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We describe a new class of lightweight, symmetric-key digital certificates called extended TESLA certificates and a source
authentication protocol for wireless group communication that is based on the certificate. The certificate binds the identity of
a wireless smart device to the anchor element of its key chain; keys from the chain are used for computing message authentication
codes (MACs) on messages sourced by the device. The authentication protocol requires a centralized infrastructure in the network:
we describe the protocol in a hybrid wireless network with a satellite overlay interconnecting the wireless devices. The satellite is
used as the Certificate Authority (CA) and also acts as the proxy for the senders in disclosing the MAC keys to the receivers. We also
design a probabilistic nonrepudiation mechanism that utilizes the satellite’s role as the CA and sender proxy. Through analysis,
we show that the authentication protocol is secure against malicious adversaries. We also present detailed simulation results that
demonstrate that the proposed protocol is much cheaper than traditional public key-based authentication technologies for metrics
like processing delay, storage requirements, and energy consumption of the smart devices.

1. Introduction

Large networks of mobile wireless devices have the ability
to provide rapid connectivity in disaster areas or military
battlefields, or to interconnect users in far-flung geographical
locations. However, present limitations on performance,
robustness, and security issues have delayed the adoption
of such networks. In [1], we have shown that the addition
of a satellite overlay to such wireless networks can lead
to a great improvement in the network performance. We
term this network architecture a hybrid network, which has
wireless smart devices in terrestrial clusters with dual satellite
connectivity providing alternate high-bandwidth and robust
forwarding paths through satellite links.

Security is a necessary parameter in hybrid wireless
networks if the communication between a pair of smart
devices (henceforth also referred to as network nodes inter-
changeably), or a group of devices, is to be protected from

unauthorized access. Due to the open nature of the wireless
channel, intruders can eavesdrop on the communication
between other nodes if the messages are sent in the clear;
they can inject fake messages into the network, purporting
to come from other nodes, or attempt to modify or delete
messages between other nodes. Therefore, strong security
mechanisms to prevent such attacks are important, especially
for scenarios like military operations where hybrid networks
can be of great use.

Many envisioned applications for hybrid networks are
collaborative in nature, and it is necessary to ensure that
routing control messages and the application data between
communicating devices or nodes are properly authenticated
to enable communication. In this work we therefore focus
on source authentication and associated message integrity
protocols to facilitate secure communication between groups
of wireless smart devices in the field. These security
mechanisms are required to prevent attacks against the
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network protocols and thereby ensure their correct and
robust operation.

Authentication in group communication is traditionally
based on asymmetric techniques such as public key-based
digital signatures that are appended to the messages [2]. This
requires universal access to a trusted Certificate Authority
(CA) to generate the certificate binding a node’s identity to its
public key. Digital signatures also provide nonrepudiation—
a noncompromised node cannot deny later that it generated
a message that has been signed using its private key.

Public key-based authentication is however computa-
tionally very expensive (both in CPU cycles and energy
expenditure) to generate digital signatures for messages, and
also to verify them [3–6]. The public and private keys are
larger in size compared to symmetric keys (e.g., 2048-bit
RSA public key against 112-bit equivalent symmetric key
[7]); the certificates can also take up significant storage space
(e.g., X.509 certificate with 1024-bit RSA key is 1 kilobytes
while PGP certificate is 1024 bits). In wireless networks
where many devices/nodes might have resource constraints,
public key cryptography can become a drawback. For
example, handheld wireless devices in hybrid networks can
have limited processor power, limited storage capacity, and
limited available energy supplied by a battery. Performing
digital signature generation and verification frequently will
consume significant processor capacity and drain the battery
quickly. Therefore in hybrid wireless networks it is preferable
to use authentication protocols that are based on symmetric
cryptography, which expend less node energy. However,
designing authentication protocols for group communica-
tion using symmetric cryptography is a significant challenge.
The primary difficulty is how to create the asymmetry such
that each participant has a unique secret with which to
authenticate its messages, while allowing all the receivers the
capability for validation.

The problem, therefore, is to design an asymmetric
source authentication protocol for group communication
with resource-constrained devices, that is efficient in terms of
energy needs. As a solution to this problem, we propose a dig-
ital certificate construct that uses symmetric cryptographic
primitives to achieve asymmetric authentication. The cer-
tificate is based on a new class of certificates called TESLA
Certificate. The TESLA certificate concept was originally
proposed in [8]. We modify and enhance the original TESLA
certificate design and apply the new certificate to hybrid
wireless networks to propose an energy-efficient source
authentication protocol for nodes in group communication
that takes advantage of the centralized infrastructure present
in the network, which is the satellite overlay in this particular
example of the hybrid network. In the proposed protocol,
source authentication using TESLA certificate is based on
MAC computation using keyed hash functions, with delayed
disclosure of the key by the Certificate Authority (CA), to
achieve the asymmetry required for authentication. Due to
the use of MACs to generate and verify certificates, the
scheme is fast, has low processing overhead, and consumes
much less energy than digital signature algorithms. It also
avoids the assumption that the user nodes have some sort
of security association established a priori, as many other

protocols assume. Using the centralized satellite infrastruc-
ture, we also design a probabilistic nonrepudiation algorithm
for the source authentication protocol.

We refer to our proposed modifications to the TESLA
certificate, as the extended TESLA certificate. The extended
TESLA certificate and the source authentication protocol
that is based on it, have been described briefly in [9], while
the proposed nonrepudiation algorithm has appeared in
[10]. In this paper, we provide an integrated and more
extensively detailed description of the proposed algorithms,
and add the previously unreported algorithm for key dis-
closure delay. We also provide more in-depth evaluation of
the proposed design, including a detailed security analysis
of the proposed protocol and extensive simulation results
with detailed analyses. The simulation results demonstrate
how much energy efficient the protocol is, in comparison to
public key based technologies.

The rest of this paper is organized as follows. We review
related work in source authentication algorithms for group
communication in Section 2. In Section 3, we describe the
TESLA broadcast authentication protocol on which the
TESLA certificate is based. The original TESLA certificate
algorithm is reviewed in Section 4. We describe our mod-
ifications to the original TESLA certificate, and the source
authentication protocol based on the extended certificate,
in Section 5. The associated probabilistic nonrepudiation
protocol is described in Section 6. Security analysis of the
proposed protocol is in Section 7. Performance analysis of
the authentication protocol is given in Section 8, along
with detailed simulation results. We conclude with a brief
discussion in Section 9.

2. RelatedWork

There has been significant research on efficient multicast
source authentication algorithms based on symmetric cryp-
tography that attempt to minimize the computation expense
of the devices. In the following paragraphs we highlight some
of the better known proposals.

Canetti et al. [11] proposed one of the early solutions
to use symmetric MACs for multicast source authentication.
In their scheme, the source has l keys and computes l
MACs on each packet. Each recipient holds a subset of the
l keys, and verifies the MAC according to the keys it holds.
The authentication protocol has probabilistic security—the
choice of key subsets held by each recipient is critical in
insuring that with high probability no coalition of up to w
colluding members know all the keys held by a good member
(where w is the security parameter), and thus maintaining
the security of the scheme. The scheme also requires the
multicast group members to store a large number of keys.

Gennaro and Rohatgi [12] have proposed a method
known as stream signing, where one regular digital signature
is transmitted at the beginning of a stream, and each
packet either contains a cryptographic hash of the next
packet, or a one-time public key using which the one-time
signature on the next packet can be verified. However, this
approach requires reliable packet transmission, since the loss
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of even one packet means that the information required to
authenticate future packets will be lost. For most multicast
protocols, such reliability cannot be guaranteed, since the
transmission protocol is UDP, which is best effort.

Wong and Lam [13] have proposed an approach where
the source is allowed to delay and group together several
consecutive packets. The source collects the packets in a time
interval into an authentication tree and signs the root of
the tree. The root signature and hash information on the
nodes of the tree are included in each transmitted packet. The
signing and verification operations are thus amortized over
many packets, and the protocol operations are one to two
orders of magnitude faster compared to individual packet
signatures.

Rohatgi has proposed a hybrid scheme [14] using
offline/online signature generation scheme for creating k-
time public/private key pairs so that the cost of signature
generation can be amortized over k signatures. The size of the
keys is reduced by using hash functions with target collision
resistance. The size overhead of the proposed scheme is
however still considerable on a per-packet basis (of the order
of 300 bytes per packet).

Anderson et al. have proposed the Guy Fawkes protocol
in [15], which achieves source authentication using a
small number of hash computations. In this protocol, the
source selects a series of one-time secrets X0,X1,X2, . . .;
the source commits to Xi in message Mi−1 and reveals it
in message Mi+1. The commitment for Xi has the form
h(Mi+1,h(Xi+1),Xi), while the first secret X0 is committed
by some external mechanism such as a conventional digital
signature. In the Guy Fawkes protocol, the secrets are not
related to one another, and the authentication mechanism
cannot tolerate packet losses—if a commitment is lost, the
corresponding secret cannot be authenticated.

Perrig has proposed a broadcast authentication scheme
named BiBa [16] which exploits the birthday paradox in
trying to find two or more colliding hash computations on
a given message, where the hash values are computed using a
set of self-authenticating values (SEALs) s1, . . . , st . The two or
more SEALs for which the hash on the message collide form
the signature. The scheme exploits the asymmetric property
that the source has more SEALs than the adversary, and hence
it can easily generate the BiBa signature with high probability.
However, the adversary only knows the few SEALs disclosed
by the source, and hence has a low probability of forging
a valid BiBa signature. The algorithm is probabilistic in
nature in the signature generation, and has a significant
computation overhead at the source to find a valid signature.
Also, the probability of an adversary to forge a signature
increases with time as more and more SEALs are disclosed
by the source.

As the description in the following sections make clear,
our proposed authentication algorithm differs significantly
from the ones highlighted in this section. We introduce a
new type of certificate, which none of the above attempt
to do. The most closely related existing work in this regard
is the initial work on TESLA certificates by Bohge and
Trappe [8], which we describe separately in Section 4, due
to its relation to our design. Also unlike the aforementioned
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Figure 1: TESLA key generation.

algorithms, our design uses time to provide the asymmetry
which makes the individual source authentication in groups
possible. The use of time is due to the underlying TESLA
broadcast authentication protocol [17, 18], which is reviewed
in Section 3.

Some of the related work described in this section uses
public key-based digital signatures for most authentication,
with the cost of signature processing amortized over several
packets. In contrast, our protocol does not need public key-
based digital signatures, except for the initial bootstrapping
phase. In addition, our design is robust to packet losses dur-
ing transmission such that the authentication of individual
packets are not dependent on reliable reception of previous
or future packets in the transmission. Moreover, the receivers
have to process only one MAC per packet for authentication,
where the MAC is computed only on the contents of the
associated packet. Either of the former two cannot be claimed
of some of the protocols described earlier.

3. Review of TESLAAuthentication Protocol

The TESLA broadcast authentication protocol [17, 18]
achieves asymmetric authentication between a source and
receivers through the use of symmetric cryptographic MAC
functions. The asymmetry is obtained through the delayed
disclosure of the authentication keys.

The TESLA algorithm is illustrated in Figure 1. TESLA
divides the time of transmission by the source into n intervals
of equal duration. The source generates a random key seed
sn for interval n, and computes a one-way hash chain by
repeatedly applying a public one-way function F1 to sn.
The number of elements of the hash chain correspond to
the number of intervals in which the source transmits. The
source computes the key used for generating the MAC in
each time interval by applying a second public one-way
function F2 to each element of the hash chain.

The sender uses the keys in the reverse order of their
generation, that is, starting with K1 in interval 1, followed by
K2 in interval 2, and so on. Owing to the one-way property
of F1 and F2, it is computationally infeasible for any node to
generate si knowing Ki, or to generate si+1 knowing si.

For each packet generated in time slot i, the source
uses the authentication key Ki to compute a MAC on
the packet. When a node receives a packet, it first checks
whether the packet is fresh, that is, it was sent in a time
interval whose corresponding TESLA key has not been
disclosed. Each receiver discards any packet that does not
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meet the security criterion, and buffers only the packets
that satisfy the freshness condition. The receiver cannot
authenticate the packets immediately since it does not know
the corresponding key Ki. The sender discloses the key Ki

at a later instant in time by broadcasting the corresponding
key seed si. Upon receiving si, each receiver first verifies

the authenticity of si by checking si
F1−→ si−1 (and therefore

ultimately verifying against the anchor element s0 which
has already been authenticated). If si verifies correctly, each

receiver can compute Ki : si
F2−→ Ki and subsequently use

the computed Ki to verify the MAC on the packets received
during interval i.

Once si is disclosed, any node with knowledge of si can
compute Ki and attempt to masquerade as the sender by
forging MACs using Ki. Therefore, Ki is used to compute
MACs on packets generated only during the interval i. si is
disclosed only d time slots after i so that no malicious node
can compute Ki and forge packets in the intervening period.
d is computed based on the maximum network delay from
the source to all the receivers. This is the principle of delayed
disclosure of keys.

The above is a basic description of TESLA. The algorithm
has several enhancements to mitigate various drawbacks;
they are described in [18].

4. Review of the TESLACertificate Algorithm

The idea of certificates based on TESLA was proposed in
[17]. The idea has been formalized to form a TESLA-based
public key infrastructure (PKI) in [8].

In the algorithm described in [8], there is a certificate
authority CA who creates certificates for an entity B. During
time slot n, the CA generates authentication key aKBn for B
to use to compute the MAC on its messages in that interval.
The CA creates a certificate CertCAn(B) to bind aKBn to B for
interval n. The CA uses its TESLA key tKCAn to encrypt aKBn

in the certificate, and uses the same key to compute a MAC
on the certificate:

CertCAn(B) =
(

IDB ,
{
aKBn

}
tKCAn

,n + d, MACtKCAn
(· · · )

)
.

(1)

aKBn is known only to the CA and B during period n, while
tKCAn is known only to the CA. n + d indicates the time at
which the CA will disclose tKCAn to the nodes, that is, it is the
expiration time of the certificate. The CA sends CertCAn(B) to
B along with aKBn , which is encrypted with key KCA,B that is
shared between the CA and B.

In the time interval 〈n,n + d〉, a low-powered device D
sends a request to B for using B’s service: D → B : (request).
To authenticate itself to D, B sends an authentication packet
containing its certificate and a MAC on the request:

B −→ D :
(

CertCAn(B), MACaKBn

(
request

))
. (2)

When D receives the authentication message, it checks
the timestamp of CertCAn(B) to make sure it has arrived
before time n + d. If the certificate is “fresh”, D buffers the

authentication packet. At time n + d, the CA discloses tKCAn .
Upon receiving the key, D verifies CertCAn(B) by checking
the MAC in the certificate using tKCAn . If the MAC verifies
correctly, D obtains aKBn from the certificate by decrypting
with tKCAn . Subsequently, D checks MACaKBn

(request) to
verify the authenticity of B. Therefore, D is able to verify the
identity of B only if it receives CertCAn(B) before n + d. Once
the CA discloses its TESLA key tKCAn , any node could forge
a certificate for the time interval n.

The TESLA certificate algorithm described above allows
a node to add authentication to packets for a single period in
time. Therefore, a source node B that transmits for multiple
time intervals will need several TESLA certificates from the
CA. If there are many sources that send data over long
intervals, this can add up to a substantial overhead.

The authors describe an application of TESLA certificates
for authentication in hierarchical ad hoc sensor networks in
[19]. The focus of the work is on authentication between
sensor nodes and the base stations/applications, that is,
point-to-point authentication between nodes of varying
capabilities. The paper does not address authentication
between peer nodes, or authentication in group communi-
cation.

5. Extended TESLACertificate and Source
Authentication Protocol

We extend the original TESLA certificate design and propose
a new source authentication protocol based on the extended
TESLA certificate, by incorporating the following primary
modifications:

(i) we extend the lifetime of the TESLA certificate from
single use to multiple uses;

(ii) we allow disclosure of source TESLA keys via proxy;

(iii) we add a probabilistic nonrepudiation mechanism to
the source authentication protocol.

A detailed description of the extended TESLA certificate
and the source authentication protocol are given in the fol-
lowing sections. We start with a statement of the assumptions
that we have made for our solution.

5.1. Network Requirements and Security Assumptions. The
extended TESLA certificate implementation requires the
presence of a Certificate Authority (CA) to generate the
certificates. In our source authentication algorithm, the CA
broadcasts the TESLA keys of the source nodes to the
network at periodic key disclosure intervals. In the exemplary
hybrid network topology discussed in this paper, we use the
satellite for providing the services of the CA. The reasons for
using the satellite as the CA are as follows.

(i) The satellite is a network node that is always available,
connected to the entire network, and is physically
secure.

(ii) The satellite has higher computing power with on-
board processing capability and higher storage com-
pared to terrestrial wireless nodes.
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(iii) The energy available to the satellite is renewable
via solar power. Therefore the satellite can perform
intensive security and network operations without
the risk of draining its energy.

Therefore the presence of the satellite allows the imple-
mentation of efficient and secure centralized authentication
protocols that would have been difficult to implement in
terrestrial wireless networks without comparable centralized
infrastructure. Hence we consider the satellite as the root CA
in our authentication protocol design and assume that it is
trusted by all other nodes in the network. In the proposed
source authentication protocol, the satellite generates the
TESLA certificates for all the terrestrial user nodes, and it
acts as the proxy for the terrestrial nodes for disclosing the
TESLA MAC keys used by the nodes for authentication and
message integrity—instead of the source node, the satellite
broadcasts the TESLA keys to the network at regular time
intervals. Therefore the TESLA keys reach all the user nodes
in one broadcast transmission. This saves the delay in TESLA
authentication, and reduces the processing load on the
source nodes, and also the network transmission overhead.

In order to describe the operation of the authentication
protocol, let us consider, without loss of generality, a group
of three wireless nodes A, B, and C, where A sends messages
to B and C. Our objective is to design an authentication
mechanism that allows B and C to securely authenticate
messages from A using a computationally efficient algorithm
that expends low node energy. We make the following
assumptions about the initial security setup of the network
for authentication purposes:

(i) all three nodes have limited energy and processing
power, and none has any pre-existing security infor-
mation about the others;

(ii) the public key +KCA of the CA is available to all nodes;

(iii) all nodes are time-synchronized with the CA;

(iv) appropriate security policies are in place to allow each
node to securely identify itself to the CA during the
initial bootstrapping phase, and each node X shares a
unique secret key KCA,X with the CA;

(v) one-way functions F1 and F2 [20] are publicly
available;

(vi) message transmission from A to B and C start at time
t0;

(vii) time is divided into intervals, each of duration Δ.

The three-user network above can be extended to
larger networks with multiple sources and receivers; the
extended TESLA certificate and the source authentication
protocol described in the following sections would be equally
applicable to the larger networks.

5.2. Initial Setup: Key Generation by CA and Source Node.
At the time of the initial setup, before any messages are
transmitted in the network, the CA and all sources generate
the keys that each will need for message authentication. The
sets of keys are generated using the TESLA algorithm.

The CA uses a TESLA key chain {tKCA,i}, i = {1, . . . ,N}
to authenticate the TESLA certificates that it generates for the
group sources. The CA generates a random seed sCA,N and
applies one-way function F1 to sCA,N to form a hash chain
(3):

sCA,0
F1← sCA,1

F1← ·· · F1← sCA,N−1
F1← sCA,N , (3)

where N > 0 is equal to the number of unique MAC keys
that the CA expects to use for authenticating the certificates
and messages it generates during its operational lifetime.
The value N depends on the length of each time interval
and the total duration that the CA node will perform the
function of the CA. We assume that in each time interval,
the CA uses only one key for computing the MACs on all
the messages it generates in that time interval. Therefore, if
the CA’s operational lifetime is T and the interval for key
disclosure is d, we have N = T/d.

It is not necessary that T (and hence, N) are associated
with the entire lifetime of the CA. T could be a duration
that is less than the CA operational life. When time T has
elapsed, and the CA has disclosed sCA,N , the CA can start
with a new hash chain with starting element N ′ = T′/d′

corresponding to a new duration T′ and a new disclosure
interval d′ (which can be the same as d). The CA will have
to broadcast the anchor element of the new chain to the
network in the manner described in (5), or the new chain
can be generated such that one can securely derive sCA,N from
the new one. We describe the rest of the algorithms assuming
that T is equal to the CA lifetime, since this is not central to
the algorithm development.

Once the hash chain has been generated as described
in (3), the CA applies function F2 to each element of the
chain to obtain the certificate keys tKCA,i, which it uses in
the certificates (4):

F1 F1 F1 F1
sCA,0 sCA,1 · · ·

· · ·
sCA,N−1 sCA,N

F2 F2 F2

· · ·tKCA,1 tKCA,N−1 tKCA,N

(4)

sCA,0 is the anchor element of the CA’s authentication key
chain. All TESLA certificates and signed messages from the
CA are authenticated using the anchor element during the
protocol run. sCA,0 is broadcast to the network at time t < t0
(5):

CA −→ network :
(
sCA,0, SIGN−KCA (· · · )

)
. (5)

The anchor element itself is authenticated using traditional
public key cryptography: the CA generates a signature on the
message containing the anchor element and broadcast the
message with the signature. All network nodes receiving the
broadcasts message verify the signature on the message using
the public key +KCA of the CA. If the signature is verified,
the nodes store in local memory the key sCA,0 along with the
broadcast message.
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Figure 2: TESLA certificate for node A.

In a manner similar to the above, each source node A
generates a random seed sA,n and applies one-way function
F1 to sA,n to form a hash chain, before any messages are sent.
A subsequently applies F2 to each key sA,i generated above
and obtains the output s′A,i (3):

F1 F1 F1F1
sA,0 sA,1 · · ·

· · ·

· · ·

sA,n−1 sA,n

F2 F2 F2 F2

s′A,0 s′A,1 s′A,n−1 s′A,n

(6)

Here n > 0 is equal to the number of unique MAC keys that
A expects to use for authenticating its messages. The value
n depends on the length of each time interval and the total
duration of A’s transmission. We assume that in each time
interval Δ, a source uses only one key for computing the
MACs on all the messages it generates in that time interval
Therefore, if the total time of A’s transmission is T, we have
n = T/Δ.

At time t < t0,A sends sA,n, n to the CA, along with details
on A’s key disclosure interval. The message from A to the CA
is secured using the shared secret KCA,A between A and the
CA. The CA can obtain all the elements of A’s TESLA key
chain from sA,n and n, as in (3).

5.3. Extended TESLA Certificate. On successful verification
of node A’s identity subsequent to the steps described in
Section 5.2, the CA generates the TESLA certificate for A. A
schematic of the TESLA certificate for A is given in Figure 2.
The certificate maps the identity of the source node A to
the key sA,0 which is the anchor element of A’s key chain.
sA,0 is encrypted using key tKCA,1 from the CA’s key chain.
tKCA,1 is the CA MAC key for the time period 〈t0, t0 +d〉. The
certificate mentions the time t0 +d up to which the certificate
is valid, that is, after time t0 +d, key sA,0 is made public to the
group and it can no longer be used for new messages. The
certificate contains a MAC for authentication, computed on
the previous elements using tKCA,1.

For added security, the certificate might also contain CA’s
public key signature on all the previous elements as shown in
(7). However, this is not necessary if the CA has previously

successfully broadcast the anchor element of its own key
chain, following (5):

CertCA(A)

=
(

IDA,
{
sA,0
}
tKCA,1

, t0 +d, MACtKCA,1 (· · · ), SIGN−KCA (· · · )
)

,

(7)

CA −→ A : CertCA(A). (8)

Here d ≥ Δ is the key disclosure delay for the CA TESLA
signature key.

5.4. Message Transmission from Source to Receiver. A sends
messages to B and C starting in the time interval 〈t0, t0 +d〉. A
computes a MAC over the message m0 using s′A,0 and includes
its TESLA certificate CertCA(A) with the message:

A −→ {B,C} :
{
M0 |M0 :

(
m0, MACs′A,0(m0), CertCA(A)

)}
.

(9)

Each of B and C checks the freshness of the certificate by
checking the timestamp of CertCA(A) to make sure it has
arrived within the period 〈t, t0 + d〉. The receivers also check
that s′A,0 is not publicly known, that is, MACs′A,0(m0) cannot
yet be computed by them. If all the checks pass, B and C store
M0 in their respective buffers, else they discard the message.

Checking the timestamp on CertCA(A) is critical for the
security of the algorithm. Once the CA discloses sCA,1 at
time t1 � t0 + d, any node in the network can create a
fake certificate with timestamp t0 + d, allegedly generated
by the CA, similar to (7). Therefore receivers will only
accept certificates for which the CA TESLA key has not been
disclosed at the time of receiving the certificate.

5.5. Message Authentication at Receiver. At time t1 = t0 + d,
the CA broadcasts the key sCA,1 to the network:

CA −→ network :
(〈t0, t0 + d〉, sCA,1, SIGN−KCA (· · · )

)
. (10)

If receiver B or C has received the anchor element sCA,0 (5),
they can check the authenticity of sCA,1 by verifying sCA,1

against sCA,0:

sCA,1
F1−→ sCA,0. (11)

Otherwise, B or C can verify sCA,1 from the signature using
+KCA. If verification is successful, each receiver derives
tKCA,1 from sCA,1 (4) and uses tKCA,1 to verify the MAC on
CertCA(A). If the MAC is correct, receiver B obtains sA,0 from
CertCA(A) by decrypting with tKCA,1. B obtains s′A,0 from sA,0

(6). Then B checks MACs′A,0
(m0) using s′A,0 and accepts m0 if

the MAC verifies correctly. B saves CertCA(A) and the anchor
element sA,0 of A′s key chain in long-term memory—they are
used for authenticating future keys and messages from A.

Messages from A to B in subsequent time intervals use
the corresponding key of A′s key chain to compute the MAC.
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Figure 3: Time diagram for source authentication using the extended TESLA certificate.

A does not have to include its TESLA certificate in messages
subsequent to M0, under the assumption that every receiver
has received M0 correctly. For example, in the period 〈ti, ti +
Δ〉, message Mi from A to B would look like

A −→ B :
{
Mi |Mi :

(
mi, MACs′A,i

(mi)
)}

. (12)

At time ti + d, the CA broadcasts sA,i to the network. Since
d > Δ, when sA,i is disclosed, A is no longer using s′A,i for
computing the MACs on its messages. Any receiver B that
receives the CA broadcast, verifies that sA,i indeed belongs to
A’s MAC key chain as

sA,i
F1−→ sA,i−1

F1−→ ·· · F1−→ sA,0. (13)

The above verification is correct since F1 is a secure one-way
function and sA,0 has already been verified from CertCA(A).
However, if B wants to be additionally careful, it can verify
sA,i going through the additional steps described above, using
the CA key broadcast message and CertCA(A). Figure 3 gives
a timing diagram representation of the protocol.

After the initial anchor element broadcast message
from the CA signed with −KCA, subsequent key disclosure
messages from the CA can be authenticated using one-way
chains. For example, CA discloses the key sCA,i used in period
〈ti, ti+d〉 at time ti+d. Receiver B can verify that sCA,i belongs

to CA’s one-way chain:

sCA,i
F1−→ sCA,i−1

F1−→ · · · F1−→ sCA,0. (14)

where sCA,0 has been verified before using +KCA. B does not
need to check CA’s signature to verify sCA,i.

Thus messages from A to B and C can be authenticated.
The source authentication protocol requires that A perform
one signature verification to verify the certificate it receives
from the CA (7). Each receiver also performs one signature
verification on the anchor element broadcast message from
the CA (5). Since A is not a receiver, it does not need the
verification in (5). All other messages from the CA and
the sources can be authenticated using low-computation
symmetric MACs. Moreover, sources and receivers do not
have to perform clock synchronization directly with one
another, synchronizing with the CA is a necessary and
sufficient condition for the protocol. This saves additional
message rounds and protocol complexity and also breaks
the cyclical dependency between authentication and clock
synchronization.

5.6. Certificate Revocation. At any time the circumstances
warrant that the extended TESLA certificate of a node has
to be revoked, the CA would need to broadcast a certificate
revocation message to the network. Assume that the CA
revokes the TESLA certificate of node A in the time period
〈ti, ti + d〉. Then the CA broadcasts the following message to
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the network:

CA −→ network:(〈ti, ti + d〉, REVOKE(CertCA(A)),

MACtKCA,i+1 (· · · )
)
.

(15)

The receiver buffers the message and waits for the CA to
disclose sCA,i+1 at time ti+d. The traffic received from A in the
intermediate period is also buffered, awaiting the verification
of the revocation message, due to the possibility that the
revocation message might be a fake. At time ti+1 = ti +
2d, the CA broadcasts sCA,i+1 to the network. B can verify
the authenticity of sCA,i+1 from (14) and thus validate the
revocation message. If the revocation message is correctly
verified, the receiver discards the buffered messages from A
and adds the sender to the revoked users list.

The revocation message can be merged with the key
disclosure message, the combined message looks like

CA −→ network:
(〈ti, ti + d〉, REVOKE(· · · ), sCA,i,

MACtKCA,i+1 (· · · ), SIGN−KCA (· · · )
)

,

(16)

where the REVOKE field will contain the TESLA certificates
to be revoked, the MAC is computed on the revoked
certificates and the signature verifies sCA,i for nodes that
might need the verification (instead of verifying sCA,i using
(14)).

Equation (16) implies that the revocation list is sent out
at regular intervals with the key disclosure message. The
revocation list will contain only those revoked certificates
that are otherwise unexpired. Therefore revocation lists in
multiple messages might repeat revoked certificates. This
helps to make the revocation messages resilient to random
channel losses of CA messages.

5.7. Key Disclosure Delay

5.7.1. Time Synchronization. Due to the use of the key
disclosure delay to achieve asymmetry in authentication,
time synchronization between the nodes taking part in the
group communication is important for the correct operation
of the source authentication protocol. We use the satellite
as the time reference due to its centralized location and
global reach. Each terrestrial node synchronizes its local
clock with the satellite time. Figure 4 illustrates the time
synchronization of the terrestrial nodes with the satellite/CA.
The time synchronization algorithm works as follows.

(1) At periodic intervals, the CA broadcasts its local
time tCA to the network, authenticated with a digital
signature. As shown in Figure 4, let the local times at
that instant at a terrestrial source node S and receiver
node R be t1 and t2, respectively.

(2) Sender S receives the CA time broadcast at its
local time tS. The sender computes the maximum
difference in time from the CA as

tS − tCA = tS − t1 + t1 − tCA = δS + εS, (17)

where εS is the synchronization error of the source
clock with the time reference. Therefore the upper
bound on the CA’s local time, with reference to S, is

t ≤ tS + δS + εS, (18)

(3) Receiver R receives the CA time broadcast at its
local time tR. The receiver computes the maximum
difference in time from the CA as

tR − tCA = tR − t2 + t2 − tCA = δR + εR. (19)

where εR is the synchronization error of the source
clock with the time reference. Therefore the upper
bound on the CA’s local time, with reference to R, is

t ≤ tR + δR + εR. (20)

The above method of time synchronization with the CA
also indirectly synchronizes the time between the terrestrial
nodes. After synchronization, the difference in time between
the nodes S and R is

δS − δR + εS − εR. (21)

It can be deduced from Figure 4 that δS and δR are the
network propagation times from the satellite to the terrestrial
nodes, that is, δS ≈ δR and hence the difference in local time
is only

εS − εR = εSR (22)

If S and R are well synchronized with the CA: εSR ≈ 0.

5.7.2. Computation of the Key Disclosure Delay. The key
disclosure delay d is a critical parameter affecting both the
security and the performance of the proposed protocol. It
depends on the duration of each time interval Δ and the
network propagation delay from the sources to the receivers.
As is shown below, if the message transmission from the
sources to the receivers happens exclusively over the satellite
links, then the key disclosure delay depends only onΔ and the
satellite link propagation delay, which is known and fixed.

We follow the method outlined in [18] in computing
the key disclosure delay for our proposed protocol. Let us
consider a packet pj being sent by source S and received by
node R in time interval I j . Let the local times at S be tSj when

the packet is sent, while the local time at R is tRj , when the
packet is received. The requirement to satisfy the security
condition is

⎢⎢⎣ tRj + δR + εR − t0

Δ

⎥⎥⎦− I j < d, (23)

where δR and εR are the propagation delay from the CA to the
receiver and the time synchronization error at R, respectively,
as explained in Section 5.7 and shown in Figure 4

Also, we must have

tSj < t0 + I j ∗ Δ + Δ. (24)
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Figure 4: Time synchronization between the protocol participants in the extended TESLA certificate protocol.

Equation (24) merely states that the local time at the source
must correspond to the time in interval I j . If DSR is the
network propagation delay from S to R, then

DSR = tRj + εR − tSj − εS, (25)

where εS is the time synchronization error for S.
From (23), (24), (25), we get:

⎢⎢⎣DSR − εR + tSj + εS + δR + εR − t0

Δ

⎥⎥⎦− I j < d,

that is,

⌈
DSR + t0 + I j ∗Δ + Δ + εS + δR − t0

Δ

⌉
− I j < d,

that is,
⌈
DSR + εS + δR

Δ

⌉
+ 1 < d.

(26)

If we assume that the packet transmission from S to R is over
the satellite links, then DSR is one-way propagation delay over
the satellite from S to R, while δR is the direct propagation
delay from the satellite to any terrestrial node. We thus have
DSR = 2∗ δR and hence from (26), we get

⌈
3∗ δR + εS

Δ

⌉
+ 1 < d. (27)

For a given satellite configuration, δR is known and fixed.
For example, for a geostationary satellite, δR is of the order
of 0.12 seconds. Moreover, for fine synchronization of the
terrestrial nodes with the time reference, εS is negligible
compared to the satellite propagation delay. Hence, (27) gives

⌈
0.36
Δ

⌉
+ 1 < d. (28)

Figure 5 shows the variation in the key disclosure delay
d as a function of the key use interval Δ. As the figure
demonstrates, the product of the disclosure delay and the key
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Figure 5: Key disclosure delay d as a function of key use interval Δ.

use interval is bounded by the network propagation delay,
which is a constant. Hence as the key use interval increases
from 1 ms to up to 50 ms, the disclosure delay varies between
361 ms and 410 ms.

6. Nonrepudiation of the Source
Authentication Protocol

Nonrepudiation is not provided by the TESLA authen-
tication algorithm [17] or the original TESLA certificate
proposal [19]. The symmetric nature of the basic crypto-
graphic primitive used here—MACs—does not allow for
nonrepudiation. Once the hash key for a particular MAC
is disclosed, any group member would be able to generate
the MAC for the given message. Therefore, at a later instant
in time, it is impossible to prove that the message was
generated by a particular source. The lack of nonrepudiation
is a major drawback of the previous TESLA-based source
authentication algorithms, compared to public key-based
authentication.
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In our extended TESLA certificate algorithm, we propose
to add nonrepudiation by taking advantage of the satellite
infrastructure and the proposed mechanism of key disclosure
by proxy. This is achieved as follows.

The source authenticates each message by two or more
MACs, computed using keys from two or more key chains,
respectively. The root key of each chain is shared between the
source and the CA (the satellite) as described in Section 5.2,
and the anchor elements of all the key chains used by the
source is included in the extended TESLA certificate for that
source. The source includes all the MACs with each message
transmission. Each receiver buffers the message along with all
the MACs if the basic security check is satisfied, as described
in the protocol in Section 5.5. At the time of key disclosure,
the CA broadcasts only one of the MAC keys out of the set of
MAC keys for the given source and message. Each receiver
verifies the single MAC associated with the key broadcast
by the CA, and accepts the message as correct if the MAC
is verified. If any receiver wants to be able to check the
message for nonrepudiation at a later time instant, it saves
the message along with all its MACs.

The MAC key that is disclosed by the CA is chosen
at every disclosure instant, with uniform probability from
the set of available keys for that time interval. Therefore,
the source cannot know in advance, with a high degree
of probability, which key will be used by the receivers for
authentication. Hence, if the source would like its messages
to be accepted by the receivers, it will have to include all the
MACs correctly computed with the corresponding keys.

If at a later instant in time, a receiver would like
to prove that a message was indeed generated by the
source (i.e., nonrepudiation), the receiver can simply send
a nonrepudiation request to the CA. Upon receiving the
request, the CA discloses one of the previously undisclosed
MAC keys for the message in question. The receiver can
compute the MAC for the message with the newly disclosed
key and compare the MAC with the set of MACs it had saved
previously. If the CA and the receiver operates correctly, the
newly computed MAC will match one of the saved MACs.
Since (i) the undisclosed MAC keys were known only to the
source and the CA, and (ii) the CA is universally trusted,
therefore the saved MAC must have been computed by the
source using its MAC key and hence the message must
have been generated by the source. Thus nonrepudiation is
achieved.

The security of the above algorithm is proportional to
the number of MACs included with each message. For two
MACs per message, the probability of a particular key being
disclosed by the CA is 0.5. We term this probability the r-
factor, where r is acronym for repudiation. It is computed
as the inverse of the number of MACs included with each
message. A nonconforming source which includes only one
correctly computed MAC with its message in order to avoid
nonrepudiation, can expect the message to be accepted by
the receivers only with 50% probability. If four MACs are
included with every message, the r-factor is to 0.25, and
so on. There is hence a tradeoff between the strength of
the nonrepudiation algorithm and the security overhead per
message in terms of number of MACs involved. There is also

the processing overhead at the source since its node has to
compute M, number of MACs per message where M > 1.

The number of MACs per message also affects the
security of the algorithm in the context of the receivers.
If there are two MACs per message, the nonrepudiation
mechanism will be successful for the request from one
receiver. For any subsequent request from other receivers for
that particular message, nonrepudiation will fail since both
MAC keys are now known to the receivers. The number
of successful nonrepudiation requests for a given message
is therefore directly proportional to the number of MACs
per message. This drawback can be solved by modifying
the protocol steps for nonrepudiation. Instead of sending
a request for an undisclosed key, the receiver can send the
entire message along with the saved MACs, to the CA. The
CA itself will compute the MACs on the message with any
one of the undisclosed keys and compare with the saved
MACs sent by the receiver. Since the undisclosed keys are
known only to the CA and the source, in the event of a
match, the CA can confirm to the receiver that the message
was indeed generated by the source. The security of this
mechanism depends only on the amount of trust placed on
the CA and is independent of the number of MACs per
message. The tradeoff is the additional load on the CA and
the network overhead in transmission of the message with
the MACs, to the CA.

7. Security Analysis: Prevention of
AuthenticationAttacks

The source authentication protocol based on the extended
TESLA certificate is resistant to active attacks by malicious
nodes in the network. In the following sections we discuss
the security provided by the protocol against specific active
attacks. In our analysis, we assume that the CA is always
secure, since compromise of the CA is a single point of failure
for security in the network.

7.1. Malicious Node with Connectivity to Source and Receiver.
We consider the case where a malicious node X attempts to
create fake packets from a source to the receiver(s). Without
loss of generality, we consider one source A is sending data
to one receiver B, the data being authenticated using the
proposed source authentication protocol. We assume that
X can hear packet transmissions from A, and can also
transmit to B. X can also receive the broadcast messages
from the CA. Therefore, shortly after time t0 + d, X has
knowledge of CertCA(A), message M0 from A to B, sCA,0

broadcast by the CA, and sA,0 from the certificate. X can
verify that s′A,0 belongs to the authentication hash chain of A
by performing the verification procedure. Having obtained a
verified element of A′s authentication chain, X can attempt
to spoof messages as coming from A, starting at time t0 + kd,
where k > 0. To achieve this, X needs to generate sA,k from
sA,0 where sA,k = F−k1 {sA,0}. Due to the one-way property
of F1, this is computationally infeasible for X and is of
complexity O(2K), where each element of the hash chain
is K bits and K is assumed to be large (for example, K is
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160 bits for SHA-1 HMAC [21]). Without a valid sA,k, it
would be impossible for X to spoof a message that would be
successfully authenticated by B.

X could also attempt to spoof packets from A at any time
between 〈t0, t0 + d〉. This would require that X successfully
generates an element of A′s hash chain without knowledge of
any legitimate element of the hash chain. This has the same
computational complexity of O(2K ) and is computationally
infeasible for any X with finite resources.

A third approach X attempt would be to generate an
independent hash chain that produces the hash value sX ,0

that is computationally indistinguishable from sA,0. This
would allow X to use element sX ,0 of its own hash chain to
authenticate messages purportedly generated by A. However,
this is computationally infeasible due to the collision-
resistance property of F1 and F2.

Failing any attack on A′s hash chain as above, X could
attempt to masquerade as the CA and generate a fake
certificate for A as in (7), and also generate fake CA key
disclosure broadcast message similar to (10). However, unless
X knows the CA private key −KCA, it will not be able to
correctly sign the fake CertCA(A), and therefore the fake
certificate will be rejected by A. Likewise, the fake CA
broadcast message from X will be rejected by the receivers
unless the signature in the message is verified as correct using
+KCA. As per our assumption of the security of the CA,−KCA

is known only to the correct CA, and therefore X would not
be successful in this attack.

X could attempt to fake CA key disclosure messages
subsequent to (10), but (a) the fake hash element sCAX ,i will
not verify successfully to the anchor element sCA,0 and (b)
this does not allow X to fake elements of A′s hash chain.

7.2. Attack on the CA Revocation Messages. A malicious
node X in the network can attempt to broadcast fake
revocation messages, similar to (15), and thereby attempt to
disqualify legitimate sources in the network. To generate a
fake revocation message that will be successfully accepted by
the receivers, X should be able to compute a MAC on the
fake revocation message using the key sCA,i+1, with knowledge
of at most the key sCA,i, where sCA,i+1 = F−1

1 {sCA,i}. Using
reasoning similar to the previous section, owing to the one-
way property of F1, this has computational complexity O(2K)
and is infeasible for X. At most, X can trick the receivers in
buffering the fake revocation message, till the next message
disclosure from the CA, when the MAC on the fake message
will not verify correctly using the recently disclosed (correct)
sCA,i+1, and therefore be discarded.

Therefore, the source authentication protocol based on
the extended TESLA certificate approach is secure against
message spoofing attacks by malicious nodes in the network.

7.3. Signal Jamming Attacks. Adversarial nodes can attempt
to prevent the successful transmission of protocol messages
by jamming the channel with unwanted signals. This is a
physical layer attack and not an attack against the authentica-
tion algorithms per se. Methods to achieve resiliency against
such attacks are ideally the domain of the physical and

link layer algorithms, for example, spreading algorithms and
acknowledgment-retransmission algorithms, amongst other
measures.

For the hybrid network architecture described in this
work, a large network-wide signal corruption is mostly
infeasible, due to the vast footprint of the satellite. Channel
losses are localized to small regions at any given time;
the satellite physical and link layer protocols incorporate
sufficient mechanisms to recover from such losses.

At the same time, the proposed authentication algorithm
is robust to random channel losses of protocol messages.

(i) Authentication of any individual packet is indepen-
dent of authentication of prior packets. If the source
key disclosure message containing the keys for a set
of buffered packets, is lost due to channel errors,
then only that set of buffered packets cannot be
authenticated; it does not affect packets whose MAC
keys are not in the lost disclosure message.

(ii) If a certificate revocation message (associated with
the CA key disclosure message) is lost due to
channel errors, the receivers will not be aware of
any newly revoked certificate that is contained in
the lost message. Consequently the packets from the
corresponding source will continue to be treated as
valid, till the next revocation message is received, or
the certificate expires, whichever is earlier.

8. Performance Evaluation of Extended TESLA
Certificate Algorithm

We have run simulations of the proposed source authentica-
tion protocol to analyze the demands the protocol can make
of node resources, and also to compare it with public key-
based authentication protocols. For our performance analy-
sis, we consider that all security protocol and data messages
from the source to the receivers are sent over the satellite
channel where the satellite is in Ka-band and geostationary
orbit. Therefore, the one-way satellite propagation delay is
of the order of 130 ms and the terrestrial propagation delays
from the group nodes to the local gateways are negligible
in comparison. Moreover, the satellite uplink bandwidth is
much less in comparison to the satellite downlink bandwidth
and usually also lower than the terrestrial wireless bandwidth
(assuming the wireless MAC protocol is IEEE 802.11). By
our assumption, all data has to traverse the satellite uplink
and hence we limit the overall network bandwidth to be
equivalent to the satellite uplink bandwidth. In the following
analyses, the uplink bandwidth is varied between 64 Kbps
and 10 Mbps.

8.1. Size of the Buffer at the Receivers. An important resource
consideration is the amount of memory or buffer required
in the receivers for temporary storage of the data packets
that are pending authentication (that is, the MAC key has
not been disclosed by the CA). Figure 6 shows the variation
in the size of the buffer required for different Δ and varying
network bandwidths.
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In theory, the receiver buffer size depends on the time
interval of key use (since the key disclosure delay is a function
of that) and the network bandwidth. As Figure 6 shows, the
buffer size varies little with the key disclosure delay since it is
limited to a narrow range by the network propagation delay.
However, the buffer size is significantly affected by the rate
at which data is received—for higher rates, larger buffer is
required. Even so, the buffer requirement is only in the order
of hundreds of kilobytes, which is a small fraction of the
memory present in wireless smart devices today.

If the receiver buffer is fixed due to hardware constraints,
the key disclosure delay (and hence the key use interval) has
to be dynamically determined based on the smallest buffer
size available, and the network bandwidth. Figure 7 shows
that the key use interval can be longer for larger buffers, while
it is shorter for higher bandwidths.

8.2. Comparison of the Certificate Size. The size of the
TESLA certificate and the MACs computed on each message,
compare favorably to digital certificates and signatures used
in public key-based cryptography. If the MAC algorithm is
based on SHA-1 [21], the key used is 160 bits. For a TESLA
certificate with fields as shown in 2, the certificate size is
computed as follows.

(i) 32 bits for the ID—this will cover 4 billion nodes;

(ii) 160 bits for the encrypted anchor element (128 bits if
MD5 is used instead of SHA-1);

(iii) 64 bits for the time field—this gives the current time
in UTC since January 1, 1900, with a resolution of 200
picoseconds [22];

(iv) 160 bits for the MAC;

(v) 1024 bits for the CA digital signature (assuming
PKCS no. 1-based [23] digital signature with mod-
ulus 1024 bits).

Therefore, the total size of the certificate is 1440 bits or
180 bytes. In contrast, a typical X.509 certificate size is of the
order of 1 KB.

8.3. Comparison of Signature Size Overhead. The size of the
MAC appended to each message in our protocol is 128 bits
for HMAC-MD5 or 160 bits for HMAC-SHA1 (and with
r-factor 1). In comparison, if RSA-based digital signature
is used, the signature size would be 512 bits, 1024 bits, or
2048 bits for RSA modulus N = 512, 1024, 2048, respectively.
For DSA or ECDSA-based digital signatures, the signature
size is 320 bits for a security level of 80 bits [2].

A comparison of the size overhead incurred for authen-
ticating 500 MB data using our proposed protocol or DSA
or RSA, is shown in Figure 8. Figure 8(a) compares extended
TESLA with HMAC-MD5 against DSA and RSA, while
Figure 8(b) compares extended TESLA with HMAC-SHA1
against DSA and RSA. Since the size of the message is
larger than the size of the maximum bytes allowed per
transmission, the message is split into smaller chunks for
transmission and each individual chunk is authenticated
separately. The graphs show how the overhead varies as
a percentage of the total bytes transferred (message +
MAC/signature) as the size of the IP packet varies between
316 bytes and 1528 bytes. For extended TESLA, we consider
three cases based on the degree of nonrepudiation present—
for each packet, r-factor is 1 (one MAC), 0.25 (four MACs)
or 0.125 (eight MACs). These are compared to DSA with
signature sizes 40, 64, and 128 bytes, and RSA with signature
sizes 64, 128, and 256 bytes (N = 512, 1024, and 2048, resp.).
For all the cases, the overhead decreases with increase in the
packet size because for the higher packet sizes there are lesser
number of chunks and hence lesser number of MACs or
signatures. The overhead for our basic protocol is the lowest
of all the cases. As we add more MACs for nonrepudiation,
the overhead goes up and is a significant percentage for
eight MACs (r-factor 0.125). This is the tradeoff in terms
of size for our nonrepudiation scheme. However, even then
the overhead for our protocol is significantly less than the
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overhead due to strong RSA (256 byte signature) or DSA
(128 byte signature-) based security. The graphs suggest that
we should go for the largest packet size allowed by the
underlying link layer protocol, since the overhead drops
significantly. However, this has to be considered against the
energy expense for authenticating larger packet sizes, as
shown in some following figures.

Figure 9 shows that the size overhead with HMAC-SHA1
is more than that with HMAC-MD5 for all r-factors, since
each individual MAC for the former is 1.25 times in size
that of the latter. However, for higher r-factors and larger
packet sizes, the overheads tend towards equal values. The
graphs again emphasize the need for larger packets, since
the overhead drops from 50% for the worst-case scenario
(HMAC-SHA1, r-factor 0.125, 316 byte packet), to 8.72%
(1528 byte packet).
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8.4. Number of MAC Keys Required. The number of cryp-
tographic keys required for computing the MAC on each
block, for 1 GB data, as a function of the buffer size and the
network bandwidth, is shown in Figure 10. Here for each
time interval Δ, one key is used. Δ is also lower bounded
by 10 ms. The buffer size is varied from 64 KB to 1536 KB
in steps of 64 KB. All the graphs exhibit a knee for buffer
size 128 KB. The graphs show that for high-transmission
rates, the number of keys required is high for small buffers,
while it decreases sharply as the buffer size increases. The
decrease with increasing buffer sizes is more smooth for
bandwidths lower than 1 Mbps. For large buffer sizes, the
number of keys required becomes largely independent of the
network bandwidth. When the buffer sizes are small, the
key use intervals have to be small too, and they are more
susceptible to variations in the data rate. For large buffers,
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Figure 11: Comparison of authentication processing delay for 500 MB data, PIII500 MHz.
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Figure 12: Energy consumption for HMAC-MD5 authentication only, iPAQ H3670.

the effect of the bandwidth is less important. Therefore, one
should consider the receiver buffer size as a more important
factor than the network bandwidth in designing the protocol
parameters.

8.5. Comparison of Processing Delay Overhead. An analysis
of the processing delay overhead of the extended TESLA
protocol, and its comparison to the processing delay for RSA
signatures, is given in Figure 11. We simulate the delay due
to authentication for 500 MB data on a 500 MHz Pentium
III machine. The delay figures for HMAC-MD5 and HMAC-
SHA1 are computed based on the approximation that each
operation is executed in one processor clock tick for the
500 MHz PIII processor. The delay figures for RSA per

Table 1: RSA signature timings (ms) per packet on 500 MHz
Pentium III [24].

Processor Key length (bits)

1024 2048 4096

PIII-500 MHz 14.6 85.6 562.8

packet for the 500 MHz PIII processor are from [24] and are
reproduced here in Table 1.

Figure 11(a) validates a key feature of each algorithm
compared here. For the HMAC algorithms, the processing
delay is proportional to the number of 512-bit blocks being
processed. As the packet sizes increase, the number of blocks
per packet also increase, and therefore the processing delay
for HMAC increases. Also, HMAC-SHA1 performs more
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Figure 14: Comparison of total energy required for authenticating
500 MB data on iPAQ H3670.

operations (1110 per 512-bit block) compared to HMAC-
MD5 (744 per 512-block) and this fact is reflected in the
graphs. For RSA, the processing delay depends only on the
size of the modulus N and is independent of the size of
the message. The cheapest RSA delay, 14.6 ms per packet
(for modulus 1024 bit), is still significantly higher than the
most expensive HMAC delay, 0.43 ms (for HMAC-SHA1
with eight MACs). This is a major advantage of our protocol
over signature-based schemes.

The total processing delay for authenticating 500 MB
data is shown in Figure 11(b). The total number of 512-bit
blocks in the overall message is independent of the size of
each packet, and hence also the HMAC processing delay for
the entire message. However, for RSA the processing delay
is directly proportional to the number of message chunks
processed. Here also our protocol performs significantly
better than using RSA signatures—the worst-case delay is

Table 2: Energy cost of digital signature algorithms and HMAC, for
Compaq iPAQ H3670 [26].

Algorithm Key size (bits) Sign (mJ) Verify (mJ)

RSA 1024 546.50 15.97

DSA 1024 313.60 338.02

ECDSA 163 134.20 192.23

HMAC 1.16 (μJ/B)

204 seconds (for HMAC-SHA1, 8 MACs), while the best-case
delay for RSA is a prohibitive 5321 seconds (for N = 1024,
1528-byte packets).

8.6. Analysis of Energy Consumption. We analyze the energy
consumption of our protocol for authenticating 500 MB data
in Figure 12. We simulate the energy consumption for a
Compaq iPAQ H3670 handheld computer [25], which is
fairly representative of the low-power smart devices that
we have considered in our protocol design. The handheld
contains an Intel SA-1110 StrongARM processor clocked at
206 MHz. It is powered by a Li-polymer battery with capacity
950 mAh at 3.7 V, which gives the total battery capacity to
be 12654 Joules. The base figures for energy expenditure
of different cryptographic operations of the handheld are
obtained from [26] and are reproduced here in Table 2.

Figure 12(a) shows that the energy consumption for
authentication each packet ranges between 0.7238 mJ and
12.73 mJ, with larger packets and higher r-factors consuming
more energy, as is expected. Figure 12(b) shows the total
energy consumed for authenticating 500 MB data, as a
percentage of the battery capacity. For higher r-factors,
the energy consumption is a significant percentage of the
capacity and implies that more than 500 MB data cannot be
authenticated without recharging. However, it is to be noted
that in most cases, the higher energy expense for the higher
r-factors is incurred by the source node only. The receivers
can authenticate the messages by computing only one MAC
and hence the figures for r-factor 1 is indicative of the energy
expense of the receivers. Given the energy constraints, the
maximum number of packets that can be authenticated by
our protocol, using HMAC-MD5, is given by Figure 13. In
this simulation we assume that only 50% of the total energy
is used in the protocol operation and the rest for other
purposes such as packet transmission. (The 50% upper limit
indicates our belief that useful security schemes should not
be energy intensive. Most real-life implementations would
use far lower energy amounts so that the node can perform
meaningful functions other than security operations.) The
graphs show that for larger packet sizes, the total number of
packets that can be processed are lower, since more energy is
spent per packet, due to the higher number of 512-bit blocks.
In the worst case, a source with r-factor 0.125 can process
between 1.3 million (IP packet size 668 bytes) and 0.49
million (1528 byte per packet) packets. On the other hand,
a receiver (with r-factor 1) can process between 8.74 and
3.66 million packets for packet sizes 668 bytes and 1528 bytes,
respectively.



16 EURASIP Journal on Wireless Communications and Networking

0

5
10

15

20

25

30

35

40

45

N
od

e
en

er
gy

co
n

su
m

ed
(%

)

650 700 800 900 1000 1100 1200 1300 1400 1500 1550

Packet size (bytes)

HMAC-MD5, r-factor: 1
HMAC-MD5, r-factor: 0.25
HMAC-MD5, r-factor: 0.125
RSA sign
RSA verify

DSA sign
DSA verify
ECDSA sign
ECDSA verify

(a) Percentage energy consumed for 5 MB data

100

101

102

103

104

M
ax

im
u

m
am

ou
n

t
of

da
ta

(m
J,

lo
g

sc
al

e)

650 700 800 900 1000 1100 1200 1300 1400 15001550

Packet size (bytes)

HMAC-MD5, r-factor: 1
HMAC-MD5, r-factor: 0.25
HMAC-MD5, r-factor: 0.125
RSA sign
RSA verify

DSA sign
DSA verify
ECDSA sign
ECDSA verify

(b) Maximum amount of data processable

Figure 15: Energy performance comparison of different authentication protocols on iPAQ H3670.
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Figure 14 compares the amount of energy that would be
required to authenticate 500 MB data on the iPAQ handheld
for different authentication algorithms. Clearly, authenticat-
ing 500 MB data without additional energy sources is not
possible except for the proposed protocol.

Given the energy constraints above, authenticating 5 MB
data on the handheld is more realistic—Figure 15(a) com-
pares the percentage of the total node energy that is spent
in authenticating 5 MB data. The graphs validate our claim
that the energy consumption of the proposed protocol
is significantly less in comparison to standard signature
protocols, even efficient protocols like ECDSA. Moreover, the
graphs show that for nodes with limited energy, the standard
signature algorithms cannot be applied for authenticating
every packet—even in the best case scenario, ECDSA signing
algorithm consumes nearly 4% of the node energy for only
5 MB data. For the iPAQ handheld, the standard protocols

can authenticate only a few mega bytes of data before
they completely spend the available energy, as shown in
Figure 15(b). Here also we assume that up to 50% maximum
of the node energy may be spent in authenticating the data
packets. The best scenario for the standard protocols is for
RSA signature verification, where a node can authenticate
nearly 543 MB of data if it is split into 1528 byte packets.
The worst scenario is for RSA signature generation, where
only 6 MB of data can be authenticated, for 668 byte packets.
The extended TESLA protocol with HMAC-MD5 performs
significantly better in comparison—being capable of authen-
ticating 682 MB even with r-factor 0.125. The analyses above
with iPAQ H3670 has the limitation that the processor power
and battery capacity is on the lower end of the scale for
mobile nodes that are available today. To illustrate the energy
performance of the proposed protocol for a more current
smart device, we have performed a simulation analysis of the
energy consumption for different message sizes on the Apple
iPhone processor, ARM1176JZ(F) [27]. The processor has an
operating frequency of 620 Mhz and consumes 0.45 mW per
cycle. We consider the node energy capacity to be equivalent
to the iPhone battery capacity, 1400 mAh at 3.7 V [28]. Under
the assumption that one HMAC operation is performed in
one cycle of the processor, Figure 16 gives the total energy
consumed for authenticating 500 MB data, for both HMAC-
MD5 and HMAC-SHA1. As is expected, HMAC-SHA1, r-
factor 0.125, consumes the most energy. However, even in
the worst case, the 1541 joules of energy consumed represent
8.2% of the total battery capacity.

Figure 17 shows how much energy is consumed for
authenticating varying message sizes. Figure 17(a) gives
the values for the node energy as a percentage of the
battery capacity for both HMAC-MD5 and HMAC-SHA1,
when the r-factor is varied. Here the individual UDP
payload is held constant at 768 bytes. Even the highest
consumption—HMAC-SHA1, r-factor 0.125 authenticating
1280 MB data—is only 13.71% of the total battery capacity.
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Figure 17: Energy consumption of extended TESLA protocol on ARM1176JZ(F) for different message sizes.

When the packet size is varied, while keeping the r-
factor constant (0.25), the energy consumption percentage is
shown in Figure 17(b). The maximum consumption is again
for HMAC-SHA1, for UDP payload size 1500 bytes, but it is
still an acceptable 21.16% of the total energy. Even though
these figures are only approximate, they demonstrate that the
proposed source authentication protocol can be efficiently
used for authentication in present-day smart devices.

It is to be noted that the energy consumption figures
above are only for the computation costs of various protocol
functions. Another primary source of energy consumption
is message transmission. An evaluation of the computation
and transmission costs based on the packet sizes, traded
off against the packet error probability in transmission,
may yield a packet size that is optimal in terms of overall
energy consumption. Such analysis is beyond the scope of
the current work.

9. Conclusion

In this paper, we have proposed a modified version of a new
class of lightweight, symmetric-key certificates called TESLA
certificate, and described a source authentication protocol
for group communication in hybrid satellite/wireless net-
works that is based on the extended TESLA certificate. The
extended TESLA certificate and the authentication protocol
are ideally suited for wireless smart devices with limited
energy availability. The certificate binds the identity of a
sender device to the anchor element(s) of the device’s MAC
key chain(s). Binding the identity of a device to its key chain
extends the lifetime of the device’s certificate to multiple uses.
Messages sent from the device are authenticated by MACs
computed with keys from the chain. For the authentication
protocol, we have used the satellite as the Certificate Author-
ity to generate and distribute the extended TESLA certificates
to all the nodes in the network. We have also used the satellite
as the proxy node for the senders in disclosing the MAC
keys to the receivers in the network. Furthermore, we have

proposed a novel concept of probabilistic nonrepudiation
that is based on having the satellite node as the proxy for key
disclosure to the receivers. In terms of performance, due to
the use of symmetric MAC functions, the proposed source
authentication protocol expends much less processing power
and node energy of the smart devices, in comparison to
authentication protocols based on public key-based digital
signatures. Through analysis and simulations, we have
shown that the performance of the proposed authentication
protocol is superior to using public key-based authentication
mechanisms, for the metrics node energy and processing
delay. We have also shown through security analysis that the
source authentication protocol is secure against malicious
adversaries.

There has been limited research in group authentica-
tion protocols that address the unique characteristics and
requirements of wireless devices in hybrid networks such
as the one we have described in this paper. We believe
our proposed protocol makes a worthwhile contribution
to address the paucity. Although we have described the
source authentication protocol primarily in the context of
hybrid wireless/satellite networks, with minor modifications
the protocol can be made applicable to devices in generic
wireless networks, provided that some centralized infras-
tructure is present for performing the functions of the
CA and the proxy. Also, the nonrepudiation mechanism
can be separately used with other symmetric MAC-based
source authentication protocols for group communications,
provided a trusted infrastructure is present for proxy key
disclosure and to provide arbitration.
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