Hindawi Publishing Corporation

EURASIP Journal on Wireless Communications and Networking
Volume 2011, Article ID 765143, 11 pages
doi:10.1155/2011/765143

Research Article

EDDK: Energy-Efficient Distributed Deterministic Key
Management for Wireless Sensor Networks

Xing Zhang,! Jingsha He,? and Qian Wei!

I'College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China
2School of Software Engineering, Beijing University of Technology, Beijing 100124, China

Correspondence should be addressed to Jingsha He, he@bjut.edu.cn
Received 31 May 2010; Revised 23 September 2010; Accepted 21 November 2010
Academic Editor: Damien Sauveron

Copyright © 2011 Xing Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Energy efficiency is an essential requirement for wireless sensor networks while security must also be ensured for mission-critical
applications. In this paper, we present an energy-efficient distributed deterministic key management scheme (EDDXK) for resource-
constrained wireless sensor networks. EDDK mainly focuses on the establishment and maintenance of the pairwise keys as well as
the local cluster keys and can fix some flaws in some existing key management schemes. Not only can the neighbor table constructed
during key establishment provide the security for key maintenance and data transfer, but it can also be used to effectively manage
the storage and update of the keys. By using the elliptic curve digital signature algorithm in EDDK, both new and mobile sensor
nodes can join or rejoin a sensor network securely. Unlike some centralized and location-based key management schemes, EDDK
does not depend on such infrastructure as base stations and robots and thus has a high level of flexibility. Experiments and analyses

show that EDDK has a very low overhead in terms of computation, communication, and storage.

1. Introduction

A wireless sensor network (WSN) is a promising network
infrastructure for many applications such as environmental
monitoring, medical care, and home appliance management.
It is also useful for battlefield surveillance and homeland
security because WSNs can be easily deployed for those
applications. However, in many hostile and tactical scenarios
as well as critical commercial applications, security mecha-
nisms are required to protect WSNs from malicious attacks.
Therefore, the security of WSNs has become an important
issue and a challenging design task [1]. Furthermore,
security mechanisms based on cryptography would make key
management a central issue to ensure the security of network
services and applications in WSNss.

Many key management schemes have been proposed
for WSNs over the past few years [1, 2]. From the
standpoint of network structure, key management schemes
can be centralized or distributed. From the standpoint of
key sharing between neighboring nodes, key management
schemes can be probabilistic or deterministic. For centralized
key management schemes, network scalability is poor and

communication overhead is high. Probabilistic schemes can-
not guarantee that two neighboring nodes could successtully
establish a shared key according to the underlying random
graph theory. It will not be desirable if some sensor nodes
cannot establish shared keys with their neighbors and are
thus isolated. In addition, in probabilistic schemes, the
impact of node compromise and the lack of authentication
are serious issues because of the reuse of the same keys by
more than one node. Deterministic schemes can solve some
problems that probabilistic schemes have. But the addition
of new nodes is still an issue in such schemes because
the confidentiality and authenticity of new pairwise keys
cannot be fully realized [3-5]. Even in the scheme in [6],
the normal node’s motion will be regarded as the injection
of the replicas of compromised nodes. An adversary can thus
cause a network to collapse by merely changing the nodes’
locations in the network. Consequently, the scheme in [6] is
susceptible to the so-called node location changing attack.
Due to limited battery life of sensor nodes, any security
mechanisms for WSNs must be energy efficient. Specifically,
the number of message transmission and the amount of
computation must be kept as low as possible. Meanwhile, the

2 EURASIP Journal on Wireless Communications and Networking

size of a sensor network should not be constrained by the
available storage and energy resource in each node.

In this paper, we propose a distributed deterministic
key management scheme for WSNs in which the pairwise
keys and the local cluster keys are set up through the
broadcast information during the network initialization
phase and no further message exchange is needed afterwards.
Consequently, the communication overhead is very low.
Furthermore, pairwise keys are also totally decentralized.
Therefore, the compromise of some sensor nodes will not
affect any other noncompromised pairwise keys. For the
establishment of keys for new nodes and mobile nodes,
we propose a composite mechanism based on the elliptic
curve digital signature algorithm (ECDSA) in which resource
consumption can also be kept very low.

The rest of this paper is organized as follows. In
Sections 2 and 3, we discuss some related work and analyze
some present deterministic key schemes. In Section 4, we
present our energy-efficient distributed deterministic key
management scheme (EDDK), and in Sections 5 and 6, we
analyze the security and performance of EDDK. Finally, we
conclude this paper in Section 7.

2. Related Work

2.1. Centralized versus Distributed Key Management Schemes.
LKHW is a centralized key management scheme for WSNs
based on the Logical Key Hierarchy (LKH) [7]. In the
scheme, the base station is treated as a key distribution center
(KDC) and all keys are logically distributed through a tree
rooted at the base station. In such a centralized scheme,
besides poor network scalability and high communication
overhead, the base station that knows all pairwise keys can
be a single point of failure for network security. In distributed
key management schemes, different key controllers are used
to lower security risk and to allow for better network scala-
bility [2]. Consequently, a majority of the key management
schemes proposed so far are distributed ones that also fall
into the deterministic and probabilistic categories which we
discuss in the following subsection.

2.2. Probabilistic versus Deterministic Key Management
Schemes. Eschenauer and Gligor proposed a basic proba-
bilistic key predistribution scheme [8]. In the scheme, each
sensor is assigned a random subset of keys from a key
pool before the network is deployed so that any two sensor
nodes will have a certain probability of sharing at least one
key. Chan et al. improved the above scheme and proposed
the g-composite key predistribution scheme [9]. In the
scheme, any two sensor nodes are required to share at least
q predistributed keys as the basis for the establishment of a
pairwise key between the two nodes. Liu and Ning proposed
a framework in which pairwise keys are predistributed by
using bivariate polynomials [10]. Du et al. proposed a similar
pairwise key predistribution scheme [11] that uses Blom’s
method [12]. The main difference between the schemes in
[10, 11] is that the former is based on a set of bivariate t-
degree polynomials while the latter is based on the Blom’s
method.

TABLE 1: Properties of key establishment schemes.

Key setup Pairwise Local New node Mobility
schemes key cluster key joining support
RKP yes no yes yes
LEAP yes yes yes no
OTMK yes no yes no
EDDK yes yes yes yes

Two representative deterministic key management
schemes, that is, the LEAP protocol [3, 4], and the OMTK
protocol [5], will be analyzed in the next section. In addition,
Lai et al. proposed the BROadcast Session Key (BROSK)
negotiation protocol [13]. Lee and Stinson proposed two
deterministic schemes based on combinatorial design
theory: the ID-based one-way function scheme (I0S) and
the deterministic multiple space Blom’s scheme (DMBS)
[14]. They also discussed the use of combinatorial set
systems in the design of deterministic key predistribution
schemes for WSNs [15].

A comparison of the properties of the EDDK scheme
with some existing key establishment schemes such as the
Random Key Pre-distribution (RKP) schemes [8-11], the
LEAP protocol [3, 4] and the OMTK scheme [5] is provided
in Table 1. We can thus see that the RKP and the OTMK
schemes do not support the establishment of local cluster
keys while the LEAP and the OTMK schemes do not adapt
well to node mobility.

2.3. Public Key Cryptography in WSNs. Prior studies have
shown that it is feasible to apply public key cryptography
to sensor networks by choosing proper algorithms with
reasonable parameters and by using optimization and low-
power techniques [16—18]. Gura et al. evaluated the assembly
language implementations of Elliptic Curve Cryptography
(ECC) and RSA on the Atmel ATmegal28 processor [16] and
showed that a 160-bit point multiplication of ECC only needs
0.81 seconds while a 1024-bit RSA public key operation
and private key operation only need 0.43 seconds and
10.99 seconds, respectively. Du et al. developed a public key
authentication scheme based on a symmetric key technique
called the Merkle tree [19]. Zhang et al. proposed the notion
of location-based keys by binding private keys of individual
nodes to their IDs as well as locations [20].

In the method proposed by Zhou et al. [6], although
ECC can be used together with timestamp to prevent an
adversary from impersonating legitimate new nodes with
compromised ones, the shortcomings of the method are
equally obvious. Not only does the method incur commu-
nication overhead required for time synchronization, but it
also limits the mobility of network nodes. This is because as
soon as a legitimate node leaves its original location, it will
be regarded as a malicious node [6]. As the result, the mobile
node cannot establish shared keys with its new neighbors and
will consequently be excluded from the network. Therefore,
the access control protocol is susceptible to the so-called
node location changing attack.

EURASIP Journal on Wireless Communications and Networking 3

3. Analysis of Deterministic Key Schemes

In the LEAP protocol, a deterministic key sharing scheme
based on symmetric key cryptography [3], the pairwise key
establishment process between the neighboring nodes can be
described as follows:

u — *: 1Dy,

(1)
v — u: ID, || C(K,, [ID, || ID,]).

For node u, the ACK from a neighboring node v is
authenticated using the individual key K, of node v derived
through K, = f(Ki,ID,). Since it knows Kix, node u can
derive K, and use it to verify the identity of node v. Node u
can then compute a pairwise key K, with node v through
Ky = f(K,,1IDy). Node v can also compute K, in the same
way. Ky, can then serve as the pairwise key for nodes u and v.

In the above scheme, since the same formula is always
used in computing the pairwise key, should an adversary
get Kix by capturing a sensor node with hardware faults,
all pairwise keys in the network could be easily computed.
Moreover, since the first step of the aforementioned process is
not authenticated, an adversary can inject fake hello messages
to launch a resource exhausting attack. The problem still
remains in the improved version of the LEAP protocol, that
is, the journal version LEAP+ [4].

The OTMK scheme [5] made some improvement over
the LEAP protocol. When node u tries to set up pairwise keys
with its neighbor nodes, it would broadcast the following
message:

u — *: JOIN || Eyp(ID, || noncey,), (2)

where nonce, is a random number. If nodes u and v
receive the JOIN request messages from each other, they will
generate a pairwise key by using the following formula:

K., = f(ID, || ID, || nonce, || nonce,), (3)

when ID, < ID,. If ID,, > ID,, they will generate a pairwise
key by using the following formula:

K,, = f(ID, || ID, || nonce, || nonce,). (4)

The above procedure still has some drawbacks, however.
First, since all the nodes use the preconfigured master key M
(M is similar to Kiy in the LEAP protocol) to encrypt the
JOIN messages, if M is compromised through cryptanalysis,
an adversary can easily deploy some malicious nodes into the
network because function f is generally known. Moreover,
the adversary can compute a large number of pairwise keys
by eavesdropping on nonce and ID in the JOIN messages
broadcast by other nodes so that it can overhear, forge, and
alter network messages later.

The OTMK scheme uses the following protocol to allow
new nodes to join an existing network [5]:

u — *:JOIN || n, || ID,,
v — u: ID,||Ek, (r; || n,)|[MACk, (rilln, || ID,lln,), (5)
u—v IDu || EKV(Ku)v) || MACyi(nv H Ku,v)~

Since the first step above does not authenticate new
node u, the protocol is vulnerable to denial of service (DoS)
attacks. Let us consider the case in which a malicious node
impersonates on a legitimate node u and broadcasts a JOIN
message. A legitimate node v would then finish the second
step. However, the malicious node may never execute the
third step. By broadcasting many different spoof messages,
the malicious node can incur a large amount of compu-
tation, communication, and storage overhead for node v.
In addition, if an old node does not work properly after
deployment due to many possible problems, an adversary
can get the preloaded master key by compromising the node.
The adversary can then deduce the individual keys (e.g.,
K, and y;) of all the old nodes and subsequently deploy
some malicious nodes into the network. Since it has already
obtained the master key, the adversary can get pairwise keys
between the new and the old nodes by performing the third
step in the above protocol.

We can see from the above analysis that not only is the
new node joining protocol in the OTMK scheme susceptible
to DoS attacks, but it is also possible for an adversary to
freely deploy malicious nodes into the network and to obtain
pairwise keys between the new and the old nodes.

In order to mitigate the compromise of the master key
during the key setup phase, the OTMK scheme applies
a mechanism that follows the same principle as that in
the yTESLA protocol [21]. That is, it employs a one-way
hash chain as the master key during each time period to
authenticate new nodes.

u — *: JOIN || n, || ID,,
v—wn, || ID, || i|| MACk,(n, || n, || ID,),
u— v IDu || EKV (Ku,v) || MACH] (n‘V || IDM || KM,V)’

u— *: Hj.

(6)

The drawback of this mechanism is also obvious because
it makes the protocol more complex while less secure. As
long as an adversary can eavesdrop on all pairwise key
setup procedures in time slot j and records Eg,(Ky,), the
adversary can compute all pairwise keys in time slot j after
Hj is received. Moreover, for the delayed authentication, the
adversary can send a large number of joining messages to v by
impersonating on u. As the result, v could store an excessive
amount of messages that need to be authenticated in the
third step, leading to a DoS attack.

4. EDDK: Energy-Efficient Distributed
Deterministic Key Management Scheme

To fix the flaws present in the aforementioned key manage-
ment schemes, we propose a distributed deterministic key
management scheme (EDDK) for WSNs based on some of
our earlier research [22-24]. EDDK mainly focuses on the
establishment and maintenance of the pairwise keys as well
as the local cluster keys. Unlike centralized and location-
based key management schemes, EDDK does not depend

4 EURASIP Journal on Wireless Communications and Networking

on such infrastructure as base stations (BSs) and robots.
Consequently, there is not any single node that shares a
master key with the BS, which makes the scheme highly
flexible. Therefore, EDDK can meet the requirement that
there is only one resource-limited sink node in a large
WOSN. For the establishment and authentication of a global
broadcast key, please refer to the yTESLA protocol [21].

To enhance message security in the network initialization
phase, instead of using the individual key directly, each
sensor node can derive a separate encryption key and a MAC
key from the individual key [21]. This method can also
be applied to enhance security in data transmission as well
as in key update. For ease of illustration, in the following
discussion, we simply use the same key to both encrypt and
authenticate a message although two different keys can be
used.

4.1. Notation. For the purpose of clarity, we first list and
explain the symbols that will be used in our description.

(i) f and K; are the networkwide shared pseudorandom
function and the initial key, respectively, that are
predistributed to every node before deployment.

(ii) K, is node A’s individual key and is computed by
using formula (7) below; Ky, is the pairwise key that
is shared by two neighboring nodes A and B and is
periodically updated by them.

(iii) Kp, is node A’s local cluster key that is shared by node
A with all its neighbors and is periodically updated by
node A. This local cluster key is used to secure all local
broadcast messages of a node, for example, routing
control message forwarded.

(iv) P and s denote the public key and the private key of
a node, respectively. The public key Pr of a trusted
authority TA is predistributed to every node before
deployment. But the private key sr is not stored in
the WSNs. Therefore, adversaries cannot get sy by
attacking TA directly.

(v) IDg and IDp are the identifiers of the sender and the
receiver, respectively.

(vi) SN denotes the sequence number of a data message,
that is, generally shared by two communicating nodes
to fight against replay attacks and to ensure the
freshness of data.

(vii) E(K, M) is used to encrypt message M with key K;
C(K,M) is used to compute message M’s message
authentication code (MAC) with key K.

4.2. Key Establishment Phase. Before deployment, every
sensor node is predistributed with a networkwide shared
pseudorandom function f [25] and an initial key K; to
combat attacks in the network initialization phase. Through
the pseudorandom function f and the initial key Kj, every
node in the network can compute its individual key. For
example, node E’s individual key can be computed as follows:

Ke = f(KI)IDe)~ (7)

After deployment, every sensor node will broadcast
a network joining message to determine the neighboring
relationships in the network. To prevent two or more nodes
from attempting to transmit at the same time in the network
initialization phase, every node would implement a binary
exponential backoff algorithm to avoid collisions before
broadcasting its joining message. In addition, to prevent an
adversary from getting all the pairwise keys after obtaining
K as it could in the LEAP protocol, any pairwise key that is
computed through using the pseudorandom function should
be updated in time.

As illustrated in Figure 1(a), we use nodes E and G to
explain the pairwise key setup procedure:

E — x:join || ID, || E(Ke, [SN. || Kg,]) ||
C(Kea [IDe || E(Ke) [SNe H KBE]]):

)
)
. (8)
G — :join || IDg || E(Kq, [SNg |1 K5, |) 1]
C<Kg’ [IDg Il E<Kg’ [SNg I KBx])])’
Keg = f (K. @ K, SN, © SNy). 9)

In the above equations, join denotes the message type and
[| is the concatenation operator. Using (7), every receiving
node can compute the sender’s individual key (e.g., K, and
K,). After verifying the correctness of the joining message,
according to (9), the neighboring nodes can get the same
pairwise key (e.g., K). SN, and SN, are the random
numbers generated by the senders that are mainly used
to make the pairwise key between the neighboring nodes
completely decentralized. In (8), authentication of the sender
can counter resource exhaustion attacks. As long as the ID of
anode is in the neighbor table, all repeated join messages will
be discarded.

Our experiments show that the key establishment time is
less than 10's for a network of up to 20 neighbors. Deng et
al. [5] showed that an attacker who has the experience and
tools needs to spend at least tens of seconds or minutes to
obtain the data of a Mica2 mote after a node is captured.
Therefore, we set the key establishment timer for 10's so that
an adversary cannot impersonate a legitimate node in the key
establishment phase through obtaining the initial key and the
pseudorandom function. This is because when the timer runs
out, key establishment will stop even under the situation in
which some nodes have not established pairwise keys with
some of their neighbors.

After the key establishment timer reaches its preset
threshold value, a node will delete all the individual keys of
its neighbors (e.g., K, and Kg), the random numbers (e.g.,
SN, and SN,), the pseudorandom function f and the initial
key K; to improve security as well as to save storage space in
the node. Therefore, even if an adversary could compromise
some legitimate nodes, it still could not compute the pairwise
keys and the local cluster keys of noncompromised nodes.

Note that the neighboring nodes do not have to acknowl-
edge the setup of the pairwise keys because the measures
taken later in the key maintenance phase will help the

EURASIP Journal on Wireless Communications and Networking 5

/R
B @
o

(a)

R
S

P

(b)

FiGure 1: (a) Network initialization phase, (b) Network maintenance phase.

TaBLE 2: Neighbor table.

2 Bytes 8 Bytes 2 Bytes 8 Bytes 2 Bytes
Pairwise Local
Pairwise Local broadcast
Node ID sequence
key cluster key sequence
number
number

neighbors that failed to set up the pairwise keys successfully
finish the task.

Note also that each sensor node only needs to broadcast
one network joining message during the key establishment
phase with no further message exchange required. Moreover,
the network joining message may be the route request
message. The pairwise key and the local cluster key can be
established at the same time when a node forwards a route
request message. Thus, the communication overhead can be
very low.

4.3. Data Transfer Phase. In EDDK, we use a neighbor table
to maintain the keys and the sequence numbers as shown in
Table 2. The Sequence Number and the Key Lifetime fields
are combined into one to save memory space in the node.
For ease of use, we initialize both the pairwise sequence
number and the local broadcast sequence number to be
(7) The sequence number would be incremented after each
message is sent out. When the sequence number reaches the
predefined threshold, key update will be performed. After the
key is updated, the sequence number will be reset to 1 again.
The use of the neighbor table can help ensure the security of
data transfer.

In EDDXK, every message always gets authenticated while
encryption is optional. Message confidentiality becomes
necessary only when some information needs to be kept
secret. For example, in an intrusion detection system,
the actual content of an alarm message could be empty.
Receiving an alarm message indicates an intrusion. Thus,
encryption is not necessary but only leading to increase
in latency, computation overhead, and power consumption.
Meanwhile, authentication helps to ensure that authorized
nodes will not accept invalid messages injected by an
adversary. Consequently, adversaries can hardly forge false
alarms.

(i) Authentication mode only:
Unicast: IDg || IDg || SN || message ||
C(K, [IDs || IDg || SN || message]).
Acknowledgment: IDg || IDg || SN+ 1 ||

C(K, [IDs || IDg || SN +1]).
(10)

Local Broadcast: IDg || SN || message ||

(11)
C(Kg, [IDs || SN || message]).

In the above process, K is the pairwise key that is shared
by the sender and the receiver, and Kp is the local cluster key
of the sender. SN is the pairwise sequence number while SN
is the local broadcast sequence number. Since the sequence
numbers are used to ensure the freshness of a message and
to counter replay attacks, it is not necessary to keep them
secret. It is obvious that the local broadcast does not need
the acknowledgment message, so it is omitted in (11).

(ii) Encryption and authentication mode:
Unicast: IDs || IDg || SN || E(K, message) ||
C(K,[IDg || IDRIISNJ||E(K, message)]).
Acknowledgment: IDg || IDg || SN+ 1 ||

C(K, [IDs || IDg || SN + 1]).
(12)

Local Broadcast: IDg || SNg || E(Kp, message) |

C (K3, [IDg || SNp || E(Kp, message)]).
(13)

To save energy, a sensor node may employ early rejection
in which it would turn off its radio after determining that a
message is false or malicious. Upon the receipt of a message,
a receiver would first examine if the sender of the message
is in its neighbor table and if the SN is the same as that
in its neighbor table; it would then compute the message
authentication code and compare the result with the received
MAG; it would finally decrypt the message only when all

6 EURASIP Journal on Wireless Communications and Networking

the previous steps have completed successfully. Hence, the
use of the neighbor table not only improves the security
of data transfer but also helps to reduce computation and
communication overhead in the node.

4.4. Key Maintenance Phase. The security strength on the
information transmitted in the network relies primarily on
the protection of the keys that are used for encryption.
Should an attacker get the keys, the security system would
fail because the attacker can use the keys to decrypt inter-
cepted cipher texts to get the original plaintexts or to fake
network data to deceive legitimate nodes. The attacker could
achieve the above goal through the means of cryptanalysis
on eavesdropped messages that are transmitted over the
wireless media or by compromising some sensor nodes in
the network. Therefore, the sender and the receiver must
update the keys used between them periodically. When a
compromised node is identified, the keys that it uses must
also be revoked immediately. Moreover, key management
system must quickly respond to network changes to perform
functions such as key establishment and maintenance of new
nodes and mobile nodes.

4.4.1. Key Update. To defend against cryptanalysis and to
prevent adversaries from decrypting all previous messages
after one or more sensor node are compromised, all keys
must be updated periodically. When the lifetime of a pairwise
key (i.e., the SN) is reached, two neighboring nodes need to
perform the update of the neighbor table. The node whose ID
is smaller would invoke the update procedure shown in (14)
and the neighbor table will be updated as the result. Similarly,
when the lifetime of the local cluster key of a node (i.e., the
SN3) reaches the preset value, the node will broadcast the
cluster key update message.

(i) Pairwise key update
If IDg < IDg
Unicast: pairwise-key || IDg || IDg || SN || E(K,K") ||

C(K, [IDg || IDg || SN || E(K,K")]).
Acknowledgment: IDg || IDg || SN+ 1 ||

C(K', [IDs || IDg || SN +1]),
(14)

where pairwise-key denotes the message type and K and K’
are the old and the new pairwise keys, respectively.

(ii) Local cluster key update
Local Broadcast: cluster-key || IDs || SNg || E(Kg, Kj) 11

C(Ks, [IDs|| SN || E(K3, K3)]),
(15)

where cluster-key denotes the message type and Kz and Ky
are the old and the new local cluster keys, respectively.

The above key update procedures can counter replay,
forgery and tampering attacks. Thus, the keys can be updated
both securely and timely.

4.4.2. Compromised Key Revocation. When one or more
sensor nodes are compromised and can thus become insider
attackers, measures must be taken to segregate them from the
network so that they cannot eavesdrop on the information
transmitted in the network and launch active attacks towards
the network. We assume here that the intrusion detection
system used in the network can discover compromised
nodes and then inform the key management scheme to take
actions to isolate these nodes. First, the neighbors of the
compromised nodes should revoke the pairwise keys shared
with the compromised nodes. Second, the local cluster key
Kp must be updated. Here, we use the pairwise keys possessed
by noncompromised nodes to encrypt the update messages:

Unicast: cluster-key || IDg || IDg || SN || E(K, Kp) ||
C(K, [IDg || IDR|ISN || E(K, K3)]).
Acknowledgment: IDg || IDg || SN+1 ||

C(K, [IDs || IDg || SN+ 1]).
(16)

As long as the noncompromised nodes are still con-
nected, the local cluster key K can be successfully updated.

4.4.3. New Node Joining. To solve the problems present in the
schemes in [3-5], we use the Elliptic Curve Digital Signature
Algorithm (ECDSA) [26] to authenticate a new node without
any negative impact on energy efficiency. In Figure 1(b), let
us assume that B is the existing node and N and W are new
joining nodes. When a new node tries to set up the pairwise
keys with its neighbors, it broadcasts a joining message:

N — s: new-join || IDy [[Py [[Ty [[SNy [Cy | cns

W — *IHCW-jOiHHIDW HP‘W || Tw ||SNW || Cw ||Cw-
(17)

Let us now use node N as an example to explain the fields
in (17), new-join indicates that this is a new node joining
message. P, is the public key of node N. T}, is the timestamp
at which the node should join the network. Node N will be
treated as a new node when current time t < T,. SN, is
the random number generated by node N that will be used
to compute the pairwise key between two new nodes. The
signature (Cy,c,) is calculated by the trusted authority TA
based on the ECDSA algorithm [26]. The calculating process
is shown as follows:

Cn = rnG = (xcmycn)a
(18)
Cn = rn_l(H(IDn || Pn || Tn) +$Txm)(m0d 1’[),

where r,, is a random number, G is the generator in the cyclic
group of points over the elliptic curve and has an order n of at
least 160 bits, H is a hash function that can translate a binary
sequence into an integer, and st is the private key of the TA.

The receiving nodes, both W and B, will each perform
the following calculation:

Vn = C;II(H(IDn || Pn || Tn)G+C;1xcnPTa (19)

EURASIP Journal on Wireless Communications and Networking 7

where Pr = s1G = (xp1, ypr) and Py, = 5,G = (Xpn, Ypu)-
If V, = C,, then N’s neighbors can be assured that N is
a legitimate node and the verification process is illustrated
below:

Vn = erlrnrrzl(H(IDn || Pn || Tn) +-xcn5T)G
(20)
= c;lrnan =C,.

Following the same procedure, the receivers can also ver-
ify the identity of the new node W after hearing the broadcast
joining messages from it. The pairwise key negotiation would
fall into one of the following two scenarios: between two new
nodes or between a new node and an existing node.

New nodes are preloaded with the pseudorandom func-
tion f and a new initial key K;. The pairwise key negotiation
between two new nodes is performed using (9) in which
K, = f(Kj, ID,)and K,, = f(K},ID,,). Consequently, new
nodes N and W can establish a pairwise key without having
to send out any more messages and K,,,, = f (K, ® K,,, SN, @
SNy,).

Let us now use nodes N and B to illustrate pairwise
key negotiation between a new node and an existing one.
After authenticating the identity of the new node N, the
existing node B would broadcast a response message with the
signature (Cy, c,) of the TA:

B — sk:reply || IDy || Py || Tp |1 Cp 1] cp. (21)

According to the Diffie-Hellman algorithm [27] over the
elliptic curve discrete logarithm problem (ECDLP), nodes N
and B could independently calculate the pairwise key using
their own private keys and the other’s public key as follows:

Ky = s,Py = spP,,. (22)

The results will be identical because s,P, = s,5G =
sp5nG = spP,,.

No further message exchanges are necessary during
pairwise key setup beyond broadcasting the identity message
by the new node N. Therefore, the communication overhead
is low in the new node joining process.

Although the public-key algorithm is computationally
more expensive, it is easier to manage and more resilient
to node compromise than secret key algorithms. To achieve
the same level of security, a smaller key size in ECC (elliptic
curve cryptography) can be used, which offers the advantages
of faster computation as well as savings in memory, energy,
and bandwidth. Thus, ECC is more suitable for resource-
constrained sensor nodes.

4.4.4. Mobile Node Joining. We assume that a sensor node can
sense its own movement. If a sensor node moves to a new
location, it will establish pairwise keys with its new neighbors
following the aforementioned public-key-based node joining
procedure, and its old neighbors will also revoke the pairwise
keys with it.

In Figure 1(b), let us suppose that B is the existing node,
N and W are new joining nodes, and A and D are mobile
nodes. After nodes A and D move to a new location, each

will broadcast a network joining message independently as
shown below:

A — *:rejoin || IDg || Py || Ty [| Ca Il cas
o (23)
D — *:rejoin || IDg || Pg || Ta |l Ca Il ca,

where rejoin shows that this is a mobile node joining
message. Since current time ¢ is newer than both timestamps
T, and T4, nodes A and D will be regarded as mobile nodes.
After correctly verifying each other’s joining message, the
pairwise key computation procedure between two mobile
nodes is the same as that in (22), that is, K,y = s,P; = s4P,.
Similarly, according to (21), (22), and (23), the pairwise key
between mobile node A and the existing node B is K, =
saPy = spP, and, according to (17), (22), and (23), the
pairwise key between mobile node A and the new node N
is Kan = 4Py = $,P,. In fact, only the pairwise key between
a mobile node and an existing node would normally need to
be computed.

The mobile nodes could be normal nodes whose loca-
tions have changed due to some reasons. However, it is
also possible that the mobile nodes are the replicas of
some compromised nodes that are placed in the network
by adversaries. Hence, the intrusion detection system in
a sensor network should focus on monitoring the mobile
nodes whose locations have changed. When the behavior of
a mobile node matches an attack profile or deviates from
a normal profile, the mobile node should be labeled as a
malicious node.

In order to counter Sybil attacks and the node replication
attacks, we limit the number of neighbors for any node, that
is, the number of entries in the neighbor table, by using a
threshold. When the number of neighbors of a node reaches
the threshold value, no new neighbors can be added into the
neighbor table. Thus, an affected new mobile node can not
establish pairwise keys with its new neighbors and, as the
result, could not communicate with them. This measure can
help prevent replicas of compromised nodes from joining the
network as mobile nodes.

In the above joining scenarios, after the pairwise key is
established, the existing node needs to unicast its local cluster
key to its new neighbors to complete the key establishment
process.

5. Security Analysis

We first compare the security of EDDK with some related
schemes and then analyze EDDK in terms of preventing both
general and special attacks to WSNGs.

5.1. Security Comparison with Related Schemes. In the
LEAP+ protocol [4], when the timer expires after Tiin, each
node will erase the initial key Kiy and all the master keys of
its neighbors. However, even with tamper-proof hardware,
damaged or disabled nodes may still have the initial key in
the flash memory. Therefore, should an adversary physically
capture such a node and obtain the initial key, all the pairwise
keys in the network could be easily computed. From (8)
and (9), we can see that all pairwise keys in EDDK are

8 EURASIP Journal on Wireless Communications and Networking

decentralized and cannot be inferred uniformly based on
any centralized rule. Even if the adversary could know the
pseudorandom function f and the initial key K, it would
not be able to get noncompromised pairwise keys since
the random number SN generated by each node in (9) is
different.

The new node joining protocol in the OMTK scheme
[5] not only is susceptible to DoS attacks but also makes
it possible for an adversary to inject malicious nodes into
the network and to obtain pairwise keys between new and
existing nodes. The additional mechanism that uses a one-
way hash chain as the master key during each time period
to authenticate new nodes only makes the protocol more
complex while less secure. To solve the above problems, we
employ ECDSA to authenticate the identity of any node. Even
if an adversary could compromise a node, it would not get
any information about noncompromised nodes.

5.2. Preventing General Attacks on WSNs. General attacks to
WSNs mainly include eavesdropping, faking, altering, and
replaying network messages as well as launching DoS attacks
towards the normal nodes.

In both the network initialization phase and the network
maintenance phase, we use the node’s individual key, the
pairwise key, or the local cluster key to encrypt and
authenticate network messages. Therefore, adversaries who
do not know these keys cannot obtain, fake, or tamper with
the contents of network messages.

Due to the use of the neighbor table, adversaries can
hardly launch replay attacks. For the node joining messages,
if a node exists in the neighbor table, any duplicate joining
messages claimed to be from it will be discarded by the
receiving node. For the data messages, by using the sequence
number field in the neighbor table, any duplicate data
messages will also be discarded by the receiver.

Based on (8), (10)—(17), (21), and (23), key establish-
ment messages, node sensing messages, and key maintenance
messages can be authenticated. Furthermore, key establish-
ment messages and new and mobile node joining messages
are not necessarily fed back. Thus, EDDK can effectively
counter Do§ attacks.

5.3. Preventing Specific Attacks to WSNs. Specific attacks
to WSNs mainly include rushing attacks, Sybil attacks,
node replication attacks, hello flooding attacks, acknowledge
spoofing attacks, and selective forwarding attacks, to name a
few [1, 28].

Every node needs to broadcast a “hello” message peri-
odically to advertise itself. The sequence numbers and the
pairwise keys stored in the neighbor table can help to
authenticate the “hello” messages and the acknowledgment
messages. As the result, an adversary who does not know the
shared information cannot flood a large number of “hello”
messages and forge acknowledgment messages.

To counter selective forwarding attacks, we adopt a
measure similar to that used in [29] in which each sensor
node can work under a promiscuous mode so that it can
overhear data transmission among its neighboring nodes. If
a neighbor of a suspected node detects that the number of

messages that the suspected node fails to forward exceed a
threshold, the neighbor can collaborate with other neighbors
to make a decision about the suspected node. In addition,
multipath routing can also help to deal with the selective
forwarding problem.

Because we allow mobile nodes to rejoin the network,
the replicas of compromised nodes may affect EDDK. By
limiting the number of neighbors for any node and by
authenticating all messages using the sequence numbers and
the pairwise keys, we can prevent an intruder from launching
Sybil attacks, rushing attacks, and node replication attacks
to some extent. Moreover, we can use multiple paths to the
sink node to counter such attacks. In a sensor network where
nodes are mostly stationary, the intrusion detection system
can focus on monitoring mobile nodes whose locations have
just changed. If the behavior of a mobile node matches an
attack profile or deviates from a normal profile, the node will
be regarded as a malicious node.

6. Performance Evaluation

In the probabilistic key sharing schemes, if two nodes have to
rely on a third node to help them establish a pairwise key, a
large amount of computation (e.g., encryption and decryp-
tion) and communication will be required due to the fact
that threshold cryptography-based schemes usually involve
expensive operations such as modular multiplications. In
contrast, in EDDK, every node can establish a pairwise key
with each of its neighbors and thus does not need any
additional help in pairwise key establishment.

We have used MATLAB 7.9.0 (R2009b) to perform the
simulation to evaluate the EDDK scheme and to compare it
with some other similar schemes. We have also implemented
EDDK in the Crossbow’s IRIS sensor nodes. We have chosen
RC5 (with 12 rounds) as the block cipher to implement
the encryption/decryption algorithm and to generate CBC-
MAC. We have also used MAC with RC5 to provide the
pseudo random function that is used to derive the individual
keys as well as the pairwise keys.

We have evaluated the EDDK scheme in terms of com-
putation overhead, communication overhead, and storage
overhead.

6.1. Computation Overhead. In the network initialization
phase, the computation overhead for each node includes
the encryption and authentication of the local broadcast
message, the verification and decryption of the received
messages from neighbors, and the computation of the
pseudorandom function in (8) and (9). Using an IRIS node
with the XMTS300CB sensor board running the TinyOS
system and a default message size of 36 bytes, we count
the time cost resulting from these operations for a local
broadcast message for 20 times. As shown in Figure 2, these
operations do not incur too much computation overhead.
Although the ECC algorithm is adopted in the node
mobility scenario, for achieving the same level of security,
a smaller key size in ECC can offer faster computational
efficiency, especially in assembly language implementations,
which only require 0.81s for completing a 160-bit point

EURASIP Journal on Wireless Communications and Networking 9

137 B ain’S ’
12 + - v A4 Y~/ A
%(IJ S vV M v

SN WERUITANN 0O

Computation overhead (ms/packet)

1234567 8 91011121314151617181920
Times of computation

Ficure 2: Computation time statistics from sending a local
broadcast message to receiving the message by another node.

multiplication of ECC [16]. Node authentication needs
two point multiplication operations according to (19),
whereas pairwise key setup needs only one point multipli-
cation operation according to (22) in the node mobility
scenario.

6.2. Communication Overhead. A comparison of the com-
munication overhead among the EDDK, LEAP, and OTMK
schemes in the network initialization phase is shown in
Figure 3 in which m denotes the average number of neigh-
bors for a node. In the LEAP scheme and the OTMK Basic
scheme I, it requires that each node unicast a reply message to
the node that initially broadcast the joining message, result-
ing in more messages to be sent and received by the nodes
in addition to incurring additional energy consumption
and delaying key setup. However, in the pairwise key setup
procedure of the EDDK scheme and the OTMK Simplified
scheme I, each node only needs to broadcast a network
joining message without requiring any reply message. So,
from Figure 3, we can see that the communication overhead
for each node is very low in the latter two schemes.

A comparison of communication overhead among
EDDK, LEAP, and OTMK schemes in the new node joining
phase is shown in Figure 4 in which n denotes the number
of new nodes that simultaneously appear in the neighboring
area. In the LEAP and the OTMK schemes, it requires that
each existing node unicast a feedback message to the new
neighbor node for the authentication of the identities of
each other, resulting in additional energy consumption and
key establishment delay. In addition, these two schemes
failed to consider the situation in which few new nodes
simultaneously appear in the neighborhood. Therefore, their
communication overhead is greater than that of EDDK.

According to (8), (10)—(17), (21), and (23) in the EDDK
scheme, messages sent by every node can be authenticated
while the schemes in [3-5] cannot. Should a message not
be authenticated by the recipient, an adversary could freely
inject malicious messages into the network. Moreover, the
recipient has to feed reply messages into the network and
wait for further messages in order to authenticate the sender.
Consequently, the communication overhead in EDDK is

6000

5000 ¢ 1

4000 b

3000 ¢ 1

2000 ¢ 1

1000 b

Computation overhead (packets)

50 100 150 200 250 300 350 400 450 500
Number of sensor nodes

I EDDK

I LEAP+ withm =5

I LEAP+ with m = 10

N OTMK I simplified

B OTMK I basic with m =5
3 OTMK I basic with m = 10

FiGURE 3: Comparison of communication overhead among EDDK,
LEAP, and OTMK schemes in the network initialization phase.

Computation overhead (packets)
~
S

1234567 8 91011121314151617181920
Number of neighbors

B EDDK withn =2
B EDDK withn =3
B [EAP+ withn =2
I LEAP+ withn =3
B OTMK I withn =2
3 OTMK I withn =3

F1GURE 4: Comparison of communication overhead among EDDK,
LEAP, and OTMK schemes in the new node joining phase.

much lower than that in the other schemes. Moreover,
communication overhead is generally considered to be
much worse, and therefore less desirable, than computation
overhead due to higher energy consumption.

6.3. Storage Overhead. In the EDDK scheme, each node
needs to store the pairwise keys and the local cluster keys
related to its neighbors. Since in the mobility scenario, we
employ the ECC-based public key mechanism to verify the
identities of the nodes and to establish pairwise keys, each
node still needs to store its own private and public keys,
the TA’s signature for it and the TA’s public key. In our

10 EURASIP Journal on Wireless Communications and Networking

500 b
450 b
400 b
350 b
300 b
250 b
200 ¢ b
150 b
100 b
50 b

Memory occupation (bytes)

1234567 8 91011121314151617181920
Number of neighbors

I EDDK
B 1 EAP+ with M = 10
B OTMK with i = 20

Figure 5: Comparison of storage overhead for a node among
EDDK, LEAP and OTMK schemes.

current research, since we use 160-bit ECC as the underlying
cryptographic foundation, the key materials related to the
public key need 160-byte storage space. The LEAP, and the
OTMK schemes do not adopt the public key mechanism,
however. In addition to the pairwise keys and the local
cluster keys, in the LEAP protocol, each node still needs to
store its own individual key that is used for computing the
pairwise keys and at most M initial keys: K\, K. .., K
that are used for deriving the individual key in different node
addition scenarios. The OTMK scheme does not support
the establishment of a local cluster key. In our comparison
with these schemes, we assume that, in the OTMK scheme,
a node already has the local cluster key. Moreover, to allow
new normal nodes to join an existing network, in OMTK, a
node has to generate i verifiers that contain random numbers
ri and y;.

A comparison of storage overhead for a node among
EDDK, LEAP and OTMK schemes is shown in Figure 5 in
which we can see that although EDDK has adopted the public
key mechanism ECC, the storage overhead for a node in
EDDK is no more than that in the LEAP and the OTMK
schemes.

We can thus conclude that the EDDK scheme is more
advantageous in computation, communication, and storage
and is thus more suitable for resource-constrained wireless
sensor networks.

7. Conclusions

In this paper, we proposed an energy-efficient distributed
deterministic key management scheme (EDDK) in which
pairwise keys and local cluster keys of sensor nodes can be
established and maintained securely. Furthermore, pairwise
keys are totally decentralized. Hence, the compromise of
any sensor node will not affect any other noncompro-
mised pairwise keys. By broadcasting only one identity
authentication message, a node can set up a pairwise key

with a neighboring node both in the network initialization
phase and in the node mobility scenario. Therefore, the
communication overhead is very low. In addition, not only
can the neighbor table mechanism used in EDDK ensure
security for key management and data transmission, but it
can also help nodes effectively store and update keys. The
use of the elliptic curve digital signature algorithm in EDDK
provides the support for the establishment of pairwise keys
and local cluster keys under the node mobility scenario.
Simulation and analysis has shown that EDDK is more
advantageous in computation, communication, and storage
than other similar schemes.

Acknowledgments

This research work in this paper has been partially supported
by a Grant from the Science Foundation of Beijing Education
Commission (Grant no. KM201010005027). The authors
would also like to thank the anonymous reviewers for their
valuable comments on the paper.

References

[1] Y. Zhou, Y. Fang, and Y. Zhang, “Securing wireless sensor net-
works: a survey,” IEEE Communications Surveys ¢ Tutorials,
vol. 10, no. 3, pp. 6-28, 2008.

Y. Wang, G. Attebury, and B. Ramamurthy, “A survey of secu-
rity issues in wireless sensor networks,” IEEE Communications
Surveys & Tutorials, vol. 8, no. 2, pp. 2-22, 2006.

S. Zhu, S. Setia, and S. Jajodia, “LEAP: efficient security
mechanisms for large-scale distributed sensor networks,” in
Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS °03), pp. 62—72, Washington,
DC, USA, October 2003.

S. Zhu, S. Setia, and S. Jajodia, “LEAP+: efficient security
mechanisms for large-scale distributed sensor networks,”
ACM Transactions on Sensor Networks, vol. 2, no. 4, pp. 500—
528, 2006.

J. Deng, C. Hartung, R. Han, and S. Mishra, “A practical study
of transitory master key establishment for wireless sensor
networks,” in Proceedings of the Ist International Conference
on Security and Privacy for Emerging Areas in Communications
Networks (SecureComm ’05), pp. 289-299, Athens, Greece,
September 2005.

Y. Zhou, Y. Zhang, and Y. Fang, “Access control in wireless
sensor networks,” Ad Hoc Networks, vol. 5, no. 1, pp. 3-13,
2007.

[7] R. Di Pietro, L. V. Mancini, Y. W. Law, S. Etalle, and P.
Havinga, “LKHW: a directed diffusion-based secure multicast
scheme for wireless sensor networks,” in Proceedings of the
International Conference on Parallel Processing, pp. 397—-406,
Los Alamitos, Calif, USA, October 2003.

[8] L. Eschenauer and V. D. Gligor, “A key-management scheme

for distributed sensor networks,” in Proceedings of the 9th ACM

Conference on Computer and Communications Security, pp. 41—

47, Washington, DC, USA, November 2002.

H. Chan, A. Perrig, and D. Song, “Random key predistribution

schemes for sensor networks,” in Proceedings of IEEE Sympo-

sium on Security And Privacy, pp. 197-213, Oakland, Calif,

USA, May 2003.

S

w

=

o

&)

5

EURASIP Journal on Wireless Communications and Networking

(10]

[11]

(13]

(17]

D. Liu and P. Ning, “Establishing pairwise keys in distributed
sensor networks,” in Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS °03), pp. 52—
61, Washington, DC, USA, October 2003.

W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A.
Khalili, “A pairwise key predistribution scheme for wireless
sensor networks,” ACM Transactions on Information and
System Security, vol. 8, no. 2, pp. 228-258, 2005.

R. Blom, “An optimal class of symmetric key generation
systems,” in Proceedings of the International Conference on
the Theory and Applications of Cryptographic Techniques
(EUROCRYPT ’84), pp. 335-338, Paris, France, April 1984.

B. Lai, S. Kim, and I. Verbauwhede, “Scalable session key
construction protocols for wireless sensor networks,” in
Proceedings of IEEE Workshop on Large Scale RealTime and
Embedded Systems, 2002.

J. Lee and D. R. Stinson, “Deterministic key predistribution
schemes for distributed sensor networks,” in Proceedings of the
11th International Workshop on Selected Areas in Cryptography
(SAC °04), pp. 294-307, Waterloo, Canada, August 2004.

J. Lee and D. R. Stinson, “A combinatorial approach to key pre-
distribution for distributed sensor networks,” in Proceedings
of IEEE Wireless Communications and Networking Conference
(WCNC °05), pp. 1200-1205, Orleans, La, USA, March 2005.

N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz,
“Comparing elliptic curve cryptography and RSA on 8-Bit
CPUs,” in Proceedings of the 6th International workshop on
Cryptographic Hardware and Embedded Systems (CHES ’04),
pp. 119-132, Cambridge, Mass, USA, August 2004.

A. S. Wandert, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz,
“Energy analysis of public-key cryptography for wireless
sensor networks,” in Proceedings of the 3rd IEEE International
Conference on Pervasive Computing and Communications
(PerCom °05), pp. 324328, Kauai Island, Hawaii, USA, March
2005.

G. Gaubatz, J.-P. Kaps, and B. Sunar, “Public key cryptography
in sensor networks-revisited,” in Proceedings of the 1st Euro-
pean Workshop on Security in Ad-Hoc and Sensor Networks, pp.
2-18, Heidelberg, Germany, August 2005.

W. Du, R. Wang, and P. Ning, “An efficient scheme for
authenticating public keys in sensor networks,” in Proceedings
of the 6th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MOBIHOC °05), pp. 58-67,
Urbana-Champaign, I1l, USA, May 2005.

Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Location-based
compromise-tolerant security mechanisms for wireless sensor
networks,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 2, pp. 247-260, 2006.

A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler,
“SPINS: security protocols for sensor networks,” Wireless
Networks, vol. 8, no. 5, pp. 521-534, 2002.

X. Zhang, J. He, and Q. Wei, “An energy-efficient dynamic
key management scheme in wireless sensor networks,” in
Proceedings of the 10th International Symposium on Pervasive
Systems, Algorithms, and Networks (I-SPAN °09), pp. 238-242,
Kaohsiung, Taiwan, December 2009.

X. Zhang, J. He, and Q. Wei, “Neighbor-list based pairwise
key management scheme in wireless sensor networks,” in
Proceedings of the 5th International Conference on Active Media
Technology, pp. 522-528, Beijing, China, October 2009.

X. Zhang, J. He, and Q. Wei, “Security considerations on
node mobility in wireless sensor networks,” in Proceedings

(25]

(26]

(27]

(28]

11

of the 4th International Conference on Computer Sciences and
Convergence Information Technology (ICCIT ’09), pp. 1143—
1146, Seoul, Korea, November 2009.

O. Goldreich, S. Goldwasser, and S. Micali, “How to construct
random functions,” Journal of the ACM, vol. 33, no. 4, pp. 792—
807, 1986.

S. Vanstone, “Responses to NIST’s proposal,” CACM, vol. 35,
no. 7, pp. 50-52, 1992.

W. Diffie and M. E. Hellman, “New directions in cryptogra-
phy,” IEEE Transactions on Information Theory, vol. 22, no. 6,
pp. 644-654, 1976.

C. Karlof and D. Wagner, “Secure routing in wireless sensor
networks: attacks and countermeasures,” in Proceedings of the
Ist International Workshop on Sensor Network Protocols and
Applications, pp. 113-127, Anchorage, Alaska, USA, May 2003.
G. Wang, W. Zhang, G. Cao, and T. La Porta, “On supporting
distributed collaboration in sensor networks,” in Proceedings
of IEEE Military Communications Conference (MILCOM °03),
pp- 752-757, Boston, Mass, USA, October 2003.

	1. Introduction
	2. Related Work
	3. Analysis of Deterministic Key Schemes
	4. EDDK: Energy-Efficient Distributed Deterministic Key Management Scheme
	5. Security Analysis
	6. Performance Evaluation
	7. Conclusions
	Acknowledgments
	References

