
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 876216, 15 pages
doi:10.1155/2010/876216

Research Article

MultiagentQ-Learning for Aloha-Like Spectrum Access in
Cognitive Radio Systems

Husheng Li

Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA

Correspondence should be addressed to Husheng Li, husheng@eecs.utk.edu

Received 31 December 2009; Accepted 18 April 2010

Academic Editor: Vincent Lau

Copyright © 2010 Husheng Li. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An Aloha-like spectrum access scheme without negotiation is considered for multiuser and multichannel cognitive radio systems.
To avoid collisions incurred by the lack of coordination, each secondary user learns how to select channels according to its
experience. Multiagent reinforcement leaning (MARL) is applied for the secondary users to learn good strategies of channel
selection. Specifically, the framework of Q-learning is extended from single user case to multiagent case by considering other
secondary users as a part of the environment. The dynamics of the Q-learning are illustrated using a Metrick-Polak plot, which
shows the traces of Q-values in the two-user case. For both complete and partial observation cases, rigorous proofs of the
convergence of multiagent Q-learning without communications, under certain conditions, are provided using the Robins-Monro
algorithm and contraction mapping, respectively. The learning performance (speed and gain in utility) is evaluated by numerical
simulations.

1. Introduction

In recent years, cognitive radio has attracted intensive
studies in the community of wireless communications. It
allows users without license (called secondary users) to
access licensed frequency bands when licensed users (called
primary users) are not present. Therefore, the cognitive
radio technique can substantially alleviate the problem of
underutilization of frequency spectrum [1, 2].

The following two problems are key to cognitive radio
systems.

(i) Resource mining, that is, how to detect the available
resource (the frequency bands that are not being used
by primary users); usually it is done by spectrum
sensing.

(ii) Resource allocation, that is, how to allocate the
available resource to different secondary users.

Substantial work has been done for the resource mining
problem. Many signal processing techniques have been
applied to sense the frequency spectrum [3], for example,
cyclostationary feature [4], quickest change detection [5],

and collaborative spectrum sensing [6]. Meanwhile, a signifi-
cant amount of research has been conducted for the resource
allocation in cognitive radio systems [7, 8]. Typically, it is
assumed that secondary users exchange information about
available spectrum resources and then negotiate on the
resource allocation according to their own requirements of
traffic (since the same resource cannot be shared by different
secondary users if orthogonal transmission is assumed).
These studies typically apply theories in economics, for
example, game theory, bargaining theory, or microeco-
nomics.

However, in many applications of cognitive radio, such a
negotiation-based resource allocation may incur significant
overhead. In traditional wireless communication systems,
the available resource is almost fixed (even if we consider
the fluctuation of channel quality incurred by fading, the
change of available resource is usually very slow and thus
can be considered stationary). Therefore, the negotiation
need not be carried out frequently, and the negotiation result
can be applied for a long period of data communication,
thus incurring only tolerable overhead. However, in many
cognitive radio systems, the resourcemay change very rapidly
since the activity of primary users may be highly dynamic.
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Figure 1: Illustration of competition and conflict in multiuser and multichannel cognitive radio systems.

Therefore, the available resource needs to be updated very
frequently, and the data communication period between
two spectrum sensing periods should be fairly short since
minimum violation to primary users should be guaranteed.
In such a situation, the negotiation of resource allocation
may be highly inefficient since a substantial portion of time
needs to be used for the negotiation. To alleviate such
an inefficiency, high-speed transceivers need to be used to
minimize the time consumed on negotiation. Particularly,
the turn-around time that is, the time needed to switch from
receiving (transmitting) to transmitting (receiving) should
be very small, which is a substantial challenge to hardware
design.

Motivated by the above discussion and observation, in
this paper, we study the problem of spectrum access without
negotiation in multiuser and multichannel cognitive radio
systems. The spectrum access without negotiation is achieved
by applying the framework of reinforcement learning. In
such a scheme, each secondary user senses channels and
then chooses an idle frequency channel to transmit data,
as if no other secondary user exists. If two secondary
users choose the same channel for data transmission, they
will collide with each other and the corresponding data
packets cannot be decoded. Such a procedure is illustrated
in Figure 1, where three secondary users access an access
point via four channels. Note that such a scheme is similar
to Aloha [9] where no explicit collision avoidance is applied.
We can also apply techniques similar to p-persistent Carrier
Sensing Multiple Access (CSMA) that is, each secondary
user transmits with probability p when it finds an available
channel. However, it is beyond the scope of this paper.
In the Aloha-like approach, since there is no mutual
communication among these secondary users, collision is
unavoidable. However, the secondary users can try to learn

collision avoidance, as well as channel qualities (we assume
that the secondary users have no a priori information about
the channel qualities), according to their experience. In such
a context, the learning procedure includes not only the
available frequency spectrum but also the behavior of other
secondary users.

To accomplish the learning of Aloha-like spectrum
access, multiagent reinforcement learning (MARL) [10] is
applied in this paper. One challenge of MARL in our
context is that the secondary users do not know the payoffs
(thus do not know the strategies) of other secondary users
in each stage; thus the environment of each secondary
user, including other secondary users, is nonstationary
and may not assure the convergence of learning. Due to
the assumption that there is no mutual communication
between different secondary users, many traditional MARL
techniques like fictitious play [11, 12] and Nash-Q learning
[13] cannot be used since they need information exchange
among players (e.g., exchanging their action information).
To alleviate the lack ofmutual communication, we extend the
principle of single-agent Q-learning, that is, evaluating the
values of different state-action pairs in an incremental way,
to the multiagent situation without information exchange.
By applying the theory of stochastic approximation [14],
which has been used in many studies on wireless networks
[15, 16], we will prove the main result of this paper, that is,
the learning converges to a stationary point regardless of the
initial strategies (Propositions 1 and 2).

Some studies on reinforcement learning in cognitive
radio networks have been done [17–19]. In [17] and [19],
the studies are focused on the resource competition in a spec-
trum auction system, where the channel allocation is deter-
mined by the spectrum regulator, which is different from this
paper in which no regulator exists. Reference [18] discusses
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Figure 2: Timing structure of spectrum sensing and data transmis-
sion.

correlated equilibrium and achieves it by no-regret learning;
that is, minimizing the gap between the current reward and
optimal reward. In this approach, mutual communication is
needed among the secondary users. However, in our study,
no intersecondary-user communication is assumed.

Note that the study in this paper has subtle similarities
to the evolutionary game theory [20], which has been
successfully applied in the cooperative spectrum sensing
in cognitive radio systems [21]. Both our study and the
evolutionary game focus on the dynamics of strategy changes
of users. However, there is a key difference between the
two studies. The evolutionary game theory assumes pure
strategies for the players (e.g., cooperate or free-ride in coop-
erative spectrum sensing [21]) and studies the proportions
of players using different pure strategies. The key equation
in the evolutionary game theory, called replicator equation,
describes the dynamics of the corresponding proportions.
In contrast to the evolutionary game, the players in our
study use mixed strategies and the basic (16) describes the
dynamics of the Q-values for different channels. Although
the convergence is proved by studying ordinary different
equations in both studies, the proof is significantly different
since the equations have totally different expressions.

The remainder of this paper is organized as follows. In
Section 2, the system model is introduced. Basic elements
of the game and the proposed multiagent Q-learning for
fully observable case (i.e., each secondary user can sense all
channels) are introduced in Section 3. The corresponding
convergence of Q-learning is proved in Section 4. The Q-
learning for partially observable case (i.e., each secondary
user can sense a subset of the channels) is discussed in
Section 5. Numerical results are provided in Section 6, while
conclusions are drawn in Section 7.

2. SystemModel

We consider N active secondary users accessing N licensed
frequency channels. (When there are more than N channels,
there is less competition; thus making the problem easier. We
do not consider the case when the number of channels is less
than the number of secondary users since a typical cognitive
radio system can provide sufficient channels. Meanwhile, the
proposed algorithm can also be applied to all possible cases
of N.) We index the secondary users, as well as the channels,
by integers 1, 2,. . ., N . For simplicity, we denote by i− the set
of users (channels) different from user (channel) i.

The following assumptions are made throughout this
paper.

(i) The secondary users are sufficiently close to each
other such that they share the same activity of
primary users. There is no communication among
these secondary users, thus excluding the possibility
of negotiation.

(ii) We assume that the activity of primary users over
each channel is a Markov chain (A more reasonable
model for the activity of primary users is the semi-
Markov chain. The corresponding analysis is more
tedious but similar to that in this paper. Therefore,
for simplicity of analysis, we consider only Markov
chain in this paper) with states B (busy: the channel
is occupied by primary users and cannot be used
by secondary users) and I (idle: there is no primary
user over this channel). We denote by Sj(t) the
state of channel j in the sensing period of the tth
spectrum access period. For channel i, the transition
probability from state B to state I (resp., from state
I to state B) is denoted by Pi

BI (resp., Pi
IB). We

assume that the N Markov chains for the N channels
are mutually independent. We also assume perfect
spectrum sensing and do not consider possible errors
of spectrum sensing.

(iii) We assume that the channel state transition proba-
bilities, as well as the channel rewards, are unknown
with the secondary users at the beginning. They are
fixed throughout the game, unless otherwise noted.
Therefore, the secondary users need to learn the
channel properties.

(iv) The timing structure of spectrum sensing and data
transmission is illustrated in Figure 2, where data is
transmitted after the spectrum sensing period. We
assume that each secondary user is able to sense
only one channel during the spectrum sensing period
and transmit over only one channel during the data
transmission period.

In Sections 3 and 4, we consider the case in which all
secondary users have full knowledge of channel states in
the previous spectrum access period (complete observation).
Note that this does not contradict the assumption that
a secondary user can sense only one channel during the
spectrum sensing period since the secondary user can con-
tinue to sense other channels during the data transmission
period (suppose that the signal from primary users can
be well distinguished from that from secondary users, e.g.,
using different cyclostationary features [22]). If we consider
the set of channel states in the previous spectrum access
period as the system state, denoted by S(t) at spectrum
access period t, then the previous assumption implies
a completely observable system state, which substantially
simplifies the analysis. In Section 5, we will also study the
case in which secondary users cannot continue to sense
during the data transmission period (partial observation);
thus each secondary user has only partial observations about
the system state.
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Figure 3: Examples of payoff matrices in a two-player and two-
channel game of aloha-like spectrum access.

3. Game andQ-Learning

In this section, we introduce the game associated to the
learning procedure and the application of Q-learning to
the Aloha-like spectrum access problem. Note that in this
section and Section 3, we assume that each secondary user
knows all channel states in the previous time slot, that is, the
completely observable case.

3.1. Game of Aloha-Like Spectrum Access. The Aloha-like
spectrum access problem is essentially an N × N game.
When secondary user i transmits over an idle channel
j, it receives reward Rij > 0 (e.g., channel capacity or
successful transmission probability), if no other secondary
user transmits over this channel, and reward 0, if one ormore
other secondary users are transmitting over this channel,
since collision will happen. We assume that the reward Rij

does not change with time.When channels change slowly, the
learning algorithm proposed in this paper can also be applied
to track the change of channels. When channels change very
fast, it is impossible for secondary users to learn. Since there
is no explicit information exchange among secondary users,
the collision avoidance is completely based on the received
reward. The payoff matrices for the case ofN = 2 are given in
Figure 3. Note that the actions, denoted by ai(t) for user i at
time t, in the game are the selections of channels. Obviously,
the diagonal elements in the payoff matrices are all zero since
collision yields zero reward.

It is well known that Nash equilibrium means the
strategies such that unilaterally changing strategy incurs the
degradation of its own performance. Mathematically, a Nash
equilibrium means a set of strategies {σ∗k }k, where σ∗k is the
strategy of player k, which satisfy

rk
(
σ∗k , σ

∗
−k
)
≥ rk

(
σk, σ∗−k

)
, ∀ σk, (1)

where rk means the reward of player k and σ∗−k means the
strategies of all players except player k.

It is easy to verify that there are multiple Nash equi-
librium points in the game. Obviously, orthogonal trans-
mission strategies, that is, ai(t) /= aj(t), ∀i /= j, are pure
equilibria. The reason is the following. If a secondary user
changes its strategy and transmits over other channels with
nonzero probability, those transmission will collide with

other secondary users (recall that, for the Nash equilibrium,
all other secondary users do not change their strategies) and
incurs performance degradation. The orthogonal channel
assignment can be achieved in the following approach:
let all secondary users sense the channel randomly at the
very beginning; once a secondary user finds an idle channel,
it will access this channel forever; after a random number
of rounds, all secondary users will find different channels,
thus achieving the orthogonal transmission. We call this
scheme the simple orthogonal channel assignment since it
is simple and fast. However, in this scheme, the different
rewards of different channels are ignored. As will be seen
in the numerical simulation results, the proposed learning
procedure can significant outperform the simple orthogonal
channel assignment.

3.2. Q-Value. We define the Q-function as the expected
reward in one time slot (since the channel states are
completely known to the secondary users and are not
controlled by the secondary users, each secondary user needs
to consider only the expected reward in one time slot, that
is, a myopic strategy) of each action under different states;
that is, for secondary user i and system state s, the Q-value of
choosing channel j is given by

Qs
i j = E

[
Ri | ai(t) = j, S(t) = s

]
, (2)

where Ri is the reward obtained by secondary user i, which is
dependent on the action, as well as the system state, and the
expectation is over the randomness of other users’ actions, as
well as the primary users’ occupancies.

3.3. Exploration. In contrast to fictitious play [11], which
is deterministic, the action in Q-learning is random. We
assign nonzero probabilities for all channels such that all
channels will be explored. Such an exploration guarantees
that good channels will not be missed during the learning
procedure. We consider Boltzmann distribution [23] for
random exploration, that is,

P
(
user i chooses channel j | state s) = eQ

s
i j /γ

∑N
k=1 eQ

s
ik/γ

, (3)

where γ is called temperature, which controls the randomness
of exploration. Obviously, the smaller γ is (the colder), the
more focused the actions are. When γ → 0, each user
chooses only the channel having the largest Q-value.

When secondary user i selects channel j and the system
state is s, the expected reward is given by

E
[
Ri
(
j
) | s] = RijP

(
Sj(t) = I | s

) N∏

k=1,k /= i

(
1− eQ

s
k j /γ

∑N
l=1 eQ

s
kl/γ

)
,

(4)

since secondary user k (k /= i) chooses channel j with proba-
bility eQ

s
k j /γ/

∑N
l=1 eQ

s
kl/γ (collision happens and secondary user

i receives no reward) and channel j is idle with probability
P(Sj(t) = I | s); then the product in (4) is the probability
that no other secondary user accesses channel j.
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3.4. Updating Q-Values. In the procedure of Q-learning, the
Q-functions are updated after each spectrum access using the
following rule:

Qs
i j(t + 1) =

(
1− αi j(t)

)
Qs

i j(t) + αi j(t)ri(t)I
(
ai(t) = j

)
,

(5)

where αi j(t) is a step factor (when channel j is not selected
by user i, we set αi j(t) = 0), ri(t) is the reward of secondary
user i and I is the characteristic function of the event that
channel j is selected by secondary user i at the tth spectrum
access. Note that this is the standard Q-learning without
considering the future states. An intuitive explanation for (5)
is that, once channel j is accessed, the correspondingQ-value
is updated by combining the old value and the new reward;
if channel j is not chosen, we keep the old value by setting
αi j(t) = 0. Our study is focused on the dynamics of (5). To
assure convergence, we assume that

∞∑

t=1
αi j(t) = ∞, ∀i = 1, . . . ,N , j = 1, . . . ,N , (6)

as well as
∞∑

t=1
α2i j(t) <∞, ∀i = 1, . . . ,N , j = 1, . . . ,N. (7)

Note that, in a typical stochastic game setting and Q-
learning, the updating rule in (5) should consider the reward
of the future and add a discounted term of the future reward
to the right hand side of (5). However, in this paper, the
optimal strategy is myopic since we assume that the system
state is known, and thus the secondary users’ actions do not
affect the system state. For the case of partial observation
(i.e., each secondary user knows only the state of a single
channel), the action does change each secondary user’s state
(typically the belief of system state), and the future reward
should be included in the right hand side of (5), which will
be discussed in Section 5.

3.5. Stationary Point. The Q-values for different users are
mutually coupled and all Q-values change if one Q-value
is changed since the strategy of the corresponding user is
changed, thus changing the expected rewards of other users.
We define Q-values satisfying the following equations as a
stationary point

Qs
i j = RijP

(
Sj(t) = I | s

)∏

k /= i

P
(
ak(t) /= j

)

= RijP
(
Sj(t) = I | s

)∏

k /= i

(
1− eQ

s
k j /γ

∑N
r=1 e

Qs
k j /γ

)
,

∀i, j = 1, . . . ,N.

(8)

Note that the stationarity is only in the statistical sense
since the Q-values can fluctuate around the stationary point
due to the randomness of exploration. Obviously, as γ → 0,
the stationary point converges to a Nash equilibrium point.
However, we are still not sure about the existence of such a
stationary point. The following lemma assures the existence
of stationary point. The proof is given in Appendix B.
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Figure 4: Illustration of the dynamics in the 2× 2 Q-learning.

Lemma 1. For sufficiently small γ, there exists at least one
stationary point satisfying (8).

4. Convergence ofQ-learning without
Information Exchange

In this section, we study the convergence of the proposed Q-
learning algorithm. First, we provide an intuitive explanation
for the convergence in 2× 2 case. Then, we apply the tools of
stochastic approximation and ordinary differential equation
(ODE) to prove the convergence rigorously.

4.1. Intuition on Convergence. As will be shown in
Proposition 1, the updating rule of Q-values in (5)
will converge to a stationary equilibrium point close to
Nash equilibrium. Before the rigorous proof, we provide
an intuitive explanation for the convergence using the
geometric argument proposed in [24].

The intuitive explanation is provided in Figure 4 for the
case of N = 2 (we call it Metrick-Polak plot since it was
originally proposed by A. Metrick and B. Polak in [24]).
For simplicity, we ignore the indices of state and assume
that both channels are idle. The axes are μ1 = Q11/Q12 and
μ2 = Q21/Q22, respectively. As labeled in the figure, the plane
is divided into four regions separated by two lines μ1 = 1 and
μ2 = 1, in which the dynamics of Q-learning are different.
We discuss these four regions separately.

(i) Region I: in this region, Q11 > Q12; therefore,
secondary user 1 prefers visiting channel 1; mean-
while, secondary user 2 prefers accessing channel 2
since Q22 > Q21; then, with large probability, the
strategies will converge to a stationary point in which
secondary users 1 and 2 access channels 1 and 2,
respectively.

(ii) Region II: in this region, both secondary users prefer
accessing channel 1, thus causing many collisions.
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Therefore, both Q11 and Q21 will be reduced until
entering either region I or region III.

(iii) Region III: similar to region I.

(iv) Region IV: similar to region II.

Then, we observe that the points in Regions II and IV
are unstable and will move into Region I or III with large
probability. In Regions I and III, the strategy will move
close to the stationary point with large probability. Therefore,
regardless where the initial point is, the updating rule in (5)
will converge to a stationary point with large probability.

4.2. Stochastic Approximation-Based Convergence. In this
section, we prove the convergence of the Q-learning of the
proposed Aloha-like spectrum access with Boltzman dis-
tributed exploration. First, we find the equivalence between
the updating rule (5) and Robbins-Monro iteration [25]
for solving an equation with unknown expression (a brief
introduction is provided in Appendix A). Then, we apply
a conclusion in stochastic approximation [14] to relate the
dynamics of the updating rule to an ODE and prove the
convergence of the ODE.

4.2.1. Robbins-Monro Iteration. At a stationary point, the
expected values of Q-functions satisfy the equations in (8).
For system state s, define

qs �
(
Qs

11, . . . ,Q
s
1N , . . . ,Q

s
21, . . . ,Q

s
2N ,Q

s
N1, . . . ,Q

s
NN

)T
.
(9)

Then, (8) can be rewritten as

gs
(
qs
) = As

(
qs
)
r− qs = 0, (10)

where

r � (R11, . . . ,R1N , . . . ,R21, . . . ,R2N ,RN1, . . . ,RNN )
T , (11)

and (function mod(x,N) means the remainder of dividing
integer x with integer N)

As
i j �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(
S mod ( j,N)=Is

) ∏

k /= mod (i,N)

⎛
⎝1− eQ

s
k mod ( j,N)/γ

∑N
p=1 e

Qs
kp/γ

⎞
⎠,

if mod (i,N) = mod
(
j,N

)
,

0,

if mod (i,N) /= mod
(
j,N

)

(12)

with convention mod(N ,N) = N . Obviously, As
i j is the

probability that channel mod( j,N) can be used by sec-
ondary user mod(i,N) without collision with other sec-
ondary users, when the current system state is s.

Then, the updating rule in (5) is equivalent to solving
(8) (the expression of the equation is unknown since the
rewards, channel transition probabilities, as well as the

strategies of other users, are all unknown) using Robbins-
Monro algorithm [14], that is,

qs(t + 1) = (1− α(t))qs(t) + α(t)r(t)

= qs(t) + α(t)Ys(t),
(13)

where α(t) is the vector of all step factors, r(t) is the vector of
rewards obtained at spectrum access period t and Ys(t) is a
random observation on function gs contaminated by noise,
that is,

Ys(t) = r(t)− qs(t)

= rs(t)− qs(t) + r(t)− rs(t)

= gs
(
qs(t)

)
+ δms(t),

(14)

where gs(qs(t)) = rs(t)− qs(t), δms(t) = r(t)− rs(t) is noise
and (recall that ri(t) means the reward of secondary user i at
time t)

rs(t) = As
(
qs(t)

)
r. (15)

Obviously, E[δms(t)] = 0 since the expectation of the
difference between the reward and the expected reward is
equal to 0. Therefore, the observation δms(t) is a Martingale
difference.

4.2.2. ODE and Convergence. The procedure of Robbins-
Monro algorithm (i.e., the updating of Q-value) is the
stochastic approximation of the solution of the equation. It
is well known that the convergence of such a procedure can
be characterized by an ODE. Since the noise δm(t) in (14) is
a Martingale difference, it is easy to verify the conditions in
Theorem 1 in Appendix A and obtain the following lemma
(the proof is given in Appendix C).

Lemma 2. With probability 1, the sequence qs(t), ∀s, con-
verges to some limit set of the ODE

q̇s = gs
(
qs
)
. (16)

What remains to do is to analyze the convergence
property of the ODE (16). We obtain the following lemma
by applying Lyapunov function. The proof is given in
Appendix D.

Lemma 3. If a stationary point determined by (10) exists,
the solution of ODE (16) converges to the stationary point for
sufficiently large γ.

Combining Lemmas 1, 2, and 3, we obtain the main
result in this paper.

Proposition 1. Suppose that a stationary point determined by
(10) exists. For any system state s and sufficiently large γ, the
Q-learning converges to a stationary point with probability 1.

Note that a sufficiently small γ guarantees the existence
of stationary point and a sufficiently large γ assures the
convergence of the learning procedure. However, they do
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not conflict since they are not necessary conditions. As we
found in our simulations, we can always choose a suitable
γ to guarantee the existence of the stationary point and the
convergence.

5.Q-Learning with Partial Observations

In this section, we remove the assumption that all secondary
users know all channel states in the previous spectrum access
period and assume that each secondary user knows the state
of only the channel sensed in the previous spectrum access
period; thus making the system state partially observable.
The difficulties of analyzing such a scenario are given below:

(i) The system state is partially observable.

(ii) The game is imperfectly monitored, that is, each
player does not know other players’ actions.

(iii) The game has incomplete information, that is, each
player does not know the strategies of other players,
as well as their beliefs on the system state.

Note that the latter two difficulties are common for
both the complete and partial observation cases. However,
the imperfect monitoring and incomplete information add
much more difficulty in the partial observation case. In this
section, we formulate the Q-learning algorithm and then
prove the convergence under certain conditions.

5.1. State Definition. It is well known that, in partially
observable Markov decision process (POMDP) problems,
the belief on the system state, that is, P(S(t)Ht−1) (Ht−1 is
the observation history before period t), can play the role of
system state. Due to the special structure of the game, we can
define the state of secondary user i at period t as

Θi(t) = (τi1(t), . . . , τiN (t), Si1(t), . . . , SiN (t)), (17)

where τi j(t), j = 1, . . . ,N , means the number of consecutive
periods during which channel j has not been sensed before
period t (e.g., if the last time that channel j was sensed by
secondary user i is time slot 5, τi j(t) = t − 5.) and Si j(t) is
the state of channel j in the last time when it is sensed before
period t.

5.2. Learning in the POMDP Game. For the purpose of
learning, we define the objective function for user i as the
discounted sum of rewards in each spectrum access period
with discount factor β, that is,

Ji =
(
1− β

) ∞∑

t=0
βtE[ri(t)]. (18)

Then, to maximize the objectively function, the correspond-
ing Q-learning strategy is given by [23]

QΘ
i j (t + 1) =

(
1− αΘi j(t)

)
QΘ

i j (t)

+ αΘi j(t)

(
ri(t)I

(
ai(t) = j

)
+ max

k=1,...,N
βQΘ′

ik (t)

)
,

(19)

whereΘ′ is uniquely determined byΘ and j, and αΘi j(t) is the
step factor dependent on the time, channel, user, and belief
state. Note that Θ′ is the system state in the next time slot,
which is random. Intuitively, the new Q-value is updated by
combining the old value and the new estimation, which is the
sum of the new reward and discounted old Q-value.

Similarly to the complete information situation, we have
the following proposition which states the convergence of the
learning procedure with partial information and large γ. The
proof is given in Appendix E. Note that numerical simulation
shows that small γ also results in convergence. However, we
are still unable to prove it rigorously.

Proposition 2. When γ is sufficiently large, the learning
procedure in (19) converges.

6. Numerical Results

In this section, we use numerical simulations to demonstrate
the theoretical results obtained in previous sections. For the
fully observable case, we use the following step factor:

αi j(t) = α0
# of times user i selects channel j before time t

,

(20)

where α0 is the initial learning factor. A similar step factor
αΘi j(t) is used for the partially observable case. In Sections
6.1, 6.2, and 6.3, we consider the fully observable case and,
in Section 6.4, we consider the partially observable case. Note
that, in all simulations, we initialize theQ-values by choosing
uniformly random variables in the interval [0, 1].

6.1. Dynamics. Figures 5 and 6 show the dynamics of μ1
versus μ2 (recall that μ1 = Q11/Q12 and μ2 = Q21/Q22) of
several typical trajectories for the state of both channels being
idle when N = 2. We assume that Rij = 1 for all i and j.
Note that γ = 0.1 in Figure 5 and γ = 0.01 in Figure 6. We
observe that the trajectories move from unstable regions (II
and IV in Figure 4) to stable regions (I and III in Figure 4).
We also observe that the trajectories for smaller temperature
γ is smoother since less explorations are carried out.

Figure 7 shows the evolution of the probability of
choosing channel 1 when N = 2, γ = 0.1 and both channels
are idle. We observe that both secondary users prefer channel
1 at the beginning and soon secondary user 1 intends to
choose channel 2, thus avoiding collisions.

6.2. CDF of Rewards. In this subsection, we consider the
performance of reward averaged over all system states. When
N = 3, we set PII = 0.9, 0.8, 0.7 and PBI = 0.3, 0.4, 0.1 for
the three channels, respectively. When N = 2, we use the
first two channels in the case of N = 3. The rewards of
different channels for different secondary users are randomly
generated with a uniform distribution between [0.5, 1]. The
CDF curves of performance gain, defined as the difference
of average rewards after and before the learning procedure,
are plotted in Figure 8 for both N = 2 and N = 3. Note
that the CDF curves are obtained from 100 realizations of
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Figure 5: An example of dynamics of the Q-learning when N = 2,
γ = 0.1, and system state is fully observable.
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Figure 6: An example of dynamics of the Q-learning when N = 2,
γ = 0.01, and system state is fully observable.

learning procedure. From a CDF curve, we can read the
distribution of the performance gains. For example, for the
curve N = 2, performance gain 0.4 in the horizontal axis
corresponds to 0.6 in the vertical axis; this means that around
60% of the secondary users obtain performance gain less
than 0.4. We observe that when N = 2, most performance
gains are positive. However, when N = 3, a small portion of
the performance gains are negative, that is, the performance
is decreased after the learning procedure. Such a performance
reduction is reasonable since Nash equilibrium may not be
Pareto optimal. We also plotted the average performance
gains versus different α0 and γ in Figure 9. We observe that
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Figure 7: An example of the evolution of aloha-like spectrum access
probability when N = 2 and system state is fully observable.
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Figure 8: CDF of performance gain over the randomQ values when
system state is fully observable.

larger γ results in worse performance gain. When γ is small,
smaller α0 yields better performance, but decreases faster
than larger α0 when γ increases. The performance gain over
the simple orthogonal channel assignment scheme is given in
Figure 10. We observe that the learning procedure generates
a much better performance than the simple orthogonal
channel assignment.

6.3. Learning Speed. We define the stopping time of learning
as the time that the relative fluctuation of average reward,
which is obtained from 2000 spectrum access periods using
the currentQ-values, has been below 5 percent for successive
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Figure 9: Average performance gains over the random Q values
versus different γ and α when system state is fully observable.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

0.2

0.4

0.6

0.8

Performance gain

C
D
F

N = 2
N = 3

Figure 10: CDF of performance gain over the simple orthogonal
channel assignment when system state is fully observable.

5 time slots. That is, compute the relative fluctuation at time
slot t using

δ(t) = ‖Q(t)−Q(t − 1)‖
‖Q(t)‖ , (21)

where Q is the vector containing all Q-values and the norm
is 2-norm. Then, when δ(t) is smaller than 0.05 for 5
consecutive times, we claim that the learning is completed.
Then, the learning delay is the time spent before the stopping
time. Obviously, the smaller the learning delay is, the faster
the learning is. Figures 11 and 12 show the delays of learning,
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Figure 11: CDF of learning delay with different learning factor α0
when N = 2 and system state is fully observable.
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Figure 12: CDF of learning delay with different temperature γ when
N = 2 and system state is fully observable.

which characterizes the learning speed, for different learning
factor α0 and different temperature γ, respectively, when
N = 2. The original Q values are randomly selected.
When the probabilities of choosing channel 1 are larger than
0.95 for one secondary user and smaller than 0.05 for the
other secondary user, we claim that the learning procedure
is completed. We observe that larger learning factor α0
results in smaller delay while smaller γ yields faster learning
procedure.
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Figure 13: CDF of learning delay when the system state is fully
observable.
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Figure 14: CDF of performance gain when the system state is fully
observable and the channel rewards change with time.

The speed of learning is compared for N = 2, N = 3 and
N = 10 in Figure 13 (both α and γ are fixed). We observe
that, for more than 90% of the realizations, the learning can
be completed within 20 spectrum access periods. However,
the learning procedure may last for a long period of time for
some situations. We can notice that the learning speeds are
similar for cases N = 2 and N = 3. We also observe that,
when N is much larger (N = 10), the increase of delay is not
significant.
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Figure 15: CDF of performance gain over the random Q values in
partial observation case.

6.4. Time-Varying Channel Rewards. In previous simula-
tions, the rewards of successfully accessing channels, Rij

are assumed to be constant. In practical systems, they
may change with time since wireless channels are usually
dynamic. In Figure 14, we show the CDF of performance
gains (the configuration is the same as that in Figure 8) when
channel changes slowly. We used a simple model for channel
reward, which is given by

Rij(t + 1) = max
(
0,Rij(t) + 0.05∗ θ

)
, (22)

where θ is a random variable uniformly distributed between
0 and 1. From Figure 14, we observe that the learning
algorithm still improves the performance significantly.

6.5. Partial Observation Case. Figure 15 shows the perfor-
mance gain of learning in the case of partial observations. We
adopt the Q-learning mechanism introduced in Section 5.
Note that there are infinitely many belief states since a
channel could be unsensed for an infinite period of time. For
computational simplicity, we set all τi j(t) > 5 to τi j(t) = 5
(recall that τi j(t) is the period of time that channel j has
not been sensed by user i before time t). From Figure 15,
we observe that the performance is actually degraded for
around 40% (N = 2) or 50% (N = 3) cases. However, the
amplitude of performance degradation is averagely less than
the amplitude of performance gain. We also observe that the
performance gain is decreased when N is increased from 2
to 3.

The learning delay for the partial observation case is
shown in Figure 16, where the simulation setup is similar to
that of Figure 13. Again, we observe that the learning speeds
of N = 2 and N = 3 are similar to each other.
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Figure 16: CDF of learning delay when the system state is partially
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7. Conclusions

We have discussed a learning procedure for Aloha-like
spectrum access without negotiation in cognitive radio
systems. During the learning, each secondary user considers
the channel and other secondary users as its environment,
updates its Q-values, and takes the best action. An intuitive
explanation for the convergence of learning is provided using
Metrick-Polak plot. By applying the theory of stochastic
approximation and ODE, we have shown the convergence
of learning under certain conditions. We also extended the
case of full observations to the case of partial observations.
Numerical results show that secondary users can learn to
avoid collision quickly. The performance after the learning
is significantly better than that before the learning and that
using a simple scheme to achieve a Nash equilibrium. Note
that our study is one extreme of the resource allocation
problem since no negotiation is considered, while the other
extreme is full negotiation to achieve optimal performance.
Our future work will be the intermediate case; that is, limited
negotiation for resource allocation.

Appendices

A. Stochastic Approximation

For being self-contained, we briefly introduce the theory of
stochastic approximation and cite the conclusion used for
proving Lemma 2.

Essentially, stochastic approximation is used to solve an
equation with unknown expression and noisy observations.
Consider equation

g(θ) = 0, (A.1)

where θ is the unknown variable and the expression of
function g is unknown. Denote by θ∗ the solution to this
equation (we assume that there is only one solution to
the equation). Suppose that g(θ) < 0 for θ > θ∗ and
g(θ) > 0 for θ < θ∗. We have a series of noisy observations
of g(θ), denoted by {Yn}. Then, we can approximate the
solution iteratively in the following way (called Robbins-
Monro algorithm).

θn+1 = θn + αnYn, (A.2)

where αn > 0 is the step for the nth iteration.
The convergence of (A.2) is deeply related to a “mean”

ODE, which is given by

θ̇(t) = g(θ). (A.3)

The following Theorem (part of Theorem 2.1 in [14])
discloses the relationship between the convergence in (A.2)
and the mean ODE in (A.3).

Theorem 1. If the following assumptions are satisfied, θn
converges to a limit set A in which all points satisfy g(θ) = 0
with probability 1:

(A) supnE|Yn|2 <∞.

(B) Noise is a martingale difference, that is,

E[Yn | θ0,Yi, i < n] = g(θn). (A.4)

(C) g(·) is continuous.
(D)

∑
i α

2
i <∞.

(E) There exists a continuously differentiable function f
such that g(·) = f ′(·) and f is a constant on the limit
set A.

B. Proof of Lemma 1

Proof. For simplicity, we fix one system state s since the
Q-learning procedures for different state s are mutually
independent when the system state is fully observable and
the action of each secondary user does not affect the
system state. Consider a Nash equilibrium point, at which
there is no collision. Without loss of generality, we assume
that secondary users 1, 2, . . . ,N use channels 1, 2, . . . ,N ,
respectively.

Now, we choose a set of {Qs
i j}i j such that

0 < Qs
i j < Qs

ii < P(Si(t) = I | s)Rii, ∀i = 1, . . . ,N , j /= i.
(B.1)

Then, we can always choose a sufficiently small γ such that

Qs
ii < RiiP(Si(t) = I | s)

∏

k /= i

(
1− eQ

s
ki/γ

∑N
r=1 eQ

s
kr /γ

)
, (B.2)

Qs
i j > Ri jP

(
Sj(t) = I | s

)∏

k /= i

(
1− eQ

s
k j /γ

∑N
r=1 eQ

s
kr /γ

)
, (B.3)
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since the right hand sides of (B.2) and (B.3) converge to

RiiP(S
j
t = I | s) and 0, respectively, as γ → 0.

Then, we carry out the following iterations, that is, the
Q-values of themth iteration is given by,∀i, j = 1, 2, . . . ,N ,

Qs
i j(m) = RijP

(
Sj(t) = I | s

)∏

k /= i

(
1− eQ

s
k j (m−1)/γ

∑N
r=1 eQ

s
kr (m−1)/γ

)
.

(B.4)

Next, we show that, ∀i = 1, . . . ,N , Qs
ii increases

while Qs
i j (i /= j) decreases during the iterations by car-

rying out inductions on m. For the first iteration, Qs
ii is

increased while Qs
i j (i /= j) is decreased due to the conditions

(B.2) and (B.3). Suppose that, in the mth iteration, the
conclusion holds. Then, in the m + 1th iteration, Qs

ii is
increased due to the expression of the right hand side
of (B.4) and the assumptions Qs

ii(m) > Qs
ii(m − 1) and

Qs
i j(m) < Qs

i j(m − 1) (i /= j). For the same reason, Qs
i j

is decreased in the m + 1th iteration. This concludes the
induction.

Now, we have shown that Qii(m) is a monotonically
increasing sequence while Qij(m) (i /= j) is a monotoni-
cally decreasing sequence. Since all sequences are bounded
(Qii(m) < Rii and Qij(m) > 0 (i /= j)), all sequences converge
to their limits, which is the stationary point. This concludes
the proof.

C. Proof of Lemma 2

Proof. We verify the conditions in Theorem 1 one by one.

(i) Condition (A): This is obvious since Yn is upper
bounded by maxi, jRi j (recall that Yn is the dif-
ference between the instantaneous reward and the
Q-value).

(ii) Condition (B): The martingale difference noise has
been proved right after (14).

(iii) Condition (C): The function g(x) is given by

g(x) = A(x)r− x, (C.1)

where A is defined in (12). We only need to verify
the continuity of A(x)r. Obviously, each element in
A(x)r is differentiable with respect to x. Therefore,
g(x) is not only continuous but also differentiable.

(iv) Condition (D): It is guaranteed by (7).

(v) Condition (E): The function f can be defined as the
integral of g. It is continuously differentiable since g
is continuous. It is a constant on the limit set since
there is only one point at the limit set.

D. Proof of Lemma 3

Proof. We apply Lyapunov’s method to analyze the conver-
gence of the ODE in (16). We define the Lyapunov function
as

Vs(t) = ∥∥gs(t)∥∥2

=
∑

i, j

(
rsi j(t)−Qs

i j(t)
)2
,

(D.1)

where rsi j(t) is the expected reward of secondary user i at
period t.

Then, we examine the derivative of the Lyapunov func-
tion with respect to time t, that is,

dVs(t)
dt

= 2
∑

i, j

d
(
rsi j(t)−Qs

i j(t)
)

dt

(
rsi j(t)−Qs

i j(t)
)

= 2
∑

i, j

dεsi j(t)
dt

εsi j(t),

(D.2)

where εsi j(t) � rsi j(t)−Qs
i j(t).

We have

dεsi j(t)
dt

= drsi j(t)

dt
− dQs

i j(t)

dt

= drsi j(t)

dt
− εsi j(t),

(D.3)

where we applied the ODE (16).
Then, we focus on the computation of drsi j(t)/dt.
For secondary user i and channel j, we have

drsi j(t)

dt
= RijP

(
Sj(t) = I | s

) d
dt

⎛
⎝∏

k /= i

(
1− eQ

s
k j /γ

∑N
r=1 eQ

s
kr /γ

)⎞
⎠

= RijP
(
Sj(t) = I | s

)∑

k /= i

∏

l /= k,l /= i

(
1− eQ

s
l j /γ

∑N
r=1 eQ

s
lr /γ

)
d

dt

×
(
1− eQ

s
k j /γ

∑N
r=1 eQ

s
kr /γ

)
,

(D.4)

where the first equation is due to the definition of rsi j(t) and
the second equation is due to the rule of the derivative of
products.
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We consider the derivative in (D.4), that is,

d

dt

(
1− eQ

s
k j /γ

∑N
r=1 eQ

s
kr /γ

)

= −
eQ

s
k j /γ
(∑N

r=1 eQ
s
kr /γ
)

γ
(∑N

r=1 eQ
s
kr /γ
)2

dQs
k j

dt

+
N∑

r=1

eQ
s
k j /γeQ

s
kr /γ

γ
(∑N

r=1 eQ
s
kr /γ
)2

dQs
kr

dt

=
N∑

r=1,r /= j

eQ
s
k j /γeQ

s
kr /γ

γ
(∑N

r=1 eQ
s
kr /γ
)2
(
dQs

kr

dt
−

dQs
k j

dt

)

=
N∑

r=1,r /= j

eQ
s
k j /γeQ

s
kr /γ

γ
(∑N

r=1 eQ
s
kr /γ
)2
(
εskr(t)− εsk j(t)

)
,

(D.5)

where the last equation is obtained from ODE (16).
Substituting (D.5) into (D.4), we obtain

drsi j(t)

dt
= RijP

(
Sj(t) = I | s

)∑

k /= i

∏

l /= k,l /= i

(
1− eQ

s
l j /γ

∑N
r=1 eQ

s
lr /γ

)

×
N∑

r=1,r /= j

eQ
s
k j /γeQ

s
kr /γ

γ
(∑N

r=1 eQ
s
kr /γ
)2
(
εskr(t)− εsk j(t)

)
.

(D.6)

Combining (D.2) and (D.6), we have

dVs(t)
dt

= −2
N∑

i=1, j=1

(
εsi j(t)

)2

+
N∑

k,r,i, j=1,(k,r) /= (i, j)

ckri jεsi j(t)ε
s
kr(t),

(D.7)

where the coefficient ckri j is given by

RijP
(
Sj(t) = I | s

)
eQ

s
k j /γeQ

s
kr /γ

γ
(∑N

q=1 e
Qs
kq/γ
)2

∏

l /= k,l /= i

⎛
⎝1− eQ

s
l j /γ

∑N
q=1 e

Qs
lq/γ

⎞
⎠

+
RkrP(Sr(t) = I | s)eQs

i j /γeQ
s
ir /γ

γ
(∑N

q=1 e
Qs
iq/γ
)2

∏

l /= k,l /= i

⎛
⎝1− eQ

s
lr /γ

∑N
q=1 e

Qs
lq/γ

⎞
⎠,

(D.8)

if k /= i and r /= j, and

−
N∑

r=1,r /= j

Ri jP
(
S
j
i = I | s

)
eQ

s
k j /γeQ

s
kr /γ

γ
(∑N

q=1 e
Qs
kq/γ
)2

∏

l /= k,l /= i

×
⎛
⎝1− eQ

s
l j /γ

∑N
q=1 e

Qs
lq/γ

⎞
⎠

−
N∑

r=1,r /= j

RkrP
(
Srk = I | s

)
eQ

s
i j /γeQ

s
ir /γ

γ
(∑N

q=1 e
Qs
i j /γ
)2

∏

l /= k,l /= i

×
⎛
⎝1− eQ

s
l j /γ

∑N
q=1 e

Qs
lq/γ

⎞
⎠,

(D.9)

if k /= i and r = j. When k = i, ckri j = 0.
It is easy to verify

P(Sr(t) = Is)eQ
s
i j /γeQ

s
ir /γ

(∑N
q=1 e

Qs
iq/γ
)2 < 1, (D.10)

∏

l /= k,l /= i

⎛
⎝1− eQ

s
lr /γ

∑N
q=1 e

Qs
lq/γ

⎞
⎠ < 1. (D.11)

Therefore, when γ is sufficiently large, we have

ckri j <
2

N2 − 1
. (D.12)

Then, we have

1
2
dVs(t)
dt

< −
N∑

i, j=1
ε2i j(t)

+
2

N2 − 1

N∑

k,r,i, j=1,(k,r) /= (i, j)

∣∣∣εi j(t)
∣∣∣|εkr(t)|

= − 1
N2 − 1

N∑

k,r,i, j=1,(k,r) /= (i, j)

(∣∣∣εi j(t)
∣∣∣ + |εkr(t)|

)2

< 0.
(D.13)

Therefore, when γ is sufficiently large, the derivative of the
Lyapunov function is strictly negative, which implies that the
ODE (16) converges to a stationary point. This concludes the
proof.

Remark 1. We can actually obtain a stronger conclusion from
the last part of the proof, that is, the convergence can be
assured if

γ ≥ (N − 1)
(
N2 − 1

)
max Rij

2
. (D.14)
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E. Proof of Proposition 2

Proof. We define a mapping from all Q-values to another set
of Q-values, which is given by

T
(
QΘ

i j

)
= E

[
ri j
]
+ βmin

k
QΘ′

ik , ∀i, j,Θ, (E.1)

where Θ′ is determined by Θ and j and ri j is the average
reward when secondary user i chooses channel j. Note that
E[ri j] is a function of all Q-values.

What we need to prove is that T is a contraction
mapping. Once this is proved, the remainder part is exactly
the same as the proof of the convergence of Q-learning in
[26]. Therefore, we focus on the analysis on the mapping T .

We consider two sets of Q-values, denoted by {QΘ
i j}i, j,Θ

and {Q̃Θ
i j}i, j,Θ, respectively. Considering the difference after

the mapping T between the two sets of Q-values, we have

T
(
QΘ

i j

)
− T

(
Q̃Θ

i j

)
= E

[
ri j
]
− E

[
r̃i j
]

+ βmin
k
QΘ′

ik − βmin
k
Q̃Θ′

ik ,
(E.2)

where E[r̃i j] means the average reward when theQ-values are

{Q̃Θ
i j}i, j,Θ. Then, we have

∣∣∣T
(
QΘ

i j

)
− T

(
Q̃Θ

i j

)∣∣∣ ≤
∣∣∣E
[
ri j
]
− E

[
r̃i j
]∣∣∣

+ β
∣∣∣∣min

k
QΘ′

ik −min
k
Q̃Θ′

ik

∣∣∣∣.
(E.3)

We discuss the two terms in (E.3) separately. For the first
term, we have

E
[
ri j
]
=

∑

{Θk}k /= i

P
(
{Θk}k /= i | Θ

)
RijP

(
Sj = IΘ

)∏

k /= i

×
⎛
⎜⎝1− eQ

Θk
k j /γ

∑N
p=1 e

Q
Θk
kp /γ

⎞
⎟⎠,

(E.4)

where {Θk}k /= i is the set of states of secondary users except
user i and P({Θk}k /= i | Θ) is the probability of the set of
states {Θk}k /= i conditioned on the state of secondary user i,
Θ.

When γ is sufficiently large, we have

eQ
Θk
k j /γ = 1 +

QΘk

k j

γ
+ ϑ

⎛
⎝QΘk

k j

γ

⎞
⎠, (E.5)

where ϑ(QΘk

k j /γ) is a polynomial of order O((QΘk

k j /γ)
2
).

Then, it is easy to verify that (E.4) can be rewritten as

E
[
ri j
]
=

∑

{Θk}k /= i

P
(
{Θk}k /= i | Θ

)
RijP

(
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}
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⎠,

=
∑

{Θk}k /= i

P
(
{Θk}k /= i | Θ

)
RijP

(
Sj = I | Θ

)

×
⎛
⎝
(
n− 1
n

)n−1
−
∑

k /= i

(n− 1)QΘk

k j

n2γ

+ε
({

QΘ
r p

}
r,p,Θ

)⎞
⎠,

(E.6)

where ρ({QΘ
kp}p,Θ) and ε({QΘ

r p}r,p,Θ) are both polynomials of

smaller order than O({Q̃Θ
r p}r,p,Θ). Note that the coefficients

of both polynomials are independent of the Q-values.
Then, we have

∣∣∣E
[
ri j
]
− E

[
r̃i j
]∣∣∣ =

∑
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+ ε
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r p

}
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)
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)
.

(E.7)

Then, we can always take a sufficiently large γ such that

∣∣∣E
[
ri j
]
− E

[
r̃i j
]∣∣∣ ≤ 1− β

2
max
p,q,θ

∣∣∣Qθ
pq − Q̃θ

pq

∣∣∣. (E.8)

Now, we turn to the second term in (E.3). Without loss
of generality, we assume βminkQΘ′

ik ≥ βminkQ̃Θ′
ik . We have

βmin
k
QΘ′

ik − βmin
k
Q̃Θ′

ik

≤ βQΘ′
iq − βQ̃Θ′

iq

≤ β

(
max
r,s,θ

Qθ
rs − Q̃θ

rs

)
,

(E.9)

where, in the first inequality, we define q as

q = argmin
k
Q̃Θ′

ik . (E.10)

Due to symmetry, we have

∣∣∣∣βmin
k
QΘ′

ik − βmin
k
Q̃Θ′

ik

∣∣∣∣ ≤ β
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r,s,θ

βQθ
rs − Q̃θ

rs

∣∣∣∣∣. (E.11)



EURASIP Journal on Wireless Communications and Networking 15

Combining (E.8) and (E.11), we have

∣∣∣T
(
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)
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(
Q̃Θ

i j

)∣∣∣ ≤ 1− β

2
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pq − Q̃θ

pq
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r,s,θ

βQθ
rs − Q̃θ

rs

∣∣∣∣∣

≤ 1 + β

2
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p,q,θ

∣∣∣Qθ
pq − Q̃θ

pq

∣∣∣,

(E.12)

which implies

∥∥∥T
(
QΘ

i j

)
− T

(
Q̃Θ

i j

)∥∥∥∞ ≤
1 + β

2

∥∥∥QΘ
i j − Q̃Θ

i j

∥∥∥∞. (E.13)

Therefore, T is a contractionmapping under the norm ‖·‖∞.
This concludes the proof.

Remark 2. Note that, in contrast to the stochastic approx-
imation approach for the proof of the convergence in the
complete observation case, we used a different approach
to prove the convergence of the learning with partial
observations since it is difficult to apply the stochastic
approximation in the partial observation case. Although
the stochastic approximation approach is slightly more
complicated, we can find a finite value for γ in (D.14)
to assure the convergence. For the contraction mapping
approach, we are still unable to find such a finite value for
γ.
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