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The implementation of efficient baseband receivers characterized by affordable computational load is a crucial point in the
development of transmission systems exploiting diversity in different domains. This would be a crucial point in the future
development of 4G systems, where space, time, and frequency diversity will be combined together in order to increase system
throughput. In this framework, a linear multiuser detector for MC-CDMA systems with Alamouti’s Space-Time Block Coding
(STBC), which is inspired by the concept of Minimum Conditional Bit Error Rate (MCBER), is proposed. The MCBER combiner
has been implemented in adaptive way by using Least-Mean-Square (LMS) optimization. The estimation of Channel State
Information (CSI), necessary to make practically feasible the MCBER detection, is aided by a Genetic Algorithm (GA). The
obtained receiver scheme is near-optimal, as both LMS-based MCBER and GA-assisted channel estimation perform closely to
optimum in fulfilling their respective tasks. Simulation results evidenced that the proposed receiver always outperforms state-of-

the-art receiver schemes based on EGC and MMSE criterion exploiting the same degree of channel knowledge.

1. Introduction

Future mobile communications standards will be required to
provide high performance in terms of data rate, capacity, and
quality of service. For this reason, the efficient exploitation
of diversity in different domains (time, space, frequency) will
be an issue. Multicarrier modulations [1] and Multiple-Input
Multiple-Output (MIMO) space-time coding [2] are among
the enabling technologies of future diversity-based high-
capacity wireless communications. As claimed by Ahmadi
in [3], next-generation mobile WIMAX technology will be
based on Orthogonal Frequency Division Multiple Access
(OFDMA), supported by Time-Division Duplexing (TDD)
or Frequency-Division Duplexing (FDD), and advanced
multiantenna systems, exploiting novel space-time coding

schemes. OFDM and OFDMA apparently dominate the
panorama of multicarrier modulations in wireless standards.
However, in these last years, the spread-spectrum extension
of OFDM, namely, Multicarrier CDMA (MC-CDMA), is
raising a renewed interest. MC-CDMA is intrinsically more
robust than OFDMA over frequency-selective channels. MC-
CDMA transmits a user’s symbol in parallel over a subcarrier
set. Therefore, for the same number of subcarriers, MC-
CDMA obtains a frequency diversity gain with respect to
OFDMA. The price to be paid is an increasing amount of
multiuser interference (MUI) due to the overlap of different
symbols over the same subcarrier set. The adoption of low-
complexity multiuser detection makes MC-CDMA a valu-
able competitor with OFDMA with some clear advantages
in terms of anti-multipath resilience, in particular in mobile
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environments. It is worth to mention a recent work [4]
that considers the evolution of High-Speed Packet Access
(HSPA) from single-carrier DS/CDMA (HSPA currently
adopts a PHY-layer scheme rather similar to Wideband
CDMA of UMTS) to Multicarrier CDMA. Such an evo-
lution is motivated by the synergies of HSPA with 3GPP
Long-Term Evolution (LTE), which considers OFDMA and
Single-Carrier FDMA (SC-FDMA) as preferential PHY-layer
options. MC-CDMA may become a competitor also in future
WiIiMAX standardization. Very recently, Aldhaheri and Al-
Qahtani presented in [5] a novel MC-CDMA transmission
scheme for fixed and mobile WiMAX. The performance
improvement attainable by MC-CDMA with respect to the
conventional OFDMA is relevant, in particular when the
speed of the terminal is very high.

In such a framework, multiantenna systems, space-time
coding, and multicarrier CDMA can be regarded as key
technologies for future broadband wireless networking. In
(6], it is shown that MC-CDMA with Space-Time Block
Coding (STBC) can jointly exploit diversity in space and
frequency domains in order to counteract multipath fading
effects and, therefore, to provide performances quite close to
the single-user bound. As it happens in Single-Input Single-
Output (SISO) MC-CDMA, multiuser detection (MUD)
plays a key role in improving system performances.

Theoretically optimum nonlinear maximum likelihood
detection is characterized by an unsustainable computational
complexity (exponentially growing with the number of
users). For this reason, suboptimum linear MUD strategies
should be investigated. Minimum Mean Square Error-
(MMSE-) MUD techniques have been proposed for STBC
MC-CDMA systems in [7]. Although MMSE is a good choice
in order to provide a simple implementation of adaptive
receivers (Least-Mean-Square (LMS) and Recursive-Least-
Squared (RLS) implementations are allowed), it is intrin-
sically suboptimal because it minimizes the Mean Squared
Error between the received signal and the noiseless signal
pattern. This results in a maximization of the Signal-to-
Noise plus Interference Ratio (SINR), rather than in the
minimization of the Bit Error Rate (BER) that is the
expected target of an efficient receiver. The Minimum Bit
Error Rate (MBER) criterion for multiuser detection has
been successfully applied to DS-CDMA [8], MC-CDMA
[9], and SDMA [10]. Partial equalization and adaptive
Threshold Orthogonality Restoring (TORC) based on BER
minimization have been also proposed for MC-CDMA in
[11, 12]. The potential advantages of implementing linear
MBER MUD in STBC MC-CDMA context can be easily
explained. STBC MC-CDMA is a transmission methodology,
where diversity is obtained both in space and in frequency
domain. The diversity gain, increased with respect to the
conventional SISO case, is obtained at the price of an
increased system complexity. In our opinion, the exploitation
of the “full potential” of STBC MC-CDMA techniques
can be obtained only by means of optimized multiuser
detection approaches. In such a perspective, the investigation
of MBER strategies can be regarded as a step ahead towards
the computationally affordable signal detection optimization
also in the STBC MC-CDMA case. The application of

MBER reception to STBC MC-CDMA is not straightforward
and should be investigated by carefully taking into account
tight requirements in terms of ease of implementation and
reduced computational effort. An example of application
of MBER criterion to STBC MC-CDMA MUD has been
shown in [13]. The unknown probability density function
(PDF) of the decision variable has been expressed in closed,
but approximated, form by using the Parzen windows
methodology. Then, the LMS criterion has been applied
in order to adaptively implement the MBER receiver. The
MBER-MUD approach of [13] does not require Channel
State Information (CSI) knowledge and is characterized by a
moderate computational complexity. Despite these favorable
features, the multiuser receiver of [13] is quite far from
optimality, in particular when the number of users increases.

In this paper, we are proposing a near-optimum mul-
tiuser detector for STBC MC-CDMA transmission systems
based on the Minimum Conditional Bit Error Rate (MCBER)
and on Genetic Algorithm- (GA-) assisted channel estima-
tion. The design of MCBER-MUD and GA-assisted channel
estimation for STBC MC-CDMA is motivated by the basic
requirements of implementing an actual receiver scheme
(that, therefore, cannot assume the ideal CSI knowledge)
characterized by affordable computational load and near-
optimal performance. MCBER-MUD criterion has been
successfully applied in [14] to DS/CDMA systems and in
[15] to SISO MC-CDMA systems. MCBER-MUD is a slight
modification of the original MBER-MUD criterion that
allows reducing the computational complexity to a linear
order with the number of users without significant losses
in BER performances with respect to theoretically optimum
ML-MUD. The STBC scheme considered in the present
paper is the well-known Alamouti’s scheme [16] character-
ized by ease of concept and implementation, computational
efficiency and performance very close to theoretical bounds
when employed in multipath fading channels. The practical
implementation of the proposed MCBER detector relies on
an adaptive optimization strategy based on the concept of
deterministic gradient. In particular, we considered LMS to
derive the MCBER solution in numerical iterative form. Such
a choice has been motivated by the necessity of testing a
computationally tractable algorithm like gradient descent,
widely employed in practical MUD implementations. In this
framework, it is worth citing a very recent paper [17], where
another LMS-based adaptive receiver has been proposed for
MC-CDMA systems with Alamouti’s STBC. Such receiver is
based on a modified MSE cost function and an improved
LMS optimization strategy. The convergence rate is increased
with respect to conventional LMS receiver. We think that our
approach represents a step ahead with respect to [17], as
it tries to minimize the system BER instead of minimizing
the MSE between the filter output and the expected symbol
belonging to the STBC block. The explicit BER minimization
is conceptually closer to optimality than partial equalization
and TORC of [11, 12], whose performance is lower bounded
by that of MMSE receiver exploiting ideal CSI knowledge.

It is known from the literature that formal MBER and
MCBER criteria require CSI knowledge to work. Therefore,
the problem of channel estimation should be adequately
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considered in the perspective of the provision of a technically
viable solution. Searching for reliable and computationally
efficient adaptive channel estimation, we decided to propose
a Genetic Algorithm- (GA-) assisted semi adaptive MMSE
channel estimation. The idea of exploiting a GA-based
approach in order to efficiently implement channel estima-
tion has been suggested by the promising results achieved in
[18]. In this work, Genetic Algorithm has been considered
for near-optimal channel estimation applied to STBC MC-
CDMA with MMSE multiuser detection. Substantially, the
effectiveness of the GA-based approach has been assessed
by comparing BER performance of the Wiener solution to
MMSE-MUD, obtained by using the ideally known channel
matrices and that one obtained by using estimated channel
matrices. The maximum performance loss due to nonideal
channel estimation was only 1 dB. On the other hand, results
shown in [18] evidenced that iterative LMS-based MMSE-
MUD may provide unsatisfactory performance, in particular
when the interference load increases.

The paper is organized as follows. Section 2 contains
the description of the system model. Section 3 details the
implementation of the proposed near-optimal receiver based
on MCBER and GA-assisted channel estimation. Section 4
shows some selected simulation results aimed at assessing
the effectiveness of the proposed approach by means of a
thorough comparison with other state-of-the-art receivers.
Moreover, some considerations about computational com-
plexity and parameterization both of MCBER reception and
GA-assisted channel estimation are sketched at the end of
Section 4. Finally, paper conclusions are drawn in Section 5.

2. STBC MC-CDMA System Description

In the present dealing, we consider a synchronous multiuser
MC-CDMA system using Alamouti’s Space Time Block
Coding [16]. A block scheme of such a transmission system
is drawn in Figure 1. Two consecutive data symbols of the
generic user k (k = 0,...,K — 1)[ax(i — 1), ax(i)] related to
the generic ith modulation period (i = 1, 3,...) are mapped
to two transmitting antennas according to the code matrix
@ (i), whose elements are given by [16]

i—1 —_a*(i
l{ak(z ) ak(l):|, i=1,3,5....

D= a1 ai(i—1)

(1)

The superscript operator (*) denotes the complex conjugate.
The matrix of (1) represents Alamouti’s STBC block. Alam-
outi’s scheme exhibits some clear advantages. Essentially,
it makes available a space diversity gain also for mobile
terminals only by exploiting transmit diversity [16]. The
most economic and advantageous Alamouti’s configuration
considers two transmit antennas (installed at base station
or access point) and a single antenna mounted at the
receiver side [16]. Such a configuration is considered in
our paper, where the focus is on the development of
cost-effective mobile terminals. Without losing generality,
we suppose to consider binary antipodal BPSK symbols

therefore, [ax(i —1),ax(i)] € {—1,1}. The encoder outputs
are transmitted during two consecutive transmission peri-
ods, each one of duration equal to T. During the first
transmission period (i.e., (i — 1)T), two symbols ax(i —
1) and ax(i) are modulated by two separate Inverse Fast
Fourier Transform- (I-FFT-) based multicarrier transmitters
using a unique Hadamard-Walsh sequence ¢, ={cx(n) n =
0,...,N—1}, where N is the number of subcarriers employed
for spreading. Finally, the RF-converted Multicarrier Spread
Spectrum (MC-SS) signals are simultaneously transmitted
by antenna 1 and antenna 2, respectively. In the same way,
during the successive transmission period (i.e., iT), the
symbol —ay (i) is transmitted by antenna 1, and the symbol
ar(i — 1) is transmitted by antenna 2, respectively. The com-
plex conjugate operator disappears, as we are considering
real symbols. In order to make the notation more compact
in the multiuser case, we define two vectors of symbols
A(i = D2[aoi—1),a1(i = 1),...,ak1(i—1)]" and, simi-
larly, A(7) together with the orthonormal code matrix C as

o(0) c1(0) cx-1(0)
co(1) ci(1) cx-1(1)
C= (2)
oN-1) a(N-1) -+ cx1(N-1)

The received signal samples acquired at two consecutive
symbol periods after the FFT-based coherent demultiplexing
can be expressed as follows:

R(i—1)=H;CA(i — 1) + H,CA(i) + ¥Y(i — 1),
R(i) = —H;CA(i) + H,CA(i — 1) + Y(i),

where R(i — 1) and R(i) are N x 1 vectors, ¥Y(I)=
oD, yi(D),...,yn 1 (D]" (with I € {(i—1), i}i=1,2,...)
is the Additive Gaussian Noise vector (all vector components
are independent and identically distributed with zero mean
and variance 0?), and H; = diag{h), hi,... hy_,} (with
j € {1,2}) is the N X N diagonal channel matrix, where W,
is the complex channel coefficient related to subcarrier n and
to the transmit antenna j. We reasonably assume that fading
is flat over each subcarrier and almost time-invariant during
two consecutive transmission periods (i.e., the coherence
time is much greater than the symbol period).

3. The Design of the Near-Optimum STBC
MC-CDMA Linear Multiuser Receiver Based
on Conditional BER Minimization and GA-
Assisted Channel Estimation

3.1. Design Motivations. As remarked in [1], in order to
cope with the dramatic increase in demand of high-speed
wireless connections, there is an urgent demand of flexible,
efficient, and computationally affordable transceivers. The
design of attractive wireless transceivers hinges on a range
of contradictory factors. Given a certain wireless channel, it
is always possible to design a transmission scheme capable of
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F1GURE 1: The considered STBC MC-CDMA system (complete block diagram).

increasing transmission integrity at the cost of more sophisti-
cated signal processing. Alternatively, transmission integrity
may be increased without increasing system complexity,
provided that, for example, channel coding/interleaving
delay can be further extended. It is also realistic to increase
the system integrity by invoking a more robust but lower
throughput modulation scheme. In such a case, the integrity
is increased without spending in terms of system complexity,
just in terms of bandwidth expense. In this paper, we adopted
a transmission scheme characterized by intrinsic robustness
against multipath channel impairment (i.e., STBC MC-
CDMA). Transmission integrity should be guaranteed with-
out increasing too much system complexity, considering
also that we have decided to exploit only transmit diversity
in order to keep the mobile terminal cheaper. In order
to solve the tradeoff between integrity and complexity, we
design an innovative STBC MC-CDMA receiver architecture
based on the integration of (a) Minimum-Conditioned BER
linear MUD and (b) Genetic Algorithm-assisted channel
estimation. In the following part of this section, we shall
detail and motivate both the adopted linear MUD criterion
and the channel estimation strategy based on evolutionary
optimization.

3.2. LMS-Based MCBER Multiuser Detector. In this sub-
section, we shall describe the Minimum Conditional Bit-
Error-Rate criterion for STBC MC-CDMA linear multiuser
detection. A generic linear multiuser detector generates two
decision variables based on the linear combination of the
received signal samples. Thus, the (scalar) decision variables
for the user k, denoted by xx(i — 1) and xx (i), related to the
ith modulation period can be expressed as follows:

xe(i— 1) = wii(i—1) - R(i — 1) + wi (i) - R*(d),
xk(i) = wi(i) - R(i— 1) — wi(i — 1) - R*(d),

where wy (i — 1) and w,(i) are the N-elements vectors of
receiver gains employed by the generic kth user in order to

recombine the baseband output of the FFT-based demod-
ulation stage. The operator (-) denotes the scalar product.
As we are considering a BPSK modulation, the couple of
bits contained in a single STBC block can be estimated by
observing the real part of xx(i — 1) and xx(i), respectively.
Conditioned on the transmitted bit vectors A(i—1) and A(i),
assuming the perfect knowledge of the channel matrices H;
and H, the random variables Re{x(i— 1)} and Re{xx (i)} are
Gaussian-distributed with mean values as follows:

x(i = 1) = Rejw (i — 1)H,CA(i — 1)
+wj (i — 1)H,CA(i) — w (i) H} CA(i)

+wy (DHFC AP - 1)},
(5)
xk(i) = Refwj (DH CA(i — 1) + wj () HyCA(i)

+w, (i — 1)HFCA()
—wy(i — DHE CA(i — 1)},

and variance S2(i— 1) = S ()20 (lwi (i — DI+ [lw ()11%).

To make the derivation of the probability of error
easier, we can refer to the so-called sign-adjusted decision
variables [10] defined as follows: yi(i—1)=ax(i—1) Re{xx(i—
1)} and yi(i)=ak(i) Re{xk(i)}. These new decision variables
are Gaussian-distributed as well with mean values ax(i —
Dxk(i — 1) and ax(i)xi(i) and variances Si(i — 1) and
Si(i), respectively. It is clear that the correct block detection
event happens if and only if {y(i — 1) > 0, y(i) > 0}.
Thus, the probability to have an error in the STBC block
transmitted by user k can be written as follows:

Perr = Pr(yk(i_ 1) <0, )’k(l) > 0)
+Pr(y(i—1) >0, y(i) <0) (6)
+Pr(ye(i— 1) <0, yi(i) <0).
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As yi(i — 1) and yx (i) are independent random variables, we
obtain

Per = Pf()/k(i— 1) < O)Pr()’k(l) > 0)
FPr(pli- 1) > 0)Pr(p() <0) ()
+Pr(yk(i—1) < 0)Pr(y(i) < 0).

We can analytically compute the single probabilities of (7),
conditioned on the bit vectors A(i — 1) and A(7) as follows:

Pr(yc(i— 1) < 0/A(i - 1),A()) = Q(“"(i;k(li)f"%_ 1)),
Pr(yi(i—1) > 0/A(i~ 1), A() = 1—Q(“k(i;k(li)fk(li)_ 1)),
Pr(yi(i) < 0/A(i — 1), A(i)) = Q(“k(sik)ék)(i)),
Pr(yi(i) > 0/AGi — 1), A(i)) = 1 - Q(“"gk)é")(i)),

(8)

where Q(x) is the conventional Gaussian error function. The
calculation of the probability of error conditioned on A(i—1)
and A(7) is straightforward:

o Daliv 1 N
Perr/A(i—l),A(i) = Q(ak(l Sk(l)ikgl) )) + Q(akgk)(xlk)(l)>
ar(i— Dx(i— 1) ag (1) xx (1)
‘Q( Suli—1) )Q( Si(i) )()
9

Assuming that the two symbols contained in an STBC block
have the same probability of error, the third term in (9) is
negligible with respect to the first two ones. Thus, a good
approximation of (9) is given by

Perc/ai-1),40) = ﬁerr/A(i—l),A(i)
(ki = Dxe(i—1) ax (i)xk (i)
_Q< Se(i— 1) )+Q< Se(i) )
(10)

By considering that the 22K possible transmitted bit vectors

are independent and equiprobable, the average probability of
error for the kth user can be written as

Perr(wk(i — 1), w (i)

z Z Perr/A

—1) VA(i)

1),Wk(l))
(11)

The theoretical MBER criterion would lead to the com-
putation of the couple of receiver gain vectors {w{¥' (i —
1),w{"T(i)} minimizing the average probability of error
of (11). The computational complexity of this detector is
exponential in the number of users O(2%X), so its practical

1),A(i) Wk(l

application becomes unfeasible as K increases. An alternative
near-optimum linear detection criterion forecasts the mini-
mization of the conditional probability of error [14, 15]. The
Minimum Conditional BER (MCBER) can be expressed, in
the considered STBC MC-CDMA case, as follows:

PEOND (4, (i — 1), w (7))

err

-y v

Var(i—1) Va (i)

err/A(1 (Wk(i_ 1)>

1))ak(i))'
(12)

wi (i) | ar(i -

The BER is conditioned in (12) only to the symbols not
transmitted by the kth user in its own STBC block and is
thus averaged with respect to all the possible combinations
of the kth user’s symbols. In our case, Alamouti’s block
is 2 X 2 sized; therefore, the number of possible symbol
combinations is 2> = 4. Dua et al. claim in [14] that
the Minimum Conditional BER (MCBER) adaptive MUD
has a convergence rate comparable to MBER-MUD with
a marginally low degradation in terms of bit error rate
and affordable computational burden linearly increasing
with users’ number. Formally, the following optimization
problem must be solved:

WP = 1, w (i)}

(13)

= argmin {Pecr?ND(wk(i— 1),wk(i))}.
wi(i=1)wi (i)

Note that the couple of vectors {wzpt(i— 1), szt(i)} minimiz-
ing (13) are different from {kaPT(i 1), wy OPT ()3 minimizing
(11). In [14], it is pointed out that no closed-form expression
for MBER solution has to be found. The same fact is verified
for MCBER solution. For this reason, a numerical solution
has to be investigated. A possible solution is to exploit the
Least-Mean-Square (LMS) algorithm based on the concept
of gradient descent. LMS updating of the receiver weights
is done iteratively along the negative gradient of the error
probability surface, along both directions wi* (i — 1) and

w," (i). The updating rule at ith iteration is given by:

Wil (i) = wyP'(i = 1) = 1 - v, (PEONP(i - 1)),
wi(i+1) = wi () - A - Vo (PEONP (), (14)
i=135...,

where A is the step-size parameter and V,(-) and V,(-)
represent the gradient along the two directions w; (i — 1)
and wy (i), respectively. For the first iteration (namely, i =
1), the following initialization has been chosen: w;" (0) =

01m(l) = ¢;. This is a reasonable choice, commonly used in
the literature dealing with adaptive detection of MC-CDMA
signals (see, e.g., [9]).
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The LMS implementation of the MCBER detector can be
obtained straightforwardly by using the updating rule of (11)

Vi (PFNPG - 1) =

22,2, 2

Vai(i—1) Va(i

X [chﬁ(i—nmzcﬁ(i) -

+e

combined with the gradient expressions reported in the follow-
ing (mathematical details are omitted for the sake of brevity):

{ —xi(i-1)/283(i-1) ak(l— 1)
)

Sk(i—1)

o2 (i)W (i-1)
Si(i—1)

—x2(D)/28}(i) ax(i)

Sk(i)
N, Opte.
(1)
(15)
a(i—1)
Sk(i—1)

Vz(ﬁgOND(i)) = —2\1/2 Z z {e—xi(i—n/zsﬁ(i—l)
v i)

ar(i—1) Yay (i

x [HQCEU —1) - H,CA®) —
+e )

X [chﬁ(i— 1)+H,CA(i) —

As far as data symbols transmitted by users k # k are con-
cerned, we define the vectors AlG-DE[EG-1),... a4 —
1),...,dx(i — 1)] and A(i)=[a:(i),...,ak(i),...,ax(i)] in
which the elements 4, (i — 1) and @, (i) represent the symbol
decisions performed by user k. The choice of exploiting
the symbol decisions taken by users k # k instead of using
random symbols has been considered in order to improve
the convergence of the adaptive optimization algorithm (as
already noted in [14]).

3.3. The Proposed GA-Assisted Channel Estimation. In a
realistically implemented receiver, the channel matrices H;
and H, are not deterministically known, as assumed in
Section 3.2, but they should be replaced by their estimates ﬁ1
and Hy,. It is clear that the estimation of CSI strongly impacts
on MCBER receiver performance. The theoretical near-
optimality of MCBER criterion may be seriously impaired by
unreliable channel estimation. In this paper, we considered
the GA-assisted MMSE channel estimation for STBC MC-
CDMA system already presented in [18]. Such a channel
estimation strategy, applied to the ideal MMSE multiuser
detection, demonstrated itself very robust and near-optimal,
clearly outperforming state-of-the-art techniques based on
gradient descent. Genetic algorithms have a 20-year history
of successful applications in telecommunications, signal

o2xi(i — D)w; (i)
Si(i—1)

/283(i) ) ak (i)

Sk(i)

o2x(i—1)wy ' (i)
Sk (i) '

processing, and electromagnetic fields due to some basic
features, useful to solve complex problems with reasonable
computational effort [19].

(1) The convergence to the optimal solution is theoret-
ically guaranteed (provided that a proper parame-
terization of the GA procedure is set), avoiding that
solution be trapped in local minima.

(2) The GA-based procedure can dynamically adapt itself
to time-varying system conditions, because a new
population of individuals is computed at each new
generation.

Such features make advantageous the use of the so-called
evolutionary optimization strategies (among which GAs
are classified) to find practical solutions to optimization
problems characterized by nonlinear cost functions and
heavy computational burden (a highlighting example is
shown in [20], where the inverse scattering problem is dealt
with in electromagnetism). Standard GA implementations
[19] represent feasible solutions as a set of individuals
(called population). The cost function to be minimized
(or maximized) is called fitness function. In our case, the
fitness function is the following MMSE metric that must be
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Initialize population

Evaluate fitness

Selection (parent 1
and parent 2)

Until temporary

population is full

Perform crossover
(with prob. P;)

Reproduction

cycle
Perform mutation
(with prob. Pyr)

Replace population

Until termination
is met

Evaluate fitness

FIGURE 2: Genetic algorithm-based procedure for optimization.
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FIGURE 3: Block diagram of the MCBER receiver supported by GA-assisted MMSE channel estimation.

minimized with respect to the estimated channel matrices ﬁl
and Hj:

A~ A~ A~ A 2
J (A, 1) = HR(i “1)-H,CAG—1) - HZCA(i)H

+||Ra) + Bica* () - Brca* (- D[
(16)

At each iteration (namely, generation), the genetic operators
of crossover and mutation are applied on selected chro-
mosomes with probabilities « and y, respectively, in order
to generate new solutions belonging to the search space.
The population generation terminates when a satisfactory
solution has been produced or when a fixed number of
generations have been completed (see Figure 2).

The block diagram of the complete MCBER MUD
receiver with GA-assisted channel estimation is shown in
Figure 3. In order to make channel estimation robust and
adaptive with respect to channel variations, we adopted a
GA-assisted MMSE strategy articulated into two steps.

(1) Training-Aided Step. during this step, an L bit-
length binary training sequence a, = [a},...,af] is
transmitted in the form of header for each user k.
The bits of the training sequence are organized in L/2
consecutive pairs, each one corresponding to a pair
of symbols transmitted in two consecutive signaling
periods. In such a way, the vectors of known bits
AG-1) = {@Qi-1)k=1,.,K, i=1,..L/2}
and A(i) = {@x(2i) k = 1,...,K, i = 1,...L/2} are
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employed to compute the MSE metric. The training
step is repeated with a period approximately equal to
the coherence time of the channel. The GA optimizer
computes at each signaling period the estimated
channel matrices using a selected parameterization
in terms of generation number Gry, population size
Py, crossover, and mutation probabilities ap and
y1r> respectively. The footer Tr means that the GA
parameterization is related to the training step.

(2) Decision-Directed Adaptive Step: the output of the
Ty
training step is the channel matrices (H;) " and

(I?IZ)Tr obtained by the GA-based optimizer parame-
terized in such a way to “learn” the channel in reliable
way. During a coherence time period, the stochastic
values of the channel coefficients acting over each
subcarrier are strongly correlated. By this, a decision-
directed adaptive updating step should be reasonably
forecast. In the present dealing, the decision-directed
updating step is performed by the GA, working with
a different parameterization. The GA-based updating
procedure is initialized by the solution computed
during the training-aided step. During a symbol
period, a single iteration is performed by the GA,
and a single generation of individuals is produced.
The symbols employed in this step to fill the data
vectors A(i — 1) and A(i) are the estimated symbols
decided at the previous signaling period, that is,
A(Gi — 1) and A(i). In such a step, crossover and
mutation operators do not work, because only a GA
generation runs. This updating procedure is “light,”
but this is reasonable because only small variations of
the channel amplitude and phase are to be tracked
during the coherence period. Moreover, in such a
way, the effects of possible symbol errors on channel
estimation are conveniently reduced.

In order to make our approach clearer to the reader, we
can summarize the whole GA-assisted channel estimation
procedure as follows (the flowchart of the procedure has been
shown in Figure 4).

(i) At time t = 0 the GA-based procedure is initialized
by a constant-value population. In particular, the
identity matrices have been chosen for initialization.

(ii) The training-aided step begins. The L-bit known
training sequence is transmitted, and the estimated
channel matrices are computed by minimizing
the cost function of (13). The GA parameteri-
zation is chosen as generation number = Gry,
population size = Pr, crossover probability = ar,
and mutation probability = yr.

(iii) The training-aided step ends with the computation
of the channel matrices at the time ¢t = LT + €T (e
is the execution time of the GA-based optimization
procedure expressed in number of bit periods). Now,
the GA switches to the decision-directed adaptive
modality.

(iv) At the beginning of the adaptive step, the GA is
initialized with the channel matrices computed at the
end of (ii), and the GA parameters are reassigned
as follows: generation number Gp = 1, population
size Pp, crossover probability ap = 0, and mutation
probability yp = 0. The footer D means that the
GA parameterization is related now to the decision-
directed adaptive step. The GA procedure produces a
single population of individuals that are quite close to
the one chosen during the previous signaling interval.
Such kind of population is stochastically generated
in Gaussian way, imposing to the Gaussian generator
an updating standard deviation oy, that actually is
a system parameter. Such a parameter is linked to
the Doppler spread and to the signal-to-noise ratio.
An explicit mathematical link is very difficult to be
obtained, but, as thumb rule, we can say that it
needs to be increased as SNR and Doppler spread in-
crease.

(v) The decision-directed updating step ends at the time
t = LT + T + W T, where Wy, is the coherence
time-window of the channel (expressed in number
of bits). The GA is reinitialized with the channel
matrices computed at the end of the coherence time-
window and reparameterized in order to start again
with the training-aided step (ii).

4. Experimental Results

4.1. Simulation Results. The performances of the proposed
STBC MC-CDMA receiver are evaluated by means of inten-
sive simulation trials (performed in MATLAB-SIMULINK
7.5 environment) in a Rayleigh fading channel fixing the
following parameters: number of subcarriers N = 8,
transmission data rate r, = 1024 Kb/s, coherence bandwidth
of the channel 2.1 MHz, and Doppler spread of the channel
100 Hz. We considered two test cases: the most theoretical
case related to the MCBER detector exploiting the ideal CSI
knowledge and the more realistic case related to the MCBER
detector supported by the GA-assisted channel estimation.
In such a way, we shall be able to test the effectiveness
of the channel estimation strategy adopted together with
the impact of nonideal channel estimation on MCBER
performances.

In order to verify the effectiveness of the proposed
approach, we considered other state-of-the-art receivers for
comparison, namely,

(i) the ideal MMSE MUD receiver exploiting ideal CSI
knowledge [7];
(ii) the LMS adaptive implementation of MMSE receiver
(7]
(iii) the single-user
receiver [7];

(iv) the MMSE MUD receiver supported by the GA-
assisted channel estimation [18].

Equal-Gain Combining (EGC)
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F1GURE 4: Flowchart of the GA-assisted channel estimation algorithm for STBC MC-CDMA.

As lower bound, we considered the BER curve obtained by
Maximal Ratio Combining (MRC) detection in the single-
user case (i.e., the optimal single-user detection, supposing
the absence of multiuser interference). In our simulations,
we considered three different scenarios including K = 2,
K = 4, and K = 6 users. The GA optimizer has been
parameterized as follows: (i) training-aided step G = 30,
Pr = 30, ar = 0.9, yr = 0.01, L = 32, (ii) decision-
directed adaptive step Pp = 10. As the Jakes channel model
has been adopted for simulation, the channel coherence time
window approximately equals about 1800 bits. Therefore, the
overhead due to the insertion of the training sequence equals
to less than 1.8%.

The corresponding BER curves versus Ep/Ny are shown
for all the tested receivers in Figures 5, 6, and 7, respectively.
It can be seen that in all scenarios the proposed LMS-based
MCBER detector with and without ideal CSI knowledge

clearly outperforms both EGC detector and LMS-based
MMSE adaptive detector that exhibit a nasty error floor
as the number of users increases. Moreover, the proposed
MCBER detector exploiting ideal CSI knowledge yields
performances that are better than those ones of ideal MMSE
detector. Such a last improvement is clearly evident for K = 2
and K = 4 users, whereas it becomes slighter for K = 6 users.
In general, for an increasing number of users, BER curves
related to ideal MMSE and MCBER tend to become closer
to each other and more distant with respect to the single-
user bound. Such behaviour is not unexpected. As number
of users K increases, the global detection noise (including
AWGN and multiuser interference) is getting more and more
Gaussian-distributed, and, therefore, optimizing the receiver
with respect to the MMSE provides very close results to
optimizing on BER. Moreover, the single-user bound curve
depicted in Figures 5-7 is a lower bound also on theoretically
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Figure 5: BER versus E;/N, yielded by the LMS-based MCBER
(with ideal CSI knowledge and GA-assisted channel estimation),
EGC (with ideal CSI knowledge), LMS-based MMSE and ideal
MMSE (with ideal CSI knowledge and GA-assisted channel estima-
tion) multiuser detectors for N = 8 subcarriers and K = 2 users.

optimum ML detection as it does not take into account the
presence of the multiuser interference. In case of increasing
number of users, it is getting more and more difficult for a
linear receiver to approach the single-user bound.

Focusing our attention on the effectiveness of the GA-
assisted channel estimation applied in such an MCBER-
MUD framework, we can see from Figures 5-7 that the
MCBER detector supported by nonideal channel estimation
performs very close to MCBER detector exploiting the ideal
channel knowledge for K = 2 and K = 4 users. The
effects of nonideal channel estimation are more evident for
higher number of users (K = 6) and therefore in the
presence of higher level of multiuser interference. In this
last case, the MCBER receiver with GA-assisted channel
estimation performs a bit less than MMSE receiver with ideal
CSI knowledge but better than the MMSE using the same
algorithm for channel estimation. In our opinion, the most
relevant fact able to confirm the correctness of our analysis
is that the proposed MCBER detector always outperforms
MMSE MUD when working together in the same conditions
of “channel knowledge.”

In Figure 8, some results have been shown about the
variance of the channel estimation error (EEV). One can
note that such a variance, computed on the overall channel
coefficients, is decreasing with E,/Nj and exhibits satisfactory
values (i.e., lower than 1072 for Ey/Ny > 10dB for K =
2, K = 4, and K = 6 users). As expected (and already
evidenced by BER curves of Figures 5-7), EEV increases with
the number of users, because MUI increases.
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FiGure 7: BER versus E,/N, yielded by the LMS-based MCBER
(with ideal CSI knowledge and GA-assisted channel estimation),
EGC (with ideal CSI knowledge), LMS-based MMSE and ideal
MMSE (with ideal CSI knowledge and GA-assisted channel esti-
mation) multiuser detectors for N = 8 subcarriers and K = 6
users.
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4.2. Computational Complexity Considerations and Algo-
rithmic Parameterization. As far as computational issues
are concerned, the current literature claims that MCBER
criterion has a computational order which is linear with the
number of users [14]. In such a case, the computational
effort would be reduced with respect to the ideal MMSE
detector (which is O(K?) [7]), and it would be comparable
with the LMS-based adaptive implementation of MMSE
(which is linear again). In our opinion, the reduction of
the computational complexity is one of the main advantages
yielded by the proposed approach. In fact, the MCBER
criterion is theoretically closer to optimality than MMSE,
and simulation results shown in Figures 5-7 confirm this
claim. But the developed adaptive MCBER-MUD algorithm
is also less demanding from a computational viewpoint than
ideal MMSE, despite requiring the same knowledge of the
channel state information.

About computational complexity of the GA-assisted
channel estimator we can say that GA requires a number
of elementary operations to derive a solution that is equal
to Uop = (a + y)GP [19]. Thus, the computational burden
required during the training-aided step is of the order of
L-K - N - Gr - Pr elementary operations to be executed
during an execution time window ¢7T', where ¢ > 1. The value
assigned to ¢ mainly depends on the computational power of
the signal-processing device employed. During the decision-
directed adaptive step, the computational requirement of the
GA is reduced to K -+ M - Pp elementary operations to be
executed during an STBC modulation period. Such a com-
putational requirement is comparable with that one involved
in state-of-the-art STBC channel estimation algorithms (see
[18] for the comparison).

In order to conclude this section, we provide now
some notes about algorithmic parameterization. The step-
size parameter A of both LMS-based algorithms (MMSE and
MCBER) has been chosen empirically for each scenario in
order to minimize the overall BER over the various E,/Nj
values. From the parameters selection phase, we noted that
LMS-based MCBER detector is characterized by a reduced
sensitivity to parameterization with respect to state-of-the-
art LMS-based MMSE MUD. Indeed, fixing the number
of users K, the step-size A is substantially invariant with
respect to Ep/Ny values. On the other hand, LMS-based
MMSE multiuser detector would require a different value
of A for each E,/Nj in order to provide satisfactory BER
performances. As far as the parameterization of the GA-
based optimizer is concerned, we must say that formal
methodologies targeted to find an optimal parameterization
of genetic procedures are not available. In the literature,
there are only some interesting heuristic analyses like the
one proposed by Tsoy in [21] . So GA parameters have been
selected by means of explicitly devoted simulation trials,
performed by keeping into account the major guidelines
pointed out in [21] that basically are the following two: (a)
the population size should be sufficiently large in order to
have a conveniently dimensioned space search, and (b) the
number of generations should be appropriately assigned in
dependence of the population size. In fact, in case of large
population, too strict limit for the search time can force

N =8 Mtx=2,Mrx=1
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FiGUrE 8: Variance of the channel estimation error (EEV) versus
E,/Ny measured for N = 8 subcarriers, K = 2, K = 4,and K = 6
users.

algorithm to stop without having enough time to realize
its search possibility. At the end of the simulation trials
devoted to parameterization, we found numerical values for
generation number, population size, crossover, and mutation
probabilities (shown in Section 4.1) that have assured the
best tradeoff between achieved results and computational
load. In particular, we assumed an intermediate E;/Ny equal
to 15dB as reference value, and we derived by simulations
the best parameterization for this value. Then, we observed
by other simulations that the GA parameterization chosen
for the reference Ep/Ny is “very close to the best” also
for higher and lower E,/Ny. The reduced sensitivity to
parameterization of GA procedures, already observed in
[18], is again confirmed.

5. Conclusions

In this paper, a novel receiver scheme has been investigated
for MC-CDMA systems using Alamouti’s space-time block
coding. In particular, we considered a Minimum Conditional
Bit-Error-Rate (MCBER) MUD linear receiver in order to
reduce the computational complexity without significant
performance degradations with respect to the formal MBER
criterion. In the perspective of a real receiver deployment, an
adaptive LMS-based implementation of the MCBER detector
has been integrated with a robust and computationally
affordable channel estimation assisted by a genetic optimizer.
The proposed MCBER approach always allows improving
BER performances with respect to other state-of-the-art
linear detectors working with the same degree of channel
knowledge. It is worth noting that the performance improve-
ment with respect to MMSE-MUD strategies is achieved by
spending a reduced computational effort, linearly increasing
with the number of users. Numerical results evidenced that
BER curves of MCBER and ideal MMSE are getting closer
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as the number of users approaches the maximum allowable
value. This behaviour is intrinsic to the linear multiuser
detection and fully motivated by the nature of the MCBER
criterion adopted.

Future research activities might concern the utilization

of evolutionary optimization algorithms (e.g., GA, Particle
Swarm Optimization (PSO), etc.) to provide a numerical
solution to the MCBER problem instead of the proposed
LMS-based solution. Also the adoption of PSO-assisted
channel estimation, instead of GA-assisted one, may repre-
sent an interesting topic for future research.

References

(1]
(2]

(3]

(4]

(7]

[10]

(11]

[12]

L. Hanzo, L. L. Yan, E. L. Kuan, and K. Yen, Single and Multi-
Carrier DS-CDMA, Wiley, Chichester, UK, 2003.

D. Tse and P. Visvanath, Fundamentals of Wireless Communi-
cations, Cambridge University Press, Cambridge, Mass, USA,
2005.

S. Ahmadi, “An overview of next-generation mobile WIMAX
technology,” IEEE Communications Magazine, vol. 47, no. 6,
pp. 84-98, 2009.

K. Johansson, J. Bergman, D. Gerstenberger, M. Blomgren,
and A. Wallén, “Multi-carrier HSPA evolution,” in Proceedings
of the 69th IEEE Vehicular Technology Conference (VIC °09),
pp- 1-5, Barcelona, Spain, April 2009.

R. W. Aldhaheri and A. H. Al-Qahtani, “Performance analysis
of fixed and mobile WIMAX MC-CDMA-based system,” in
Proceedings of the 7th International Symposium on Wireless
Communications Systems (ISWCS ’10), pp. 436440, York, UK,
September 2010.

M. Juntti, M. Vehkapera, J. Leinonen et al., “MIMO MC-
CDMA communications for future cellular systems,” IEEE
Communications Magazine, vol. 43, no. 2, pp. 118-124, 2005.
J. M. Auffray and J. F. Helard, “Performance of multicarrier
CDMA technique combined with space-time block coding
over Rayleigh channel,” in Proceedings of the 7th IEEE
International Symposium on Spread Spectrum Techniques and
Applications, vol. 2, pp. 348-352, Prague, Czech Republic,
September 2002.

S. Chen, A. K. Samingan, B. Mulgrew, and L. Hanzo, “Adaptive
minimum-BER linear multiuser detection for DS-CDMA
signals in multipath channels,” IEEE Transactions on Signal
Processing, vol. 49, no. 6, pp. 1240-1247, 2001.

S. J. Yi, C. C. Tsimenidis, O. R. Hinton, and B. S. Sharif,
“Adaptive minimum bit-error-rate multi-user detection for
asynchronous MC-CDMA systems in frequency selective
Rayleigh fading channels,” in Proceedings of the 14th IEEE
Personal, Indoor and Mobile Radio Communications Conference
(PIMRC’03), vol. 2, pp. 1269-1273, Beijing, China, September
2003.

S. Chen, A. Livingstone, and L. Hanzo, “Minimum bit-error
rate design for space—time equalization-based multiuser
detection,” IEEE Transactions on Communications, vol. 54, no.
5, pp. 824832, 2006.

A. Conti, B. Masini, F. Zabini, and O. Andrisano, “On the
down-link performance of multi-carrier CDMA systems with
partial equalization,” IEEE Transactions on Wireless Communi-
cations, vol. 6, no. 1, pp. 230-239, 2007.

B. M. Masiniand A. Conti, “Adaptive TORC detection for MC-
CDMA wireless systems,” IEEE Transactions on Communica-
tions, vol. 57, no. 11, pp. 3460-3471, 2009.

[13] L. D’Orazio, C. Sacchi, R. Fedrizzi, and F. G. B. De Natale, “An

(20

(21

adaptive minimum-BER approach for multi-user detection
in STBC-MIMO MC-CDMA systems,” in Proceedings of
the 50th IEEE Annual Global Telecommunications Conference
(GLOBECOM °07), pp. 3427-3431, Washington, DC, USA,
November 2007.

A. Dua, U. B. Desai, and R. K. Mallik, “Minimum probability
of error-based methods for adaptive multiuser detection in
multipath DS-CDMA channels,” IEEE Transactions on Wireless
Communications, vol. 3, no. 3, pp. 939-948, 2004.

P. M. Dayal, U. B. Desai, and A. Mahanta, “Minimum
conditional probability of error detection for MC-CDMA,”
in Proceedings of the IEEE International Symposium on Spread
Spectrum Techniques and Applications (ISSSTA °04), pp. 51-55,
Sydney, Australia, September 2004.

S. M. Alamouti, “A simple transmit diversity technique for
wireless communications,” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 8, pp. 14511458, 1998.

B. Seo, W.-G. Ahn, C. Jeong, and H.-M. Kim, “Fast conver-
gence LMS adaptive receiver for MC-CDMA systems with
space-time block coding,” IEEE Communications Letters, vol.
14, no. 8, pp. 737-739, 2010.

L. D’Orazio, C. Sacchi, M. Donelli, and F. G. B. De Natale,
“MMSE multi-user detection with GA-assisted channel esti-
mation for STBC MC-CDMA mobile communication sys-
tems,” in Proceedings of the 10th IEEE International Symposium
on Spread Spectrum Techniques and Applications (ISSSTA °08),
pp. 182-187, Bologna, Italy, August 2008.

D. E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley, Reading, Mass, USA,
1999.

P. Rocca and A. Massa, “Evolutionary-based optimization
techniques for inverse scattering—a review,” in Proceedings
of the 28th Progress in Electromagnetics Research Symposium
(PIERS ’10), Cambridge, Mass, USA, July 2010.

Y. R. Tsoy, “The influence of population size and search time
limit on genetic algorithm,” in Proceedings of the 7th Korea-
Russia International Symposium on Science and Technology
(KORUS °03), vol. 3, pp. 181-187, Uslan, Korea, June-July
2003.



	1. Introduction
	2. STBCMC-CDMA System Description
	3. The Design of the Near-Optimum STBC MC-CDMA Linear Multiuser Receiver Based on Conditional BER Minimization and GA-Assisted Cha
	4. Experimental Results
	5. Conclusions
	References

