V. Ramanathan and A. Annamalai, “Analysis of equal gain
diversity receiveers in correlated Rayleigh fading channels,”
IEEE Communications Letters, vol. 8, no. 6, pp. 362–364, 2004.

[17] G. K. Karagiannidis, “Moments-based approach to the perfor-
mance analysis of equal gain diversity in Nakagami-m fading,”
IEEE Transactions on Communications, vol. 52, no. 5, pp. 685–
690, 2004.

[18] D. A. Zogas, G. K. Karagiannidis, and S. A. Kotsopou-
los, “Equal gain combining over nakagami-n (Rice) and
Nakagami-q (Hoyt) generalized fading channels,” IEEE Trans-
actions on Wireless Communications, vol. 4, no. 2, pp. 374–379,
2005.

[19] M. K. Simon and M. S. Alouini, Digital Communication over
Fading Channels, John Wiley & Sons, New York, NY, USA, 2nd
edition, 2005.

[20] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products, Academic Press, New York, NY, USA, 5th edition,
1994.

[21] A. Erdelyi, W. Magnus, F. Oberherttinger, and F. Tricom,
Tables of Integral Transforms, vol. 2, McGraw Hill, New York,
NY, USA, 1954.

[22] V. S. Adamchik and O. I. Marichev, “Algorithm for calculating
integrals of hypergeometric type functions and its realization
in reduce system,” in Proceedings of the International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC ’90), pp.
212–224, 1990.

[23] N. C. Sagias, “Closed-form analysis of equal-gain diversity
in wireless radio networks,” IEEE Transactions on Vehicular
Technology, vol. 56, no. 1, pp. 173–182, 2007.

[24] C. Tellambura and A. Annamalai, “Derivation of Craig’s
formula for gaussian probaility function,” Electronics Letters,
vol. 35, no. 17, pp. 1424–1425, 1999.

[25] A. Papoulis, Probaility, Random Variables and Stochastic
Processes, McGraw Hill, New York, NY, USA, 3rd edition, 1991.


	Introduction
	System and Channel Model
	Performance Analysis
	Moments of Output SNR
	Average Output SNR
	Amount of Fading (AoF)
	Spectral Efficiency (SE)

	Average Bit Error Probability (ABEP)
	For Coherent Detection (BPSK, BFSK)
	For Noncoherent Detection (DBPSK, NCFSK)
	Outage Probability Pout


	Numerical and Simulation Results
	Conclusion
	Appendices
	Derivation of PDF of Zi
	The PDF of ri
	The CHF of ri
	Acknowledgment
	References


