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We leverage RFID tag cooperation to enforce tampering detection. That is, we provide a set of probabilistic protocols that detect
the absence of a tag from a system composed of a set of tags and a reader. Our proposals are able to detect which tag and for how
long it has been taken away from the system. The grain of the detection can be tuned with respect to the resources available on
the tags. Another merit of our solutions is to provide a proof-of-concept that a small level of cooperation among tags can further
extend the range of applications RFID can support, possibly opening new veins of research. The proposed protocols fit the resource
constraints of the several classes of RFID available on the market. In particular, the memory requirement ranges from few memory
slots to a number of memory slots that is proportional to the number of rounds the presence of a tag is going to be checked.
Computation is just one hash per round. This fully fledged set of protocols is thought to trade off the detection grain with the
resources on the tag: the finer the item removal detection grain, the more resources a protocol requires. A thorough analysis for
the removal detection probability is provided. Finally, extensive simulations support the analytical results, showing the viability of
the proposed solutions.

1. Introduction

The possibility to embed inexpensive wireless devices within
essentially any object, keeps RFID systems attracting interest
from both Academia and Industry. Applications of this
technology are increasing, and its evolution is pushed ahead
by the intent to substitute bar codes, but also to provide
exclusive and practical services, such as supply chain automa-
tion, transportation payments, access control, electronic
credit cards, product tracing, animal identification, library,
and health care to name a few [1].

One of the most attractive features of RFID systems—
together with their low cost—is the miniaturization of
tags. Tags are very small devices able to communicate via
Radio Frequency (RF) with a reader: tags usually do not
carry any battery, but can harvest energy from the electric
field generated by readers. Once a tag receives RF waves,

it converts them into Direct Current (DC) power, so that
it can operate its internal circuitry. This way, a tag is
able to reply to the reader transmitting its information via
modulated backscattering [2], that is basically modulating
the incident RF signal by passively switching the reflection
characteristics. The reply provided by the tag is usually
relayed via the reader to a database server and analyzed to
identify the tag. The literature about RFID systems offers
many proposals and protocols to enhance the security and
to protect privacy of RFID users [3, 4]. However, much less
effort has been made to explore the opportunities offered
by this technology when tags are allowed to cooperate.
The aim of this work is to illustrate the feasibility of a
simple but effective form of collaboration among RFID tags
mediated by the reader. The collaboration is leveraged to
propose a set of probabilistic protocols aimed at detecting
the absence of the items tags are attached to, under a specific
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(yet quite common) deployment scenario. We consider that
the absence of a tag may be the first step to item tampering
(as discussed in Section 3).

Throughout this paper, we will assume the supply chain
management scenario synthesized in Figure 1. However, this
scenario is simply an example of a possible application of
our protocols. In particular, we are interested in providing
a cheap and effective way to check for the integrity of items
after their shipment. We assume that: each item has an RFID
tag attached to it and during the packaging the items are
grouped together (e.g., into a container). It could be the
case that during the delivery process some of these items
are subtracted, tampered with or replaced, then put back
in the container. The sender could be interested in having
some sort of assurance to detect the occurrence of the above
threat. A real example of this scenario can be a consequence
of the rules introduced in 2006 by the American FDA: certain
drugs must be traced with RFID during their supply chain.
Our solutions provide a probabilistic assurance that the items
have not been removed from the initial configuration—this
event being detected even if items are put back later on. Note
that should an item be simply removed (and not put back),
our solution would detect such an event as well.

Contribution. In this paper, we propose a proof-of-concept
solution, accompanied by thorough analysis and supporting
simulations, that leverages cooperation among tags of an
RFID system. In particular, our proof of concept addresses
a relevant practical problem: enforcing the integrity of the
configuration of a set of RFID tags (i.e., of the objects they
are attached to). We provide a set of probabilistic protocols
that, leveraging the reader as a relay and synchronization
point, implement a low degree of cooperation among tags
achieving the above goal. The different protocols trade off the
grain of the tampering detection (as clarified in Section 3)
with an increase in the memory slot to be on board the tag.
The proposed protocols are fully viable with current RFID
tags: memory requirements range from a single memory
slot of few hundreds bits to several memory slots of such
size; computation is mainly a hash function per round, and,
communications amount to at most twomessages per round.
Thorough analysis shows the effectiveness of our solutions.
Simulation results support the analytical findings.

Organization. Next section reports on related work. In
Section 3, we introduce the assumptions used in this work.
An overview of our proposed solutions is given in Section 4,
while the detailed description and the analysis of the
proposed protocols can be found in Section 5. In Section 6
we report and discuss the simulation results that support the
analytical results. Finally, Section 7 presents some concluding
remarks.

2. RelatedWork

Security and privacy of RFID systems are challenging
research issues [4]. The research community has produced
a relevant corpus of work on these challenges and many
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Figure 1: Example of application: supply chain management
scenario.

protocols have been proposed. One of the most known
protocols for RFID privacy and identification was proposed
by Molnar and Wagner [5]. Several solutions have thereafter
been proposed to address identification, authentication, and
tag privacy [6–9]. In particular, the different proposals
either guarantee different protocol features (e.g., forward
secrecy and scalability) or fix security problems discovered
in previous protocol versions. Many privacy preserving
protocols make use of the idea to keep tags and server
synchronized over a hash chain: namely, they share a one-
time value that is updated at each authentication, using a
one-way function [10–18].

In particular, relevant research efforts have addressed
identification, authentication, and tag privacy: as noticed in
[19], from 2002 to 2009 more than 200 papers have been
published, analyzing security and privacy of RFID systems.
Also, around 150 proposal have been introduced, studying
the information flow between the tags and the reader. For
updated references on RFID security and privacy, the RFID
Security and Privacy Lounge maintained by Gildas Avoine is
an established reference point for the scientific community
[3].

Our work leverages cooperation among tags and pro-
poses four distributed protocols in order to enforce the
integrity of a set of objects equipped with RFID tags.

Previous work in this direction has been inspired by
the problem of generating “yoking-proof”, that is, proofs
that two [20] (or more [21, 22]) tags have been scanned
at the same time. However, previous solutions required
reader interactions to define a “chain” of readings of the
tags, and querying them accordingly to their order in that
chain. Hence, the integrity check depends on the reader
performing queries in a specific order. This implies the reader
to know in advance the tags to be queried. We observe
that this could rise an information leakage, in case the
reading is outsourced. Compared to yoking proof [20–22],
our solution can provide a more fine-grained detection,
since we are able to find which tag and for how long it
has been taken away from the system. Furthermore, unlike
previous works, our protocols are completely distributed
among the RFID tags, that is, the proof that the tags have
been together—what we refer as the integrity of the tags
set—is proved offline, by querying the tags themselves.
Spreading of sensible information all over the tag memory
is an approach used also in [23]. In that work, the authors
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propose to realize a key deployment using the tags to carry
the shares of a (n,n)-secret sharing scheme [24]. Only who
is able to scan all the n tags will be able to recover the secret
key.

Previous studies [25] already highlighted that a track
and trace system such as [26] might not be sufficient to
face the problem of goods counterfeit. In fact, the solution
in [26] bases the check on the fact that a given product
(with a given ID) cannot be sold in two different places
(e.g., UK and Nigeria). However, if the counterfeit is done
by the final retailer, or the intermediate carriers do not
update the EPC network [27] database, the check will fail.
In [25], the authors propose to extend the EPC network to
include an authentication mechanism, making it unfeasible
to just copy the tag’s ID. In our solution, we also use a
tag authentication mechanism: each tag has a secret value
shared only with the control center—but not with other tags,
neither with the reader, that in our case can be untrusted.
Furthermore, our solution is not dependent on any standard
like the EPC one [25]. That is, our system would work
also independently from the EPC network. In the same
direction of proposing a protocol against tag counterfeiting,
the work in [28] introduces a smart and effective clone
detection mechanism for RFID. It is based on verifying the
correctness of sequences of two time-consecutive events in
the tag history within the supply chain. The proposed system
focuses on clone detection and assumes a chain of trusted
partners that actively and honestly cooperate to protect the
system.

There are currently different standards for RFID tech-
nology from EPC [27] and ISO [29]. EPC standards are,
(i) Class 0 (Ultra High Frequency-UHF); (ii) Class 1 (High
Frequency-HF 13,56Mhz/UHF); Class 1 Gen 2 (UHF).
There are also ISO standards for generic parameters (ISO
18000-1) and for different air interface parameters (stan-
dards ranging from 18000-1 to 18000-7 for air interface,
varying from 135 kHz to 5.8GHz). Furthermore, there are
ISO standards for proximity cards (ISO 14443), for vicinity
cards (ISO 15693), and close-coupled cards (ISO 10536). An
example of RFID tag implementing the standard ISO 15693
is the NXP SLI-S ICS54 with 2048 bits of memory [30] and a
maximum read distance of 1–1.5 meters. This multiplicity of
resources RFID tags are equipped with motivates our effort
to provide a range of protocols; choosing the appropriate
one requires to find out the best trade off between the
available resources on tag and the desired detection grain—
that is, the amount of information detailing the system
violation.

As for the computation effort required, the major
computational task assigned to tags is the computation of
a hash function. Note that the feasibility of implementing a
hash function on RFID tag has been proved in [31–33], to
cite a few.

3. SystemModel and Assumptions

In this section, we describe the system model and the
assumptions used in this work, together with the adversary
(ADV) capabilities.

3.1. System Model. In our problem setting, we have a system
composed of n items and an untrusted reader. We assume
that each of these items has a tag stuck to it. The tags
are used to guarantee the integrity of the traced items,
namely to check if an item has been removed from (and,
possibly, reinserted into) the system. From now on, we refer
to “tampering detection” assuming that if an item has been
removed from the others, it has been tampered with.

The reader splits time in intervals (also called rounds) of
equal length and queries the tags once at each interval (i.e.,
tags receive energy from the reader). The reader does not
have any kind of cryptographic material but acts only as an
“energy provider” and a relay node for the tags to cooperate.
We do not require the reader to be networked. Hence, (1)
we can use the system offline (for instance, during shipping,
getting rid of expensive satellite or cellular link-based-check);
(2) we do not need to provide the entity charged to transfer
the items with any kind of information related to the tags; (3)
we do not need the reader pass through any special setup or
authentication phase with any other entity.

As we are designing our solution for checking the
integrity of a set of items (to which tags are attached), we
require each tag to be not easily detachable from the item.
Should this tampering occur, we assume it is detectable—
for example, via physical observation of the item. This
assumption is fundamental, since an ADV could detach
the tag from its companion item and leave only the tag
in the system bringing away the item. After the corruption
of the object, ADV could bring the item back and finally
repositioning the tag on the item: the tampering would not
be detected by our protocol. Note that the above requirement
can be currently satisfied: solutions do exist able to detect the
removal of a tag from the corresponding item [34].

The reading of multiple tags takes a period of times
related to the number of tags that provide a reply. This is due
to the anticollision protocols the readings are based on. In
this work, we assume that if a tag was read during a reading,
then it was present during the whole duration of the reading
period. As assumed in other works [35, 36], if a tag is present,
it will always terminate the protocol within a certain interval
of time.

The life cycle of the envisaged system is composed of
three main phases (Figure 1).

(i) Setup. This phase takes place just once, in a protected
environment, where the configuration of tags and reader can
be considered safe. In this phase, the tags receive their initial
setup and are configured with the selected protocol. Tags are
also stuck to the items they should protect the integrity of.
In the following, we will use the term tag to refer to the
combination of the item plus the tag—this assumption is
based on the fact that the two cannot be separated, otherwise
this event will be detected. The reader is also programmed to
read (i.e., to provide energy to) the tags with the appropriate
interval duration. As it will be clear in the following, the
reading frequency has a direct relationship with both the
resources required on tags and the compromising detection
probability.We face the impact of a bad/faulty interval length
configuration in Section 3.2.
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(ii) Transfer. The transfer phase represents the shipping
of the tags: during the transfer, tags are supposed not to
leave the area the reader provides energy to. We assume
ADV can compromise the tag only during this phase (see
Section 3.2). We assume that some sort of further, loose
physical surveillance is in place, that corresponds to the area
lightened by the reader. This requirement is needed not to
prevent ADV from removing some items, but to prevent
ADV from compromising items in situ. That is, we assume
thatADV can compromise some or even several items but,
to escape the loose physical surveillance, it has to bring them
outside the supervised area—where it could later return
to redeposit the compromised object. During the shipping,
at each interval the reader provides energy and relays tag
answers. In particular, we say that the integrity of the set of
tags is violated if ADV subtracts a tag from the system for
a given consecutive number of queries issued by the reader,
and this event is not detected by the integrity protocol. Note
that the case where an item is subtracted and not put back
in the system is just a special case of the compromise where
ADV puts the item back.

(iii) Check. The last phase consists in checking the integrity
of the tags: tags’ memory slots devoted to detect compromis-
ing are downloaded in a trusted environment (the control
center) and their content processed. The aim of this phase
is to detect any violation of the integrity of the system that
could have happened during the transfer phase.

3.2. Adversary Model. Our aim is to preserve the tags
integrity against anADV detailed in the following, that can
act during the Transfer phase.ADV aims to keep a tag away
from the others in a stealthy way—ADV does not want its
rogue activities to be detected during the check phase.ADV
is able to eavesdrop all the communicationwithin the system.

Considering thatADV is able to compromise the reader
and then also to alter the duration of the intervals, the
following dreadful attack could take place. ADV could
stop the reader’s activity, let us say at round (d − j), and
compromise tag at will—the compromising taking j rounds.
Later on, when compromising activities are accomplished, it
could reactivate the reader and run the intended protocol
at a faster pace, so as to recover the j rounds lost. Once
these j rounds are recovered (assuming it takes � slow-
paced rounds), the reader will be then set to the normal
operating cycle, so that from round d + �, the tampering
will not be detectable. Note that this attack is successful since
tags do not have their own clock, relying on the reader for
synchronization purposes.

To cope with this threat we envisage both software and
hardware solutions, both focused at posing an upper bound
at the speed tags can reply. As for the hardware solutions, one
could assume to have tags equipped with a condenser that
does not allow the tags to reply before a given quantum of
time. As for software solutions, we can assume that tags can
introduce a delay via software operations—busy waiting—,
such as executing a cycle composed of skip-like operations.

Table 1: Notations.

Notation Description

ADV Adversary

t Current round—issued by the reader

ida ID of tag a

idta ID of tag a, at a given round t

ka
Shared random seed between tag a and control
center

n Number of tags in the system

R Number of readings of the Transfer phase

p Probability for a tag to send its message

q
Probability for a tag to store a message sent by
another tag

s Actual number of tags sending a message (p = s/n)

r
Actual number of messages considered by a tag
(q = r/n)

f (·) Pseudorandom function

H(·) Hash function

We observe that it is out of the scope of this paper to
design a protocol that guarantees the authentication of the
queries issued by the reader or that preserves the privacy
of the tags. Also the authentication of tags is not required,
since any use of a bogus tag would be detected by the control
center. In fact, any tag outside the system would be unable to
comply with the protocol, since it would not have received
a valid setup (as it will be clear in Section 4.2). However,
interested readers could refer to [18] for a solution to the
authentication problem. Similarly, we do not consider any
kind of DoS attack, as they will make the whole system
ineffective and would be eventually detected by the control
center. Finally, remember that the adversary does not tamper
with the RFID tags. As assumed in similar works [20–22], a
simple tamper-evidence and the effort required to extract the
secret information are sufficient deterrent to such attack in
many situations. Moreover, even if we relax this assumption,
to perform such an attack the adversary might need to
remove the aimed tag from the system (e.g., to bring it in
a lab), and such removal would be detected by our solutions.

3.3. Notation. In Table 1 we summarize the notations used
in this paper. The notations for p, q, s, and r are related to a
single reading issued by the reader.

4. TIP Protocols Overview

In this section, we introduce our Tag Integrity Preserving
protocols (TIP). Note that the detection provided by all these
protocols is probabilistic. That is, an attack is detected with a
given probability only, that depends on system parameters.
However, note that these parameters are tunable by the
owner of the system, so that it can decide the level of
assurance required.
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All the protocols presented in this paper are based on the
main idea that at each round: a subset of tags can broadcast
their presence (via the reader, that can be seen acting as
both an energy provider and a transponder), and, that a
subset of the tags in the system can keep trace of the value
relayed by the reader. How to select the set of tags that
can broadcast their presence, the set of tags that have to
record the broadcast value, and the amount of information
stored on recipient tags are all parameters that characterize
the proposed protocols. We underline that the presented
protocols evolve in different ways with time, depending on
the initialization seeds and the specific protocol operations.
Knowing the random values every tag is initialized with, the
control center is always able to check the integrity of the
system. In fact, it can mimic and reconstruct the expected
evolution of both the communications and the exchanged
values.

In the following, we first discuss a naı̈ve solution—that
helps introducing the caveats of the application—, next we
give a general presentation of our proposed protocols, while
a detailed description is provided in Section 5.

4.1. Naı̈ve Solution. A simple and effective way to keep trace
of the tags that are present in the system is to continuously
read all the tags and to make all tags logging all the replies.
In this way, every time ADV gets a tag apart from the
system, the violation is detected and traced by all the tags.
Even if effective, this solution has two main drawbacks, (i) it
generates too much traffic between the tags and the reader,
and, (ii) it requires for any tag a number of memory slots
that is equal to the overall number of rounds the system is
supposed to last. To make the solution practical, we should
reduce the amount of tags that are allowed to reply to a reader
query, as well as the information to be stored on tags at any
round.

The first problem can be mitigated introducing a prob-
abilistic protocol: every tag replies to a reader query with
probability p. Hence, reducing the amount of generated
traffic by a factor p—on the average. This approach is the
basic component of all our TIP protocols. As it will be clear
in the following, introducing this probabilistic approach has
a three-fold effect: it reduces the number of replies to a reader
query; it reduces the amount of storage required on tags, and,
it makes unpredictable to ADV which are the tags that are
going to reply to a given reading issued by the reader. This
last point is a major problem for the adversary. In fact, to
predict if a tag will answer to a given reading, ADV has no
other ways that physically compromise the tag to access its
memory. More details about this aspects will be explored in
Section 4.2.

A possible way to further reduce the storage requirement
is the use of aggregation, namely to fuse all the listened replies
in one digest string. This aggregated value can be delivered
to the control center as an evidence of the presence of a
tag. This technique will be adopted in the digest answer
proposal. Another way to mitigate the storage requirement
for a single tag is to resort again to a probabilistic approach.
That is, a tag logs a reply from the reader with probability q,

begin
(1) The reader sends a query, that is essentially the current

round t (also referred to as time in the following);
(2) Tag ida determines if it has to reply to the current

reading. The tag either goes to step (3) (if it has to
reply) or to step (4) (otherwise);

(3) If the above test is passed, the tag computes a string
and replies to the reader;

(4) The reader first receives all the replies,
and then broadcasts each of them;

(5) A tag idb receives the strings logically sent by the other
tags—but physically relayed by the reader;

(6) Tag idb first decides whether to store and process the
received values; later it updates its internal variables to
trace other tags, and get ready for the next round;

end

Algorithm 1: General behaviour of proposed protocols.

hence reducing the storage requirement by a factor q—on the
average. This approach is used in both the dynamic counter
and the logger protocols.

4.2. Solutions Overview. While we propose different proto-
cols, all of them rely on the same rationales. In particular,
the common behavior of the proposed protocols can be
summarized in the Algorithm 1.

In step (2) and for each reading, tag ida has a small
probability (p) to reply with its own ID. This probability
depends (in a pseudorandom way) on the value t sent by
the reader and a value related to the internal state of the
tag, namely a random seed shared with the control center.
On average, only a small fraction of all tags will reply for
each reading, generating a fraction of the traffic of the naı̈ve
solution. More in detail, a tag will send its ida if and only if
f (t, ka) = true, being f (·) a pseudorandom function. For
instance, f (·) could be defined as:

f (t, ka) = true⇐⇒ H(t, ka)

(
mod

⌈
1
p

⌉)
= 0, (1)

where H(·) is a hash function. In this way, f (·) returns true
only with probability p.

In step (6), tags decide to trace an answer independently
of the others and in a way that is unpredictable to an
adversary. This step is implemented in different ways, in the
different proposed protocols. As it will be clearer in the next
sections, even if ADV forges the answers of a given tag, it
will be unable to foresee which answers the given tag should
trace, without knowing its internal memory state.

Eventually (e.g., when the Transfer phase ends, with
reference to the example of Section 1) the control center
queries the tags in the system to check for integrity. The
data received by the tags should allow the control center to
determine if the system integrity has been preserved. The
check result comes with a given probability of accuracy as
well as guaranteeing different properties, depending on the
particular protocol used—as described later.
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Please, observe that steps (3), (4), and (6) are particularly
dependent on the specific proposed protocol. In particular,
we propose four TIP protocols.

(i) Digest Answer (Section 5.1). In this protocol each
tag will aggregate all the strings (from the reader)
generated by the tags that passed the internal sending
test.

(ii) Static Counter (Section 5.2). In this protocol, each tag
will trace only a fixed subset of other tags—the IDs of
these tags being preloaded in the Set-up phase. If a tag
has passed the internal sending test (check described
in step (2) of Algorithm 1), it just sends out its ID in
plain text (we remind that privacy and confidentiality
are out of the scope of this paper). The tag ID does
not change for the different reading. If a tag has
to trace a listened ID (e.g., ida), it just increments
a counter dedicated to ida every time string ida is
broadcast via the reader.

(iii) Dynamic Counter (Section 5.3). In the dynamic
counter protocol each node does not have a fixed
set of other nodes to trace. Instead, for each reading,
the set of nodes a tag must trace is pseudorandomly
determined by the current reading parameters (e.g.,
the time t) and a secret random seed shared between
the tag and the control center only. For the tags to
be traced, the corresponding counter is incremented.
The random seed is needed to avoid a simple cloning
attack, as detailed in Section 5.3. Note that this
protocol on the one hand increases the number of
required counters (compared to the static counter
protocol) but on the other hand increases the grain
of detection, as it will be clear later on.

(iv) Logger (Section 5.4). In this protocol, the tags to
be traced are pseudorandomly selected as in the
dynamic counter. However, each time a tag is traced,
a new memory slot is allocated recording the current
tag ID and the value t. This protocol requires more
storage on the tags when compared to the previous
protocols. However, the granularity of the tracing is
finer.

We observe that, how further discussed in Section 6,
the different proposed protocols have different costs and
features; for example, the digest answer protocol is not
resilient to tag reading failures (in fact, this would lead to
a sort of de-synchronization between tag and reader), while
the other protocols are.

5. TIP Protocols Description

In this section, we give the details of each of the proposed
TIP protocols. Note that the integrity check will take place
at the control center. In particular, the memory of each tag
will be securely collected at the control center, and each of
these memories will be checked against its expected state
computed by the control center, mimicking the protocol
evolution. Indeed, protocol evolution is completely deter-
ministic, given the values loaded on tags at the Set-up

Data:
idta {id of tag a at time t}
ka {shared random seed of tag a}

(1) begin
(2) t ← ������������	
������	

(3) if ����������	������� (t, idta) then
(4) ���� (idta);
(5) end
(6) Z = idta;
(7) S ← ���������	�����	
�����

(8) foreach id ∈ S do
(9) Z = Z ⊕ id;
(10) end
(11) idt+1a = H(ka‖Z);
(12) end

Algorithm 2: Digest-answer.

phase: the use of pseudorandom functions in combination
with known random seeds enables the control center to
completely reconstruct all the pseudorandom values of the
involved functions.

5.1. Digest Answer. This first proposal relies on the fusion of
the replies provided by tags. In particular, the digest answer
protocol is detailed in Algorithm 2 and works as follows.
As for all TIPs, the first step (i.e., step (1) mentioned in
Section 4.2) is the reader query, that comes with the time
value t. The tag a executing the protocol, receives the value
t (Algorithm 2, line 2). Then, a checks if it has to reply to
the current reading (line 3). In this case, it sends its ida for
the current time t (line 4). As for tracing other tags (step (6)
mentioned in Section 4.2), tag a receives the strings sent out
by the tags that passed the internal test on whether to send
or not their ID—these string being relied by the reader—
(Algorithm 2, line 7). Then, a makes the XOR of all the
received strings (lines 8–10), together with its own current
ida (line 6). Finally, tag a prepares itself for the next round,
that is it updates its own ID. This is done by hashing the
composition of values ka and Z (line 11).

Analysis. Let us denote by p the probability that a tag passes
the check required to send its ID. Hence, if we denote by F
the event that a tag contribution will not be XOR-ed with the
value Z of Algorithm 2 for L consecutive time round, we have
that:

Pr[F] = (1− p
)L
. (2)

Note that p has a straight influence on the number of tags
that send their ID: the average number of such tags is μ = np.
Indeed, the higher p, the higher the frequency a tag is traced,
the higher the possibility to detect a compromise. Figure 2
helps devising the relationship among these competing
parameters. However, note that the higher p, the higher the
number of tags that the reader is required to serve.
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Data:
ida {id of tag a}
ka {shared random seed of tag a}
Ta {set of id tag to trace assigned to tag a}

(1) begin
(2) t ← ������������	
������	

(3) if ����������	������� (t, ka) then
(4) ���� (ida);
(5) end
(6) S← ���������	�����	
�����

(7) foreach id ∈ S do
(8) if id ∈ Ta then
(9) ���	������
����	 (id);
(10) end
(11) end
(12) end

Algorithm 3: Static counter.

5.2. Static Counter. In the static counter protocol each tag
traces a fixed set of other tags—preloaded in the Set-up
phase. The protocol is detailed in Algorithm 3. The tag a
executing the protocol listens to the time t (line 2); checks
if it has to participate in the current reading (line 3); if the
check succeeds, it sends out its ID (line 4). Then, it listens to
all the strings sent by the other tags (line 6). Finally, for each
listened ID that a is supposed to trace (line 8), it increases the
corresponding counter (line 9).

The step on line 3 performs a pseudorandom process to
decide if the tag has to answer to the query. This process
is based on the value t (provided by the reader) and on
ka, the random seed shared by the tag a with the control
center. The value ka is used to avoid a simple attack, where
ADV can substitute a genuine tag with a bogus one. In fact,
without the random seedADV could forge a bogus tag just
eavesdropping and replicating a honest tag ID. The bogus tag
could hence be used in place of the honest one. With the use
of ka, ADV cannot replicate the correct behavior of a tag
just forging the eavesdropped ID.

In order to provide each tag with the set of IDs it is
responsible for, the system should be suitably set up before
shipping, with a simple procedure that: scans all the tags,
designs and assigns the set of IDs each tag has to trace, and
activates the TIP mechanism. This is particularly useful since
the assignment of the set of IDs can be customized right
before shipping, either if tags are put in pallets, or in boxes,
or in stands.

Analysis. Let us assume that each tag is traced by at least one
other tag (i.e.,

⋃
i∈S Ti = S, where S is the complete set of

tag identifiers in the system and Ti is the set of tags traced
by tag idi). If we define the event G as: “a counter will not be
increased”, than event G shows the same probability to occur
of the event F in (2), that is:

Pr[G] = (1− p
)L
. (3)

Data:
ida {id of tag a}
ka {shared random seed of tag a}

(1) begin
(2) t ← ������������	
������	

(3) if ����������	������� (t, ka) then
(4) ���� (ida);
(5) end
(6) S ← ���������	�����	
�����

(7) foreach id ∈ S do
(8) if ��������
�	����
� (id, ka, t)

then
(9) ���	������
����	 (id);
(10) end
(11) end
(12) end

Algorithm 4: Dynamic counter.

However, with respect to the previous protocol, in this case
we have a different number of tags that trace a given ID, and
a different level of grain of the tracing. In the following we
analyze both this differences.

Analysis. The number of tags tracing a given ID depends on
how the IDs to be traced are assigned to tags. We analyze
two choices: the first is a deterministic one; the second is
a probabilistic one. In the former case, the administrator
partitions the tags in such a way that a tag is traced by at least
another tag. In the latter case, each tag has to be assigned a
number of IDs equal to c logn (c > 1) for the probability that
a tag is not traced to be upper bounded by n−c. Note that the
deterministic assignment can help saving memory on tags;
indeed, one ID to be stored on each tag is the bare minimum
to provide coverage of the entire tag set. In the second case,
trace redundancy is provided, but at the expense of a (little)
higher memory overhead.

As for the grain of the tracing, compared to the digest
answer, in this solution each tag has a counter for every tag
to trace. Hence, it is possible to keep trace of the number of
times a specific tag has been recorded OR (equivalently) it did
not answer. Finally, we remind that the number of tags traced
by a tag is a protocol parameter.

5.3. Dynamic Counter. The steps of the dynamic counter
protocol are described in Algorithm 4. The operations are
basically the static counter protocol until the tag listens to
the string broadcast by the other tags (Algorithm 4, line 6).
In fact, the difference between this protocol and the previous
one is in the way broadcast IDs are managed. While the static
counter protocol traces a fixed set of tags for all the readings,
the dynamic counter protocol pseudorandomly selects the
tags to be traced at each round. In particular, the set of tags
that tag a has to trace for the current round is determined
using a pseudorandom function and the shared random seed
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(resp. CheckIfToTraceNow and ka of line 8). Hence, using
the dynamic counter protocol, the attack of substituting a
genuine tag with a bogus one is even more challenging for
ADV.

If we denote with M the event that a tag a is traced
by at least another tag in the system (incrementing the
related counter), two independent conditions have to be
verified for this event to occur, (1) tag a is required to pass
the probabilistic filter in the transmission phase, and, (2)
receiving tags have to select a for tracing. Let us denote with
q the probability that a replying tag is traced by at least one
receiving tag. Hence by

Pr[M] = Pr
[(
Pass Tx.filter

)∧ (Pass Rec.filter)]
= Pr

[
Pass Tx.filter

]∗ Pr
[
Pass Rec.filter

]
= p ∗ (1− Pr

[¬Pass Rec.filter])
= p ∗

(
1− (1− q

)n−1)

≈ p ∗ (1− exp
{−qn}).

(4)

Finally, the probability of the event Q (i.e., the tag is not
traced for L consecutive rounds) can be computed as:

Pr[Q] = (1− Pr[M])L ≈ (1− p ∗ (1− exp
{−qn}))L. (5)

5.4. Logger. The logger protocol is detailed in Algorithm 5.
The logger protocol is similar to the dynamic counter
protocol but differs with respect to the operations it performs
when tracing a tag. In particular, each time a tag has to be
traced, a memory slot is allocated, recording both the ID
of the traced tag, as well as the current value t—via the
RecordTimeForId() function (Algorithm 5, line 9).

Analysis. The analysis of this case is equal to the analysis
of the dynamic counter previously shown. Indeed, for the
ID of the tag to be stored, it has to pass two (independent)
filters. The first screening is decided within the tag itself; the
second one requires other tags to decide to store the ID of the
received tags.

However, note that on the one hand the grain of the
tracing dramatically improves. Indeed, not only the ID of a
traced tag is stored, but the information related to the round
where the tracing took place is stored as well. This can reveal
exactly when and for how long a given tag has been removed
(namely for which readings it was missing). On the other
hand, the amount of required resources increases, since every
time a tag is recorded a memory slot containing both the ID
of the recorded tag and the current value for t is allocated.

6. Simulations and Discussion

In this section, we report the simulation results for our
protocols and expound a side-by-side comparison of each
proposal introduced above.

6.1. Simulation Results. To support the analysis provided in
Section 4, we simulated a typical environment of n tags that

Data:
ida {id of tag a}
ka {shared random seed of tag a}

(1) begin
(2) t ← ������������	
������	

(3) if ����������	������� (t, ka) then
(4) ���� (ida);
(5) end
(6) S ← ���������	�����	
�����

(7) foreach id ∈ S do
(8) if ��������
�	����
� (id, ka, t)

then
(9) ���
	������
	�� (id,Rt);
(10) end
(11) end
(12) end

Algorithm 5: Logger.

have to be traced: at each reader query, a tag has probability p
to reply, sending its ID. As stated above (see (2)), low values
for p increase the ADV probability to keep a tag far from
its logging-tags without being detected, while higher values
reduce the chances of a successful attack. The simulation has
mimicked the evolution of the system. Each reported point in
the following figures is the averaged value of 200 simulations.
The assessed parameters were: the average number of times a
tag replied; how many times and for how long a tag did not
reply to a query—silent rounds, and, the number of memory
slots needed by a tag (that we will refer as queue length in
the following). In particular, the silent rounds of a tag are
critical since they can be exploited by an ADV to remove a
tag without being detected by our protocols. Those rounds,
then, can be used to evaluate the detection probability of a
successful attack. As for the parameters that influenced the
simulation, the probability p—that is, the probability for a
tag to broadcast its ID—was set equal to s/n, where s is the
average number of tags that are supposed to broadcast their
ID—a design parameter. Another relevant parameter is the
probability q—that is, the probability that a tag’s broadcast
ID is retained, together with (for the logger protocol only)
the time of the broadcast (t)—set to r/n, where r is the
average value of tags that are required to store that value
(tuple for the logger protocol).

Static Counter. Figure 2 compares the escaping detection
probability for attacks lasting a given period against the
static counter protocol: the x axis represents the duration
of the attack in terms of number of rounds; the y axis is
the probability ADV has to escape detection. The figure
contains different plots, since we compared analytical values
(obtained with (2)) with the simulated results, for several
values of parameter p and n = 500. We can observe how the
p value directly affects the detection probability: detection
probability of attacks with the same length dramatically
increases with the increase of p (i.e., attacks of 50 rounds
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Figure 2: Static counter (SC) effectiveness.

remain undetected with probability .59, .35 and .07 for an
answer probability of .01, .02, and .05, resp.).

Dynamic Counter. Figure 3 shows the results of the same
test when adopting the dynamic counter scheme. In this
experiment, we fixed n = 500 and r = 5. Hence, on
the average, each answering tag has been logged by 5 tags
(logging probability is q = r/n = 0.01). The simulated results
are compared with the analytical values obtained with (5).

Static versus Dynamic Counter. To show the intuition that
both static counter and dynamic counter obtain almost the
same security performances, we compared further simula-
tion results in Figure 4. The plots were obtained fixing the
two parameters s = 5 and r = 5 while simulating the system
for several values of n—yielding p = q = 0.05, 0.01, and
0.005 for n = 100, 500, and 1000, respectively. Observing
the plots, it can be seen that the difference (as for detection
capability) between dynamic counter and static counter is
almost negligible. This fact confirms the result of (4).

Static Counter. To highlight the relevance of probability
p in the effectiveness of the proposed solution—as well
as the induced overhead—, we can observe the plots in
Figure 5. In these plots, we reported the results of further
experiments carried out for the static counter scheme: we
fixed the parameter s (to s = 5 and s = 25, resp.)
and evaluated the detection probability varying the attack
duration and the number of tags. Since s is fixed and the
reply probability is p = s/n than the larger n, the smaller
the answer probability and, eventually, the longer the silence
periods of each tag. Comparing the two curves, on the one
hand it is evident that for small values of s, the probability

Settings p = 500, q = 5
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Figure 3: Dynamic counter (DC) effectiveness.
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Figure 4: Static counter (SC) and dynamic counter (DC) security
performances comparison.

that a long lasting attack escapes detection is high even
for small values of n. On the other hand, with s = 25
the probability that attacks of more than 100 rounds are
undetected drops under 0.1 even for n = 1000. Considering
that with p = 25, on the average only 25 IDs are transmitted
at any round, we can conclude that the proposed scheme
has a very good trade off between generated traffic and
effectiveness.
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Figure 5: Static counter (SC) security performance: effects of parameter p.
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Figure 6: Dynamic counter (DC), experiments to show the impact of parameter n on tag’s queue length. Average value and standard
deviation.

Dynamic Counter (and Logger). Figure 6 summarizes sim-
ulation results about the estimation of queue length for
the dynamic counter —note that the same results can be
extended to the logger protocol, as seen from the analysis
in Section 5.4. As predicted in Section 5.3, as times goes
by, every tag has to keep trace of new tags’ IDs and, then,
extend the length of its queue. The plots in figure show
the average queue size for different settings. To obtain these
plots, we simulated the life of the system for a period of
R = 3, 600 rounds (we recall that the actual length of a
round has to be tuned according to security requirements)
and counted the number of IDs each tag logged in that
period. In each simulation, we fixed the parameters s and r

while increasing the number of tags in the system, to see
how the parameter n affects the queue length. The plots show
the average value obtained with 200 simulations performed
with different pseudorandom seeds and also report the
experienced standard deviation—error bars. The figures
show that the standard deviation is really small: this means
that reported average values are accurate and that queue
length has little fluctuation among the tags. Note that queue
lengths are equivalent for the settings s = 10, r = 10 and
s = 20, r = 5, as a direct consequence of the analysis in
Section 5.3. Another consideration is that, since R = 3, 600,
for n = 100, 200 every tag eventually traces any other tag
at least once: for those parameters, queue length tends to
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Table 2: Protocols comparison: properties.

Protocol Integrity Tampering detection grain No detection probability Resilience to tag reading failure

Digest answer yes low (1− p)L No

Static counter yes medium (1− p)L Yes

Dynamic counter yes medium (1− p(1− exp(−qn)))L Yes

Logger yes high (1− p(1− exp(−qn)))L Yes

Table 3: Protocols comparison: overhead.

Protocol Queue length (bit) Messages sent Messages received Computations (hash)

Digest answer O(1) R · p R + R(n− 1) · p R

Static counter O(1) R · p R + R(n− 1) · p R

Dynamic counter O((n− 1) · (logR/n)) R · p R + R(n− 1) · p R + R(n− 1) · p
Logger O(R · (logn + logR)) R · p R + R(n− 1) · p R + R(n− 1) · p

the maximum value, that is n−1. This confirms the intuition
that extending the lifetime of the system (namely increasing
the number of rounds R), causes every tag to log any other
tag.

6.2. Protocol Comparison. In Tables 2 and 3, we compare
the proposed protocols. In particular, while all the proposed
protocols can detect (probabilistically) whether the system
integrity has been preserved, they can do that with different
degrees of accuracy (Table 2) and incurring different over-
head (Table 3). We recall that R is the number of rounds that
the system has to monitor.

Table 2 shows a comparison on the protocols properties
and summarizes the detection probability discussed in the
previous sections. The digest answer protocol can only detect
whether the integrity has been preserved or not; however,
it does not provide any information neither on the tags
that have been compromised, nor on the round when the
compromising took place. Both the static counter and the
dynamic counter protocols provide information on which
of the tags have been compromised, but not on the round
of compromising. Finally, the logger protocol is able to
detect which tags have been compromised as well as the
corresponding round the compromising took place.

As for the detection probability, both the digest answer
and the static counter are characterized by the same
success rate in detecting compromising. Also the dynamic
counter and the logger have the same detection success
probability. Moreover, the detection probability of both
logger and dynamic counter is slightly lower than the
detection probability provided by digest answer and static
counter. However, note that as n increases the differences
between these two probabilities become quickly negligible—
the difference reduces exponentially fast. The last column of
Table 2 describes the resilience of the protocol against a tag
reading failure. In particular, the digest answer protocol is
not resilient to a single reading failure. Assume the reader
does not get the answer of a tag (for any reason, including
communication failure), this would result in a completely
useless output for the digest answer protocol. In fact, the
tags set will result as tampered while only a single read has

been lost. Furthermore, the protocol would not be able to
give any other useful information—for example, to prove the
presence of all the other tags rather than the one for which
the communication failure occurred. However, all the other
protocols would be able to give some useful output even in
the case a failure happens during a single tag reading. As an
example, in the static counter, the protocol would still be able
to correctly trace the presence of all the other tags not affected
by the reading failure.

Table 3 shows the comparison of the protocols in terms
of the size of the queues—that is, the information stored by
each tag—and other overheads for each tag in terms of num-
ber of sent messages, received messages, and computations—
accordingly to Algorithms 2, 3, 4, and 5. While the number
of messages sent and received is the same for all the four
protocols, queues length differ. As for the messages, note that
the number of messages sent by each tag is just influenced by
the probability p. As for the messages received, note that at
each round the reader broadcasts the value t—that accounts
for the addendum R—, while each tag has to examine the
messages received (i.e., relied by the reader) by (n−1)p other
tags per round, hence accounting for the other addendum
R(n− 1)p.

As for the queue length, both the digest answer and the
static counter require just a constant number of memory
slots to be executed. As for the dynamic counter, the worst
case scenario depicts a situation where a tag has initialized
a memory slot for each of the other tags in the system and
each tag has been traced an equal number of times. Hence,
the memory requirements account to (n − 1)(logR/n) bits.
The logger is the morememory demanding protocol. Indeed,
it requires a number of memory slots that is proportional to
the number of rounds (R) sustained by the system. That is,
for each round and for each traced tag, it requires to trace the
tag’s ID, as well as the current value for t. Hence, requiring an
upper bound of R(logn + logR) bits.

Finally, as for computations we have decided to focus
on the more expensive function performed by the tag:
hash computation. We have decided to count neither
the XOR operations (required by the digest answer) nor
the counter increasing (required by both static counter
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and dynamic counter) since the corresponding cost in terms
of energy consumption and required time is negligible when
compared to the hash function. Again, we have that the four
protocols can be divided in two classes. Digest answer and
static counter belong to the first one, that is characterized
by a number of hash computations that is equal to the
number of rounds experienced by the system. The second
class is composed by dynamic counter and logger. For them,
computation overhead is given by R hash, plus a number of
hash that is a fraction of (n− 1), that is (n− 1)p.

In summary, when it comes to select a protocol for a real
deployment, the choice mainly depends on two competing
parameters: the grain of the desired detection and the
amount of memory available on tag. Indeed, to have a
fine grain of tampering detection (i.e., to know which tag
and at which round it has been compromised), either the
dynamic counter or the logger protocol can be selected;
the latter providing the finest grain of tampering detection.
However, the features of the logger comes at a cost of a
few more computations and a higher memory requirement.
More precisely, the dynamic countermemory requirement is,
in the worst case,O((n−1)·logR)—assuming a tag is tracing
all the others (n − 1) tags, and for each of the R readings
all the relative counters are incremented. On the other hand,
the memory requirement for the logger is, in the worst case,
O(R · (log(n)+ logR))—that is, also assuming a tag is tracing
all the other (n − 1) tags, and for each of the R readings all
the information are stored: tag id (size of logn) and current
round (size of logR).

If the available tags only have few memory slots, the
choice must be oriented towards either the digest counter or
the static counter, that trade off a coarse grain of detection
with just a constant number of memory slots. In particular,
the former requires the least amount of resources, while
providing just a bit of information: whether the integrity of
the system has been compromised or not.

7. Concluding Remarks

In this paper, we propose to leverage the RFID reader
as a communication relay, to have tags cooperating. The
effectiveness of this approach has been shown addressing
an exciting application for RFID: tampering detection. In
particular, we have provided a set of probabilistic protocols
that can detect the absence of a given tag from a specific—
yet quite common—deployment scenario. The protocols can
leverage the features of the several classes of RFID available
on the market. In particular, the memory required range
from few memory slots to a number of memory slots that
is proportional to the number of rounds the presence of a tag
is going to be tested. The more resources a protocol requires,
the finer is the grain of the tampering detection.

A thorough analysis for the tampering detection proba-
bility is provided. Finally, simulations support the analytical
results. We believe that the proposed solution based on tags
cooperation could open up further research directions in the
field.
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