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We investigate channel assignment for a multichannel wireless mesh network backbone, where each router is equipped with
multiple interfaces. Of particular interest is the development of channel assignment heuristics for multiple flows. We present
an optimization formulation and then propose two iterative flow oriented heuristics for the conflict-free and interference-aware
cases, respectively. To maximize the aggregate useful end-to-end flow rates, both algorithms identify and resolve congestion at
instantaneous bottleneck link in each iteration. Then the link rate is optimally allocated among contending flows that share this link
by solving a linear programming (LP) problem. A thorough performance evaluation is undertaken as a function of the number of
channels and interfaces/node and the number of contending flows. The performance of our algorithm is shown to be significantly
superior to best known algorithm in its class in multichannel limited radio scenarios.

1. Introduction

There exists considerable interest in deploying wireless mesh
networks (WMNs) as a backhaul in support of ubiquitous
broadband wireless access for mobile as well as fixed clients
[1, 2]. We study an infrastructure WMN, where a collection
of stationary wireless mesh routers are interconnected as
a multihop backbone to provide clients, network access.
As shown in Figurel, among all mesh routers, some
have client connectivity (mesh access points), and some
have Internet gateway capability. The mesh backbone then
supports multihop flows amongst mesh routers. These flow
traffics are aggregated from a group of clients, leading to
needed long-term stability for system optimization.

The success of such WMNSs largely hinges on their
potential for scaling backbone throughput with increasing
client density while preserving network coverage. As has
already been noted in [3-5], a crucial element in throughput
scaling is more effective utilization of available multiple
(nonoverlapping) channels. We propose to achieve this by
having multiple interfaces per node at incremental hardware
cost; for example, note the availability of integrated 802.11
a/b/g transceivers on the same network interface card (NIC).

In the future, such integration of multiple transceivers (such
as different generations of a successful technology such as
802.11) on a single device will be commonplace, and our
work is thus well aligned with this trend.

Channel assignment (CA) is a resource management
challenge in such a multiradio multichannel paradigm,
whereby a particular channel is now assigned to a specific
link and network interface pair. This is a largely under-
explored domain with the potential of boosting network
throughput as it can mitigate both intra- and interflow
interference. Optimal channel assignment would simulta-
neously involve the choices of routing metric, rate control,
power control, and medium access control (MAC). Such an
integrated global approach is ambitious and results in very
complex systems optimization; typically, only a partial subset
of all available resources are used to obtain insight, and our
work is no exception.

Various channel assignment algorithms [6-16] which
are studied in literature can be classified into packet level,
link level and flow level based on their granularity. Packet
level algorithms are highly dynamic, where channels are
assigned for every packet [6] or every few packets [7].
Channel switching overhead [17] is the major drawback
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FIGURE 1: A wireless mesh network.

of these algorithms. In flow level algorithms, channels are
assigned to several successive links which compose a flow
or a set of intersecting flows. In [18], channels are assigned
to flows along with the route establishment in a single-
radio multichannel network. In [19], links from intersecting
flows are assigned the same channels. Flow level algorithms
are free of channel switching and are aware of traffic flows
however, at the cost of spatial reuse, especially in a dense
network. Link level algorithms belong to the most popular
category, in which channels are assigned at the granularity
of a link. Some optimize link-based metrics, for example,
minimizing accumulated interference among links [8, 9]
and maximizing weighted sum of simultaneously active links
[10]. In networks with stable topology and traffic flows, end-
to-end metrics have been shown to be a better suit [13—
16]. The performance metric in [13] is the cross-section
goodput which is defined as the sum of all useful bandwidth
between traffic aggregation nodes and gateway nodes. In
[14], the minimum throughput that can be routed from a
node to the Internet is maximized. End-to-end throughput
optimizations are studied in [15], however, without concrete
protocol design. In [16], the authors assume that all links
reside in a single collision domain and formulate channel
assignment as a game, where players (links) compete for the
same pool of channels. Links from a multihop flow form a
coalition, and their payoft is the end-to-end flow rate.

Both flow oriented heuristics proposed in this paper
are both link level algorithms that maximize aggregate
end-to-end flow rates. The flow oriented graph coloring
(FOGC) algorithm is designed for the conflict-free case,

and it is extended to a general flow oriented channel
assignment (FOCA) heuristic for the interference-aware case.
Both iterative algorithms identify instantaneous bottlenecks
of multihop flows based on previous assignment, routing,
and topology information. To resolve congestion at each
iteration, they first try to assign a new channel to then
bottleneck then optimally allocate link rate among a group
of contending flows that share this link by solving a linear
programming problem. A simulation example in Figure 2
helps demonstrate the impact of bottleneck and the benefit
of resolving congestion. In Figure 2, three flows fi = {f, 5},
o = {h,,14}, and f5 = {I5,13} share a common link /5.
Each node has three NICs, and there are four nonoverlapping
channels. Let us assume that [, do not conflict with
Iy, I5, and vice versa. Operating under conflict-free condition,
links I, I, Iy, Is achieve approximately 23 Mbps per channel,
while /3 has a rate of approximately 10 Mbps per channel.
It can be easily shown that a naive algorithm which simply
assigns channels to high data rate links suffers from the
congestion at bottleneck I5 even though the overall link rate
is maximized. By considering the flow/routing information,
a better strategy is to favor the bottleneck even though it has
a lower per-link reward. In this simple example, resolving
congestion increases the overall network throughput by
100%.

In particular, the key contribution of this work is
threefold:

(i) A generalized optimization model for flow oriented
channel assignment in a multiradio multichannel
mesh backbone,
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(ii) A flow oriented graph coloring (FOGC) algorithm
that maximizes the aggregate useful flow rates for
conflict-free channel assignment problem,

(iii) A centralized flow oriented channel assignment
(FOCA) heuristic for interference-aware cases. It
maximizes the aggregate useful flow rates by utilizing
cross-layer routing and network topology informa-
tion.

The remaining of this paper is organized as follows.
System model and problem formulation are presented in
Section 2. We first introduce and evaluate FOGC algorithm
for conflict-free cases in Sections 3 and 4. Then this
algorithm is extended to FOCA algorithm in Section 5.
Simulation of FOCA is presented in Section 6, followed by
concluding remarks in Section 7.

2. System Model and Problem Formulation

We model a wireless mesh backbone consisting of U wireless
routers (nodes), N active links, and K multihop flows.
The connection between mobile clients and wireless access
points is out of the scope of this paper. The sets of wireless
routers, links, channels, and flows are indexed as U =
{1,2,...,U}, N = {1,2,...,N}, M = {1,2,...,M} and
K = {1,2,...,K}, respectively. Notations ;, f, ch,, are
used for the ith link, the kth flow, and the mth channel,
respectively. For convenience, all notations are summarized
in Table 1 with additional explanations as follows.

(i) Channel Assignment Matrix. A = {Gim}nxm,0 <
aim < 1, foralli € N, and m € M. An element
a;m = o denotes that link [; occupies a x 100% of
channel ch,,.

(ii) Routing Matrix. R = {rix}nxx->Tik € 10,1}, for all
i € N, and k € K, representing the global routing
information. If rjj = 1, flow fi traverses link [;. A
multihop flow f; is then defined by the set of links it
traverses, that is,

fe=1ilryg =1}, Vke X. (1)

(iii) NIC Vector w. An element w, (for all u € U) is the
number of network interface cards on node u.

(iv) Interference Matrix. C = {cij}nxn> ¢ij € 10,1}, for
all i, and j € N, representing the binary symmetric
conflicts among links. Entries in C are determined
using a binary two-hop interference model that is
widely used in graph modeling of wireless networks
[10, 14, 20] (whereby links within two hops of each
other deemed to be mutually interfering).

(v) Clique Matrix. P = {pnituxn>pni € {0,1}, for
al h € {1,2,...,H}, andi € N. A clique is a
maximum subset of links such that all distinct pairs in
this subset would potentially conflict with each other
[21]. Assume the total number of cliques is H; each
row of P, thus represents one of these cliques. Clearly,
P depends on network topology, and links within one

clique must time share a channel if they are assigned
the same one:

PA<1, 2)

where symbol X denotes component-wise inequality.

(vi) Channel Reward. B = {bim}nxm, for all i €
N,andm € M. Reward b;,, is the maximum
supportable data rate of link /; when it exclusively uses
channel ch,,.

(vii) Achievable Link Rate Vector. 6. A rate 0; (foralli € N)
is the achievable data rate of /; under a given channel
assignment decision:

M
0, = Z aimbim, or 6= diag(AB'), (3)
m=1

where diag(-) returns a column vector formed from
all the diagonal elements.

(viii) Flow Rate Vector. y. A rate yi, for all k € K, is the
supportable end-to-end rate of flow fi. The total rate
of the contending flows traversing a common link
cannot exceed the link’s rate

Ry < 0. (4)

(ix) Link Rate Allocation Matrix. ® = {¢;i}nxx. Aflow fi
is allowed to use up to ¢;x of a link I;’s rate. If fx does
not traverse I; (rix = 0), ¢ix is set to 0. Equation (4)
is then expressed in a component-wise way:

K
Z (pi,k < 91' Vie N. (5)
kE{j‘T’,’,]’=1}

Both 6 and @ are hidden variables in the formulation
(7) that we will present soon; however, they will act
as important roles in both heuristic algorithms.

(x) Network Interface Constraint. The total number of
channels assigned to links incident to a node can-
not exceed the node’s NIC number. Channels are
assigned to links while NIC constraint resides on
nodes. We introduce a network topology-dependent
matrix V. = {viyInxv,Viu € {0,1}, foralli e
N, and u € U to solve such contradiction. The
entry vi,, = 1 denotes that node u is one end of link
I;. By mapping the channel assignment results to each
wireless router, the NIC constraint is given by:

Card(A'V) < wf, (6)

where the cardinality function Card(-) counts the
number of nonzero entries in each column; hence
Card(A'V) is the number of NICs needed at wireless
routers.

(xi) Flow Oriented Metric. f(y) is a continuously differ-

entiable, increasing, and concave utility function of
end-to-end flow rates, that is, the aggregated flow rate

Zle Y-
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FIGURE 2: A simple network with its flow chart, and two channel assignment decisions.

Given the notations above, the flow oriented channel
assignment problem in mesh backbone can be stated as the
following convex-cardinality (nonconvex) problem:

max f(y)

st. 0<XAX],

027 7)

Ry < diag(AB'),
PA L1,
Card(A'V) < o',

The optimization variables are channel assignment decisions
A and supportable flow rates y. The routing matrices R is
the required cross-layer routing information, while matrix
P and V are computed from the topology information.
Channel reward B is considered to be a known parameter.
If there always exist sufficient NICs per mesh router, the only
cardinality (nonconvex) constraint is eliminated, making (7)
a convex problem.

3. Flow Oriented Graph Coloring
Algorithm (FOGC)

In some network systems—such as TDMA-based mesh—
conflict-free channel assignment is required. Then assigning
each channel becomes a binary decision:

aim € {0,1}, Vie N, Vme M, (8)

and assignment decisions are mutually exclusive among
conflicting links:

Qi+ Ajm <2 —cij, Vi, jEN, j#i, Vme M. (9)

TasLE 1: Notations in system model and problem formulation.

Notations Description

Uu The set of the wireless routers.

N The set of the wireless links.

M The set of the wireless channels.

K The set of the multihop flows.

I; The ith link.

fr The kth flow.

ch, The mth channel.

A The channel assignment matrix.

R The routing matrix.

C The interference matrix.

P The clique matrix.

B The channel reward matrix.

\%4 The topology matrix.

® The Vectqr that stores the number of
network interface cards on each node.

0 The achievable data rate vector.

y The supportable flow rate vector.

O] The link rate allocation matrix.

n The vector that stores bottleneck links.

Substituting (8) for 0 < A < 1 and (9) for PA < 1in (7), the
general formulation is reduced to

max f(y)

st cijaim €1{0,1}, VijeN, Vme M,
0=y,

Ry < diag(AB'),
Aim+ajm <2—cij, Vi,jEN, j#i, VmeE M,

Card(A'V) < &'
(10)

When there is no NIC limitation and f(y) is linear, (10)
is further reduced to an integer linear programming (ILP)
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problem by removing the last constraint. Optimal solution
for ILP problems can be obtained numerically.

Several past work have demonstrated the effectiveness
of greedy graph coloring algorithms in solving conflict-free
resource assignment problems. A greedy solution, Progressive
Minimum Neighbor First (PMNF), is proposed in [22] for
the unified time/frequency/code domain channel assignment
problem. The PMNF is extended to Color-Sensitive Graph
Coloring (CSGC) in [20] to solve the channel assignment
problem in a multichannel scenario. In the color-sensitive
contention graph, vertices are connected via multiple colored
edges that represent multiple channels, and colors may have
different rewards on different vertices.

Following this color-sensitive graph coloring approach,
we present a flow oriented graph coloring (FOGC) algorithm
that heuristically solves (10) with the objective function
fly) = Zl,le min{yx,y,}, where y, is the requested end-
to-end rate of flow k. FOGC is an iterative algorithm that
resolves instantaneous congestion. In each iteration, FOGC
first identifies bottleneck links and assigns a new channel
to the most critical one. This heuristic process is carefully
designed so that the conflict constraint (the 4th constraint)
and the NIC constraint (the 5th constraint) in (10) are
satisfied. Therefore, the remaining process prior to next
iteration is an LP problem that optimally allocat the rate
of each link to contending flows that share the link. This
iterative algorithm is of low complexity, based on local
optimality for each additional assignment.

We use a symbol—vector y—to store the instantaneous
bottleneck links! of all K flows. If the end-to-end traffic
demand of a flow has already been satisfied, there is no
bottleneck for that flow. The superscript on all notations
denote the current iteration, that is, A" is A’s value in the
nth iteration.

Step 0 (initiate A%, ®°). Assuming no prior knowledge,
A’ = {0} o> % = {0} Nxk- (11)
Step 1 (identify bottleneck Links). There is

0 £y 290
= 12
Tk = arg min ¢! Otherwise, (12)
i i€fi 7
where y, is the requested rate of fi. The set of bottleneck
links, 1", are labeled and sorted in descending order accord-
ing to their unsatisfied traffic demand. An all-zero vector
indicates the end of the algorithm, otherwise the link with
the largest label is selected. Future steps may set a label value
to zero if the rate of that particular link can not be improved

by assigning a new channel.

Step 2 (channel assignment strategy (update A"™!' to
A™)). Assume that link /; connecting nodes s and r is the
critical bottleneck selected in Step 1. The channel assignment
decision varies according to the number of available NICs on
sandr.

(1) If s and r both have free NICs and at least one avail-
able channel in common, assign the most beneficial?

available channel in common ch,, to link /;. Eliminate
ch,, from the available channel list of all s’s and r’s
conflicting neighbors.

(2) Otherwise, redirect to Step 1, set the label value of /;
to zero, and reselect a link with the largest label.

Step 3 (link rate allocation (solve ®”,y")). Entering with
the nth channel assignment matrix A", we next calculate the
link rate allocation matrix ®" and the supportable flow rate
vector y" via optimally solving the following LP problem:

K
max k;yzi’
st. 0<y{ <@, Vi€ fr, Vk e X, (13)
W<y, VkeX,
D> =0, VieN.
ke{klrig=1}

Thus far, we have a new link rate allocation matrix ®".
Returning to Step 1, we can determine a new set of bottleneck
links #"*1(A", ®") for next iteration. This algorithm termi-
nates when an all-zero label vector appears in Step 1.

Since the 4th and 5th constraints in (10) are satisfied in
the heuristical process in FOGC, the optimal result from (13)
is not necessarily an optimal solution for (10). The following
proposition shows that FOGC achieves optimality in a simple
single flow case.

Proposition 1. In the single flow case, FOGC is the optimal
channel assignment when channels have identical reward.

Proof. Assume that S = {s1,5,,...,s,} is an optimal channel
assignment that assigns a channel to link I; at its jth
operation. It is easy to verify that exchange the sequence
of terms in S does not affect its optimality. Let S°C =
{s1,..058j-1585%,...,55C} be the assignment from FOGC
algorithm which has exactly the same first j — 1 assignments
as S. Here we will show that either S agrees with the
optimal assignment on its first j assignments or S has
already achieved optimality on the (j — 1)th assignment. If
S #s]-GC and 3k,j < k < n, and s = stC, swap s; and si in
S. Then S has the same first j assignments as S. If s; # 5§
and Pk, j < k < n, and s, = S]-GC, then the flow rate will never
increase after the (j — 1)th assignment in S, because lsfc is an
instantaneous bottleneck which is never treated again in S.
Then S% achieves optimality at its (j — 1)th operation.  [J

In the simplest case, FOGC’s locally optimal strategy
leads to global optimality. In general, FOGC’s performance
in more complicated scenarios is evaluated through simula-
tion in the following section.

4. Simulation Results of FOGC

Though FOGC algorithm works for any network system
where conflict-free assignment is desired and the interference
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FIGURE 3: The ring and grid topologies used to evaluate the flow oriented graph coloring (FOGC) heuristic algorithm.
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Figure 4: Compare FOGC, LBGC, and the optimal solution in an
8-node ring topology.

among links can be modeled using distance-based conflict
graph, for demonstration purpose, FOGC algorithm is
simulated in ring and grid topologies (Figure 3) using
ideal two-hop interference model. FOGC is compared
with two other algorithms. The baseline is a central-
ized Link-Based Graph Coloring (LBGC) algorithm which
seeks to maximize the overall link rates without rout-
ing knowledge. The upper bound is the optimal channel
assignment® (OPT) obtained by exhaustive search. In LBGC,
the flows traversing a common link share this link’s rate
fairly.

In an N(N = 8) node ring, each link only conflicts with
adjacent 4 links. Two N/2-hop flows are randomly generated.
Assume that each node has sufficient NICs and the number
of available channels is varied from 2 to 8. An immediate
observation from Figure 4 is that no end-to-end throughput
is obtained when there are less than 3 channels. This is
simply due to the conflict-free constraint and the predefined
2-hop interference model. As one can see, FOGC follows

16
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10 ¢

Average per flow throughput (Mbps)

2 6 8 10 12 14 16
Number of non-overlapping channels
-A- LBGCNIC=2

-8- LBGCNIC=6
--- LBGCNIC = o

—4— FOGCNIC =2
—&— FOGCNIC=6
—— FOGCNIC = o0

Figure 5: Compare FOGC and LBGC in a 10 x 10 grid topology
with three 8-hop flows.

OPT closely and outperforms LBGC 120% in the case of
8 channels. This demonstrates that resolving instantaneous
bottlenecks is a good greedy heuristic to achieve near optimal
performance at low complexity.

In an N X N(N = 10) grid topology, several source-
destination pairs are randomly selected, and the shortest
path is randomly selected for each pair. Up to 17, identical
channels are provided to three 8-hop flows. As Figure 5
shows, with sufficient NICs, the average end-to-end flow rate
scales almost linearly with channel resources in presence of
3 or more channels. When the number of NICs on each
node is limited, the per flow throughput would saturate
at some stage. This saturation point reveals the resource
utilization efficiency of each algorithm. With only 2 NICs,
the FOGC almost fully exploits 4 channels and could partially
utilize up to 8 channels. Overall, Figure 5 demonstrates that
FOGC is superior to LBGC in terms of efficiency in utilizing
multiple channels with very limited number of NICs, by
using additional routing and network topology information.
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FiGure 6: Channel switching and channel switching propagation in
flow oriented channel assignment (FOCA) heuristic algorithm.

FIGURE 7: A sample random network with multiple multihop flows.
These random networks are used to evaluate the flow oriented
channel assignment (FOCA) algorithm.

5. Flow Oriented Channel Assignment
Algorithm (FOCA)

Due to the broadcast nature of wireless communication, the
conflict-free assumption is rarely true in practice and should
be viewed as a model approximation. The a forementioned
graph coloring algorithm FOGC is extended to a general
flow oriented channel assignment (FOCA) algorithm to
heuristically solve (7). Conflicting links are allowed to time-
share the same channel, and in each iteration, apart from
assigning a new channel, channel switching mechanism
and channel switching propagation are designed to adjust
existing assignment decisions.

FOCA has a similar iteration process as FOGC. It first
identifies the bottleneck links, then assigns a new channel,
or adjusts existing channel assignment to resolve congestion,

Average per flow throughput (Mbps)

0 2 4 6 8 10 12
Number of non-overlapping channels

-+- LACA
—— FOCA
--- Baseline

Figure 8: Compare FOCA and LACA in multi-channel 2-radio
random networks with three 5-hop flows.
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FiGUure 9: The impact of number of NICs when there are 6 available
channels and three 5-hop flows.

and prior to entering the next iteration, optimal allocation of
link rate to contending flows that share this link is computed
by solving an LP problem.

Step 0. Same as FOGC.
Step 1. Same as FOGC.

Step 2 (channel assignment strategy (update A"™! to A")).
Assume that link /; connecting nodes s and r is the critical
bottleneck selected by Step 1. The channel assignment
decision varies according to the number of available NICs on
sandr.
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FIGURE 10: Scalability simulation: averaged per flow throughput
versus the number of flows. Random networks are of the same size
and flows are all 3-hop flows.
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FIGURE 11: Scalability simulation: aggregate flow rates versus the
number of flows. Random networks are of the same size and flows
are all 3-hop flows.

(1) At least one free NIC on both s and r: assign a locally
least occupied channel to a free NIC on s and r,
respectively.

(2) No free NIC on r at least one free NIC on s (or vice
versa): choose locally least occupied channel from 7’s
channel usage list and have one free NIC of s tuned to
that channel to communicate with r.

(3) Neither s nor r has any free NIC:

(a) s and r have at least one common channel*:
communicate on a least occupied common

channel utilizing the NICs already tuned to that
channel.

(b) s and r have no common channel, and the
connectivity between s and r has already been
satisfied: return to Step 1 to set the label of link
[; to zero.

(c) s and r have no common channel in use, and
the connectivity between s and r is not satisfied:
channel switching and channel switching prop-
agation are needed. A least occupied channel
is selected from s’s and r’s channel usage list,
respectively. Assume they are ch, and ch,, and
ch carries a lower traffic load. As Figure 6
shows, s’s NIC that originally works on chy is
switched to ch, to communicate with r. To
preserve s’s connection with its own neighbors
on chy, this switching is propagated to those
neighbors, and then to neighbors of those
neighbors, and so on.

At the completion of this step, we have updated the channel
assignment matrix A"~! to A",

Step 3. Same LP optimization as in FOGC.

6. Simulation Results of FOCA

The flow oriented channel assignment (FOCA) is simulated
using random network topologies (Figure 7) in ns-3 [23]
simulator because (i) node model is architected to support
multiple interfaces, (ii) channel model is architected to
support multiple channels in ns-3. Customized functions are
implemented to install multi-interface on nodes and bind
interfaces to channels according to different channel assign-
ment algorithms®. First, we generate random topologies,
multiple source-destination pairs, and one least hop-count
path for each pair. This routing information is stored to
assist future channel assignments. Then channel assignment
algorithm is performed in a centralized manner before data
transmission. All results are averaged over multiple runs on
multiple random topologies. The FOCA is compared to a
unified one-to-one channel assignment, which assigns the
nth channel to the nth NIC. The unified algorithm is of
zero complexity and performs well when the number of
NICs matches with the number of channels. It generates a
much better baseline than any random assignment, which
is unfortunately always used as an inaccurate benchmark.
Another contrast is an empirical traffic load-aware channel
assignment (LACA). In [13], LACA, a routing algorithm,
as well as the control loop between them are designed.
Assumeing a precalculated routing and fixed injected traffic
load, the LACA assigns channel resources to links in the
decreasing order of the expected link load. The original
evaluation metric “cross-section bandwidth” is similar to the
end-to-end flow rate in this paper.

In real-world applications, the NIC limitation is fre-
quently confronted before the number of channels becomes
a limitation. Therefore the multichannel limited-radio sce-
nario performance is the key criteria in evaluating channel
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assignment algorithms. We first simulate three 5-hop flows
in random networks, where each node has only 2 NICs,
and vary the number of channels. Similar to the conclusion
from Figure 5, in Figure 8, FOCA’s throughput saturates at
approximately 9 channels and outperforms LACA approxi-
mated 50% in the saturated case. Once saturation is reached,
increasing the number of channels causes only jitter but not
significant increment in flow rate, because now the limitation
is insufficient NICs on some bottleneck links. A good channel
assignment algorithm will efficiently utilize as many channels
as possible with very few NICs by diversifying traffic over
as many channels as possible to avoid intra- and inter flow
interference. Hence, the saturation point (in terms of the
number of channels) and the saturation flow rate in the
multichannel limited-radio scenario are of particular interest
to system designers.

Next we evaluate the performance when sufficient NICs
are provided. Three 5-hop flows are injected in random
networks with 6 available channels while the number of NICs
per node is varied. As one could see from Figure 9, with
sufficient NICs per node, the simplest unified one-to-one
channel assignment (baseline) will outperform both FOCA
and LACA. The region in which FOCA (LACA) stays above
the baseline is FOCA’s (LACA’s) effective operating region.
For example, with these particular parameter settings, LACA
should be avoided when there are 4 or more NICs per node,
and FOCA is a favorable algorithm only up to 5 NICs per
node. Figure 9 clearly justifies that both FOCA and LACA are
designed for multichannel limited-radio scenarios.

Scalability is a practical challenge for mesh backbone.
We simulate the aggregated flow rate as well as the per flow
rate by gradually increasing the number of coexisting 3-
hop flows. The random networks simulated have 6 channels
and 2 NICs per node. As expected, the per flow throughput
in Figure 10 decreases steadily as the number of coexisting
flows increases. However, as shown in Figure 11 shows, the
aggregated flow throughput increases with diminishing slope
till the network becomes saturated. FOCA has a higher
saturated aggregate throughput due to its effective resource
management. Further increasing the amount of coexisting
flows leads to more variance in FOCA than in LACA.
Fortunately, no significant aggregate throughput drop is
observed, showing that FOCA has the acceptable scalability
when network becomes overloaded.

7. Conclusion

The fast deployment of WMNs places stringent requirements
on end-to-end rates of the underlying multihop mesh
backbone, especially in large scale and dense scenarios.
This paper studies the channel assignment problem for a
multichannel multiradio mesh backbone. We first presented
a general optimization formulation, which is nonconvex
due to practical constraints. Then a flow oriented graph
coloring (FOGC) greedy algorithm was designed for the
conflict-free case, and it was extended to a flow oriented
channel assignment (FOCA) heuristic for the general case
where interference is considered. Both algorithms identify

instantaneous bottlenecks at each additional assignment
iteration using routing and network topology information
and try to resolve congestion by (i) assigning a new channel,
(ii) channel switching (FOCA only), and (iii) optimally
allocating link rate to contending flows by solving an LP
problem. Simulation not only demonstrated the effectiveness
of addressing bottlenecks at each additional iteration but also
showed that both FOCA and FOGC can efficiently exploit
multiple channels with very limited number of NICs.

Although both heuristics are for a static network, their
low complexity as well as the relatively high stability of
traffic flows in mesh backbone allow the channel assignment
decision to be adapted periodically or once the accumulated
changes exceed a certain threshold. While the proposed algo-
rithms pursue local optimality at each additional assignment,
this does not lead to global optimality. An option is to
extend this heuristic (at cost of additional complexity) by
looking several steps ahead, that is, considering more than
one critical bottleneck link at each iteration. This framework
can be applied towards other utility functions as well.

Endnotes

1. In case that a multihop flow has several bottleneck links,
one link is randomly selected to break the tie.

2. The most beneficial channel is the one which provides
the highest reward (data rate).

3. Since the complexity of exhaustive search scales expo-
nentially with the number of links and channels, we only
present OPT in a ring topology.

4. A common channel is the channel that both s and r are
using to communicate with neighbors other than each
other.

5. Simulation code available at http://www.ee.washington
.edu/research/funlab/mrmc/index.html.
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