
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2011, Article ID 837209, 19 pages
doi:10.1155/2011/837209

Research Article

CS-DRM: A Cloud-Based SIMDRM Scheme for Mobile Internet

ChaokunWang,1, 2, 3 Peng Zou,1 Zhang Liu,4 and JianminWang1, 2, 3

1 School of Software, Tsinghua University, Beijing 100084, China
2Key Laboratory for Information System Security, Ministry of Education, Beijing 10084, China
3Tsinghua National Laboratory for Information Science and Technology (TNLIST), Beijing 100084, China
4Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Correspondence should be addressed to Chaokun Wang, chaokun@tsinghua.edu.cn

Received 2 June 2010; Revised 8 September 2010; Accepted 26 October 2010

Academic Editor: Damien Sauveron

Copyright © 2011 Chaokun Wang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

With the rapid development and growth of the mobile industry, a considerable amount of mobile applications and services are
available, which involve Internet scale data collections. Meanwhile, it has a tremendous impact on digital content providers as well
as the mobile industry that a large number of digital content have been pirated and illegally distributed. Digital Rights Management
(DRM) aims at protecting digital contents from being abused through regulating their usage. Unfortunately, to the best of our
knowledge, fewer of these DRM schemes are concerned with the cost of the servers in a DRM system when the number of users
scales up, and consider benefits of content providers who can be seen as tenants of a content server. In this paper, we propose CS-
DRM, a cloud-based SIM DRM scheme, for the mobile Internet. The SIM card is introduced into CS-DRM to both reduce the cost
and provide higher security. Also, the characteristics of cloud computing enable CS-DRM to bring benefits for content providers,
and well satisfy the performance requirements with low cost when the number of users increases significantly. Furthermore, we
have implemented a prototype of our DRM scheme, which demonstrates that CS-DRM is efficient, secure, and practicable.

1. Motivation

With the rapid development and growth of the mobile
industry, a considerable amount of mobile applications and
services are available, which involve extremely large, Internet
scale data collections, for example, image, e-books, audio,
and video. As a result, users are capable of sharing and
distributing digital content easily through mobile Internet.
However, a large number of digital content have been pirated
and illegally distributed, which has a tremendous impact on
digital content providers as well as the mobile industry.

Digital RightsManagement (DRM) is a mechanism which
protects digital content from being abused through regulat-
ing its usage. A DRM scheme is a model of DRM and consists
of related components, protocols, and algorithms (the formal
definition of a DRM scheme is given in Section 2.2.1). A
DRM system is an implementation of a DRM scheme. In the
context of a DRM system, only an authorized user, who has

obtained a license, can access the digital content according to
the rights information defined in the license.

Current DRM schemes can be summarized into the
following two categories.

Device-Based DRM. In a device-based DRM scheme, such as
OMA (Open Mobile Alliance) DRM [1], and Microsoft DRM
[2], the security comes from mandatory usage of customized
players (e.g., Windows Media Player 10 Mobile for Pocket
PC) and unique global device identifiers (e.g., IMEI—
International Mobile Equipment Identifier). However, this
kind of DRM scheme is constrained by its inflexibility,
especially in the mobile Internet. For example, a user, in
reality, may change or switch her/his mobile devices, but
cannot use the licenses bought before because the new
mobile device fails to pass the verification of the DRM
system.



2 EURASIP Journal on Wireless Communications and Networking

Smart Card-Based DRM. In order to overcome the inflex-
ibility of device-based DRM schemes, the smart card-
based DRM scheme is proposed. A “smart card” is a chip
card with storage, identification, and encryption/decryption
capabilities [3] and is the core component of the scheme. The
security of this kind of DRM scheme rests on key generation-
related algorithms and protocols protected by the smart card.
However, there are security issues, such as imposter attacks
[4, 5], in some existing smart card-based DRM schemes.
Meanwhile, some solutions (e.g., [6]) are proposed to solve
these issues, but the complexity and cost of this kind of DRM
schemes dramatically increase. Especially, existing smart
card-based DRM schemes are uneconomic and inconvenient
in the mobile Internet. In detail, besides a smart card, each
mobile device needs a smart card reader [5, 6]. When a user
wants to access digital content, a smart card and a smart
card reader have to be carried and connected to a mobile
device.

Taking note of shortcomings of the smart card-based
DRM scheme, for the mobile Internet, we propose SIM DRM
(SIM card-based DRM system) in Section 2.2.2, which uses a
SIM card instead of a smart card. It overcomes the deficiency
of existing smart card-based DRM schemes.

According to the investigation report on the China
mobile Internet and 3G networks by CNNIC [7], the number
of mobile Internet users has reached 155 million in China by
late June 2009, 46% of the mobile phone users, and with the
proportion of mobile Internet users increased by 6.5% within
six months. A large amount of mobile media, such as mobile
video and music, are downloaded or enjoyed online. On one
hand, large numbers of mobile content providers emerge,
such as Arphiola and telecomCONTENT. Specifically for the
domain of DRM, these content providers may upload digital
content with different formats using divergent channels to
the content server. However, two pivotal requirements need
to be concerned by both content providers and the content
server. First, the content server of a DRM system can only
deal with and encrypt some certain formats of contents so
that these contents can be used under the framework of
a DRM scheme. Preliminary works for contents, such as
content editing and format conversion, have to be done by
content providers themselves. However, it is clearly a burden
for content providers. Second, as a tenant of the content
server, each content provider uploads digital content to the
content server and derives benefits from its contents being
consumed by users. Since contents of each content provider
are all stored and handled in the same place, the data security,
sharing, and isolation among content providers becomes a
rather important issue. Fortunately, the cloud environment
is one of the best solutions. In a cloud, the content server
provides rich and powerful services for handling contents.
Each content provider only needs to use these services
to do complex preliminary works without any extra cost.
Meanwhile, the virtualization technology used above the
infrastructure of the cloud guarantees the data security,
sharing, and isolation among tenants.

On the other hand, while the stable growth of the
mobile Internet active users brings huge economic interests,
the performance of the mobile applications and services

becomes more and more important. The low access speed
and long response time have been the most important factors
limiting the development of the mobile Internet, which is
voted by 55% of mobile Internet users [7]. Specifically in
a DRM system, with the number of active users scaling up,
mass of the data requests and data operations place a heavy
burden on the DRM system. The capabilities of computation,
storage as well as the performance of data management
system are main constraints on the performance of the
whole DRM system. The existing DRM schemes are still
required to purchase huge amount of equipment and
perform maintenance, which is a large investment and takes
high daily expenses, when the number of user visits increases.
The huge capability of computation and storage of the cloud
environment makes the cloud one of the best solutions
for satisfying performance requirements of the entire DRM
system when the number of user visits grows to infinity.

The above situations call for a new DRM scheme which
is low-cost, flexible, secure, efficient, and practicable. In
addressing this problem, we propose a novel DRM scheme,
called CS-DRM, which is a Cloud-based SIM DRM scheme
for media protection in the mobile Internet. In summary, our
main contributions are as follows.

(i) We propose CS-DRM, a 4-tuple model, in which
the usage of a SIM card instead of a smart card not
only reduces the unnecessary cost, but also provides
higher security. In addition, the cloud computing is
introduced in the scheme to provide more efficient
and higher quality services.

(ii) We propose a practicable use case for our CS-
DRM scheme. It is a concrete process which consists
of five phases, that is, preparation phase, rights
customization phase, license acquisition phase, play
phase, and download/upload phase.

(iii) We have implemented a prototype of our proposed
scheme, called Phosphor, which demonstrates that
CS-DRM is efficient, secure, and practicable.

The rest of this paper is organized as follows. Some
preliminaries are introduced in Section 2. We detail the CS-
DRM scheme in Section 3. In Section 4, we focus on the CS-
DRM use case. Security issues and system characteristics of
the CS-DRM are analyzed and discussed in Section 5. The
implementation details of Phosphor are stated in Section 6.
Section 7 reports the results of our experiments and analyzes
the effectiveness and efficiency of our scheme. The related
works are reviewed in Section 8. Finally, we conclude this
paper in Section 9.

2. Preliminaries

In this section, we state the preliminaries of CS-DRM. First,
we discuss differences between a SIM card and a smart card.
Second, we elaborate on the concepts of a common DRM
scheme, SIM DRM, and cloud computing. Finally, we give
some fundamental statements and explain the symbols used
in the rest of the paper.



EURASIP Journal on Wireless Communications and Networking 3

Virtual
infrastructure

Physical
infrastructure

Computation Storage

CS-DRM cloud

Infrastructure

License service

Servers

Network

· · ·

Platform

Application services

Content serviceApplication

Platform services

Figure 1: The architecture of a cloud.

2.1. Differences between a SIM Card and a Smart Card. A
smart card follows the Standard ISO 7816 [3] which defines
the physical and electrical characteristics of smart cards. A
SIM card is produced according to the specification GSM
11.11 [8] and GSM 11.14 [9] besides the standard ISO 7816.
GSM 11.11 defines the interface between the SIM card and
the mobile device as well as the interaction between the SIM
card and the mobile operator. GSM 11.14 describes the SIM
Application Toolkit which is a set of applications and related
procedures used in a GSM session.

A SIM card distinguishes itself by the following three
points. Firstly, a SIM card has the proactive SIM mechanism
[9] which allows a SIM card to send proactive commands.
In this way, a SIM card can do many things that normal
smart cards could not do, such as proactive information
synchronization between the SIM card and the mobile
operator. Secondly, the A3, A5, A8 and A38 algorithms [8]
embedded in the SIM card can help SIM card authenticate
the subscriber, encrypt/decrypt data and generate a secret
key. Finally, a SIM card owns a secure file system which
has a complete access control mechanism [3, 8]. All these
characteristics make the SIM card more efficient and secure
than the normal smart card.

2.2. Concepts

2.2.1. DRM Scheme. Formally, a DRM scheme is a 3-tuple,
shown as follows:

DRM = (C,P ,A), (1)

where C is a set of main components, P is a set of protocols
which are in charge of communication and data transmission
among components, and A is a set of auxiliary algorithms in
the scheme. However, the denotation of each tuple could be
different depending on different schemes. Taking the OMA
DRM scheme as an example, C contains five components—
DRM Agent, Content Issuer, Rights Issuer, User and Off-
device Storage; ROAP and other protocols form P ; A

consists of kinds of hash algorithms as well as symmetric and
asymmetric encryption/decryption algorithms.

2.2.2. SIM DRM. As the name suggests, a SIM DRM scheme,
abbreviated as SIM DRM, is a DRM scheme based on the
SIM card. Formally, SIM DRM is also a 3-tuple (C,P ,A)
where a SIM card, as a component, is added to C. Meanwhile,
some protocols and algorithms specially designed for SIM
DRM are added to P and A, such as the LSWP protocol and
the License-Generation algorithm presented in sequel.

2.2.3. Cloud Computing. The cloud computing provides
services, computation, and storage from a remote and
centralized facility or contractor [10, 11]. In a cloud, data
can be easily and ubiquitously accessed. One of the most
important characteristics of cloud computing is its pay-
as-you-go manner. It means that users only need to rent
corresponding services provided by cloud computing and
pay for the actual utilization of services, rather than buy
software and physical hardware which users may consider too
expensive.

A cloud system is a system implementing cloud com-
puting. Without ambiguity, a cloud system is abbreviated
as a cloud in the rest of the paper. A cloud refers to not
only application services delivered over the Internet, but also
the hardware and system software in the system. As shown
in Figure 1, the typical architecture of a cloud consists of
three layers. The infrastructure layer includes the physical
infrastructure and the virtual infrastructure. The former is
composed of tens of thousands of commercial machines; the
latter contains network, computation, and storage, which
communicates with physical servers by unified interfaces.
In the cloud, the infrastructure can also be seen as a
service provided to customers. Some businesses are based on
infrastructure services such as Amazon. The platform layer,
for example, Google Application Engine (GAE), provides
platform services to develop new applications. Above the
platform layer, all kinds of custom application services



4 EURASIP Journal on Wireless Communications and Networking

comprise the application layer. For example, in the CS-DRM
scheme described later, the license service and content service
are established within the application layer.

Any client connected to a cloud, via wired or wireless
means, is called a cloud client. Correspondingly, the cloud
is also called the backend.

2.3. Fundamental Statements. As known to all, SIM cards
are issued by mobile operators which have mobile networks
and a large number of users. We have some fundamental
statements as follows.

2.3.1. Trust in the Mobile Operator. The mobile operator
is trustworthy. If the mobile operator fabricates facts or
divulges user privacy so that the interests of mobile users are
undermined, the mobile operator will lose the reputation,
credit and market, which the mobile operator could not
afford.

2.3.2. Cooperation with the Mobile Operator. It is of practical
significance to cooperate with the mobile operator. First, a
SIM card issued by the mobile operator is of vital importance
for a client. It is the foundation of algorithms and protocols
for the security of CS-DRM. Since SIM cards used in CS-
DRM are provided by the mobile operator, we need to
cooperate with the mobile operator naturally. Second, the
servers of CS-DRM need corresponding algorithms and data
from the mobile operator, such as A5/A8 algorithms and Ki

of the SIM card [8]. Please note that Ki must be safe, which is
a secret key stored in the SIM card and the mobile operator. It
only can be acquired from the system of the mobile operator
by a special interface. For the privacy and the security of
this acquisition process, the hash value of the International
Mobile Subscriber Identity (IMSI) is required as a parameter
of the interface. Third, the mobile operators have the mobile
network and huge number of users which are two crucial
factors of a successful business system of CS-DRM.

For the convenience of presentation, some symbols used
in the remainder of the paper are listed in Table 1.

3. The CS-DRM Scheme

In this section, we propose the CS-DRM scheme which is
different from existing DRM schemes. The definition of the
CS-DRM scheme is presented at first. Then, we elaborate on
its elements one by one. The original idea of the CS-DRM
scheme is presented in [12].

3.1. Definition. A CS-DRM scheme, abbreviated as CS-
DRM, is a 4-tuple

CS-DRM = (E,S,P,A), (2)

where E is the set of entities in the cloud client, S the set of
application services based on cloud computing, P the set of
protocols among E∪S (E∪S denotes all elements in both E
and S), and A the set of auxiliary algorithms used in P.

Users of a system implementing the CS-DRM scheme
utilize or enjoy digital content by a frontend, that is, a cloud

Table 1: Symbols.

Symbol Definition

Ki

A secret key stored in the chips of SIM card. In our
scheme, its copy is also stored in the storage of license
service.

A3(·) An authentication algorithm for authenticating the
subscriber.

A5(·) An algorithm for enciphering/deciphering data. The
inputs are Kc and data.

A8(·)
An algorithm for generating Kc. Kc is the cryptographic
key used by the A5 algorithm. The inputs are Ki and a
random number.

A38(·) A single algorithm performing the functions of A3 and
A8.

Kcek
A key by which the content service encrypts the digital
content.

UK A key by which the license server encrypts Kcek.

EK The encrypted Kcek.

AUK (·) An algorithm used to generate UK .

Ek(·) A symmetric encryption algorithm with key k.

DEk(·) A symmetric decryption algorithm with key k.

H(·) A public one-way hash function.

GetKI(·) A function for fetching Ki in the license service.

‖ Concatenation operation.

client, after purchasing corresponding licenses. The backend
of the system contains kinds of application services based
on cloud computing, which are in charge of generating,
storing and transmitting encrypted digital content and
corresponding licenses.

Because the SIM card and cloud are introduced into CS-
DRM, the roles and functions of the client and backend
are more distinguished. In our scheme, we use E and S
instead of C defined in Section 2.2.1 so that characteristics
of these two parts can be expressed clearly, such as the
better security provided by the SIM card, and the elasticity,
significant economic advantages [11] as well as multitenant
nature brought by the cloud.

3.2. Entities. The cloud client of CS-DRM has four main
entities: a SIM card, a DRM agent, a custom player, and a
CS-DRM compliant browser.

SIM Card is the Subscriber Identity Module card used
in the mobile device [8]. At the client, besides the network
operations such as identifying a subscriber of the mobile
network, the SIM card is in charge of security issues,
for example, authentication between the cloud client and
the license service, verification for license integrity and
generating Kcek, as shown later in Algorithm 4. It stores a
secret key Ki and a unique IMSI. The A3, A5, A8, and A38
algorithms embedded in a SIM card are implemented and
protected by hardware.

DRM Agent is a “bridge” among other entities, and
consists of a set of logical rules of cloud clients in the device.
For example, if the client wants to render the encrypted



EURASIP Journal on Wireless Communications and Networking 5

digital media when it has acquired the corresponding license,
the DRM agent will send an APDU (Application Protocol
Data Unit) command to the SIM card for Kcek. After that,
the DRM agent decrypts encrypted digital media by Kcek and
then sends it to the compliant player for rendering. Here Kcek

is generated by decrypting EK using UK , and more details
will be presented later in Algorithms 3 and 4.

Custom Player is for rendering digital media. The player
could not illegally copy or distribute the decrypted digital
media when it is rendering the content.

CS-DRM Compliant Browser is for browsing web sites of
the backend. It notifies the DRM agent to do the next action
when it receives corresponding responses or events.

3.3. Application Services. As shown in Figure 1, the backend
of CS-DRM provides cloud clients with two application
services within the application layer. The implementation of
the platform layer and infrastructure layer is not considered
in this paper because it is out of the scope of this work.

Content Service deals with all content related requests
from clients and provides high-quality services to content
providers for dealing with contents. It encrypts digital
content with the key Kcek and hosts distribution channels,
such as a web site used to search TV menus. Content
service will transmit Kcek to the license service for generating
licenses.

License Service is in charge of all license-related requests,
such as dealing with SIM card authentication and generat-
ing, transmitting licenses to the DRM agent according to
rights, Kcek and other necessary information, as shown in
Algorithm 2. The rights information is the usage rules of the
content.

These application services in CS-DRM get new feathers
from the cloud such as elasticity, multitenancy, and dis-
tributed storage, which is quite different from common DRM
servers. Taking Content Issuer (CI) for example, our content
service guarantees the data security, sharing, and isolation
among multiple content providers and provides rich as well
as powerful services for handling contents, which is not well
considered by CI of OMA DRM.

For convenience of explanation, we assume that each
application service is provided by a group of servers in the
cloud. Therefore, we let certain servers represent correspond-
ing application services. For instance, the content service is
provided by a group of servers called content servers, and
the license service is provided by those called license servers.
In the rest of the paper, we do not differentiate between
application services and corresponding servers.

3.4. Protocols. The CS-DRM scheme has a collection of
protocols. Besides several common protocols such as HTTP,
RTP [13], RTSP [14], and SSL, we designed two new
protocols—License State Word Protocol (LSWP) and License
Acquisition Protocol (LAP)—to guarantee the integrity of
license files, as well as the safety of the whole scheme. The
processes of both LSWP and LAP are illustrated in Figure 2.

3.4.1. The License State Word Protocol. We propose a data
structure, License State Word (LSW), stored in the SIM card

Table 2: LSW Commands.

LSW Command Function Description

CREATE LSW
Creating LSW when the DRM agent acquires a
license at the first time.

UPDATE LSW Updating LSW after the license is consumed.

DELETE LSW Deleting the LSW when no license is available.

CHECK LSW Checking the integrity of the LSW.

GENERATE UK
Generating UK when the DRM agent wants to
render the content.

file system. We apply the data hiding technique proposed
in [15] on LSW to make sure that LSW is invisible. The
structure of LSW is

LSW = License ID‖Rand‖License Hash‖Version, (3)

where License ID is the license index and Rand is a random
number in the license and is also a parameter of Algorithms
1 and 2. License Hash is the hash value of the license for
ensuring the license integrity. Version is an identity for
uploading LSW. Only if the LSW version in the license service
equals the version of the uploaded LSW, the LSW in the
license service will be replaced by the uploaded LSW. When
the upload subprotocol of LAP carried out successfully, the
version domain of LSW in both the SIM card and license
service will be updated.

In order to regulate the operations on LSW between
the SIM card and DRM agent, LSWP is designed and
adopted in the cloud client. The instructions of the ADPU
command for LSWP are CREATE LSW , UPDATE LSW ,
DELETE LSW , CHECK LSW , and GENERATE UK . The
functional descriptions of these instructions are listed in
Table 2.

An example of the APDU command CREATE LSW
is shown in Table 3. The parameter CLA is the class of
instruction; “0x88” represents the instruction class for LSWP.
INS is the instruction code; “0x20” means CREATE LSW
command. Lc is the number of bytes in the data field of
the command; “0x10” means that the Data domain is the
next 16 bytes behind the Lc domain. In the Data domain,
the first 4 bytes represent License ID, the second 4 bytes
represent Rand, and the last 8 bytes represent License Hash.
Le is the maximum number of bytes expected in the data field
of the response command; “0x01” means that only 1 byte is
expected for the data field of the response.

3.4.2. The License Acquisition Protocol. License Acquisition
Protocol (LAP) is a protocol based on XML for license
acquisition and is shown in Figure 2. LAP consists of
four subprotocols: Trigger subprotocol, Authentication sub-
protocol, License Transmission subprotocol, and Upload
subprotocol. The trigger subprotocol is a 4-pass protocol
existing in the rights customization phase, through which
users can customize the rights for the related content.
The response trigger containing a license server URL and
other useful information (e.g., price) will be sent to the
DRM agent. After the trigger subprotocol, the license server



6 EURASIP Journal on Wireless Communications and Networking

Rights customization

Rights customization web page

Trigger

Trigger confirm

Trigger sub-protocol

Authentication

Confirm authentication

Authentication sub-protocol

License request

License response

sub
License transmission

-protocol

Render content

License upload

Upload confirm

Upload sub-protocol

LSWP

LAP

DRM agentSIM card License server

Create LSW/check LSW

Update/delete LSW

Generate UK

Figure 2: The processes of both LSWP and LAP.

Table 3: An example of APDU command CREATE LSW.

CREATE LSW

Parameter CLA INS Lc
Data

Le
License ID Rand License Hash

Length 1 1 1 4 4 8 1

Value 0x88 0x20 0x10 0x00000001 0x1d3a9f62 0x1d31e4049a672dc8 0x01

generates the rights for a license. The DRM agent starts a 2-
pass authentication subprotocol after confirming the trigger
message. The authentication subprotocol is a 2-pass protocol
for transmitting and authenticating identity information of
the SIM card to the license server as seen from Algorithm 3.
The license transmission subprotocol is a 2-pass protocol
for transmitting a license to the DRM agent during which
the sensitive data have been encrypted by Algorithm 2. The
upload subprotocol is a 2-pass protocol for synchronizing
the license, and LSW stored in the license server. The upload
command is a proactive command [9] initiated by the SIM
card.

3.5. Algorithms. There are four main algorithms in the CS-
DRM scheme. In this subsection, each algorithm is presented
in detail.

Input: Rand : a 4-byte random number from the DRM
agent;
Ki : a secret key stored in both the SIM card and
the database of the license server;

Output: CK : a byte array for SIM-Authentication
(1) Kc := A8(Ki,Rand);
(2) CK := A5(Kc,Rand);

Algorithm 1: SIM-Authentication (Rand, Ki).

3.5.1. SIM Card Authentication Algorithm. The SIM card
authentication algorithm, as shown in Algorithm 1, is exe-
cuted within the SIM card and used to generate the SIM card
authentication information CK . After receiving a random



EURASIP Journal on Wireless Communications and Networking 7

Input:Rand: a 4 byte random number from the DRM
Agent;
IMSI hash: the index for Ki stored in the
database of the mobile operator;
CK : the authentication value;
Rights ID: the index of rights information stored
in the database of the license server.

Output:Message: the transmission message to the
DRM Agent

(1) Ki := GetKI(IMSI hash);
(2) Kc := A8(Ki,Rand);
(3) CK∗ := A5(Kc,Rand);
(4) if CK∗ is equal to CK then
(5) UK := AUK (Kc,Rand);
(6) EK := EUK (Kcek);
(7) Rights := GetRight(Rights ID);
(8) license := {License ID,Content ID,Rights,
(9) EK ,Rand,H(HKey‖Rights‖EK‖Rand)};
(10) Message := GenerateMessage(license);
(11) else
(12) error := ErrorIn f o(“Unauthentic SIM Card′′);
(13) Message := GenerateMessage(error);

Algorithm 2: License-Generation (Rand, IMSI hash, CK ,
Rights ID).

number Rand from the DRM agent, the SIM card generates
an intermediate number Kc by Ki, Rand, and A8. Then, the
SIM card generates CK and sends it to the license server to
distinguish the legal SIM card from impostors.

3.5.2. License Generation Algorithm. The license generation
algorithm is executed in a license server to generate licenses.
As shown in Algorithm 2, Rand is a 4-byte random number
from the DRM agent; IMSI hash is used to get Ki; CK
is the SIM card authentication information generated by
Algorithm 1; Rights ID is the index of usage rights which
is generated through the trigger subprotocol. The Hash
function needs a special key HKey as a parameter. HKey
is generated by hashing the concatenation of the random
number and Ki which can be acquired through IMSI. Since
attackers could not get the Ki, they cannot generate HKey
and tamper the message and hash value without being
aware. The license server first verifies CK for the SIM card
authentication. After that, the license server generates UK ,
and then encrypts Kcek by EUK , that is, the symmetric
encryption algorithm Ek where the value of k is UK . EK is
the encrypted Kcek. At the end, the license server generates a
license.

A license is an XML file. An example of the license
is shown in Figure 3. In general, a license contains two
parts. One is the rights related part, which defines the
rights information of the digital content, in the protectLicense
domain, such as the encrypted Kcek in the keyInfo domain
and the constraint of the rights information in the constraint
domain. The other is the part which describes the user and
server information, for example, the IMSI hash domain and

<LicenseResponse id=“0152 0003 BraveHeart”
status=“Success”>
<IMSI hash>

C6357835D8FA407894653EAC5749CC94
BC219D155FFB5590C1F46E50E9383196

</IMSI hash>
<LicenseServerID>1</LicenseServerID>
<nonce>32efd34de39sdwefqwer</nonce>
<protectedLicense>
<Payload id=“0152” stateful=“true” version=“1.0”>
<rights id=“C.1”>
<context>

... ...
<Uid>0152</Uid>

</context>
<agreement>
<asset>
<context>
<Uid>BraveHeart</Uid>

</context>
<keyInfo>

... ...
<CipherValue>

9204587f85f16040a3808ca50b743164
7aec0fc08012a627a3a9f570404ae4a2

</CipherValue>
</keyInfo>

</asset>
<permission>
<play>
<constraint>
<count>3</count>

</constraint>
</play>

</permission>
</agreement>

</rights>
<cekKeyInfo>
<cekKeyRand>76BAC0E6</cekKeyRand>
<Content ID>0003 BraveHeart</Content ID>
... ...

</cekKeyInfo>
... ...

</Payload>
... ...

</protectedLicense>
<paymentFeedback>6</paymentFeedback>
<hashValue>

4CD943D00BA424EF8B1F421066A3AE5F76F31AF8
</hashValue>

</LicenseResponse>

Figure 3: An example of a license.

the LicenseServerID domain. The integrity of a license is
ensured by kinds of Hash algorithms.

3.5.3. Key Generation Algorithm. The key generation algo-
rithm is used to generate Kcek by decrypting EK , which is
executed within a SIM card. This algorithm, as shown in
Algorithm 3, is the pivotal step of Algorithm 4. The related
A8 and AUK algorithms are embedded in the hardware of
a SIM card. And the output Kcek cannot be acquired by
attackers because of LSWP.

3.5.4. Content Decryption Algorithm. The content decryp-
tion algorithm, as shown in Algorithm 4, is used to decrypt
the encrypted content after the DRM agent acquires an
available license. The DRM agent first checks whether the
rights information is available and then gets the useful
information such as Rand, License ID, Rights, EK , and
Hash. If a license is acquired by LAP for the first time,



8 EURASIP Journal on Wireless Communications and Networking

Input: Rand: a 4 byte random number;
EK : the encrypted Kcek in the license;

Output: Kcek: the key for decrypting the encrypted
content.

(1) Kc := A8(Ki,Rand);
(2) UK := AUK(Kc,Rand);
(3) Kcek := DEUK(EK);

Algorithm 3: Key-Generation (Rand, EK).

Input: License: the license for decrypting the content;
En Content: the encrypted content;

Output: Content: the decrypted content.
(1) Flag := Check License(License)Agent ;
(2) if Flag == True then
(3) License ID := GetID(License)Agent ;
(4) Rand := GetRand(License)Agent ;
(5) Rights := GetRights(License)Agent ;
(6) EK := GetEK(License)Agent ;
(7) Hash := H(HKey‖License ID‖Rights)Agent ;
(8) if It is the f irst time then
(9) CreateLSW(License ID, Rand, Hash)SIM;
(10) Kcek := Key-Generation(Rnad,EK)SIM;
(11) else
(12) if CheckLSW(License ID, Rand, Hash)SIM;
(13) then
(14) Kcek := Key-Generation(Rnad,EK)SIM;
(15) else
(16) error :=

ErrorIn f o(“License is unavailable′′)Agent ;
(17) return := GenerateMessage(error)Agent ;
(18) Content := DEKcek (En Content)Agent ;
(19) UpdateLSW(License ID, Rand, Hash)SIM;
(20) else
(21) error := ErrorIn f o(“License is unavailable′′)Agent ;
(22) return := GenerateMessage(error)Agent ;

Algorithm 4: Content-Decryption (License, En Content).

the SIM card creates a corresponding LSW. After that, the
SIM card generates Kcek by Algorithm 3 and sends it to
the DRM agent. The DRM agent decrypts the content by
Kcek in the secure memory of the device. The subscript of
the operation represents the entity where the operation is
executed. For example, the subscript “SIM” of the operation
A5(Kc,Rand)SIM means the operation is executed in the SIM
card.

4. A Case Study

In this section, we propose a case study for our proposed CS-
DRM scheme. This case consists of preparation phase, rights
customization phase, license acquisition phase, play phase,
and download/upload phase. Figure 4 illustrates the process
of the CS-DRM use case, where protocols among E ∪ S are
also shown. The play phase, not appearing in the figure, is
executed in the cloud client, and more details are presented
in Section 4.4.

4.1. Preparation Phase. The preparation phase does pre-
liminary works for the entire process. The initialization
operation of the CS-DRM backend is carried out in this
phase.

(a) Content providers upload content to a content server
by SSL protocols.

(b) The content server generates the key Kcek and
encrypts digital content by Kcek using symmetric
encryption. After that, the content server hosts
encrypted content for users to download.

(c) The content server transmits Content ID, IContent ID,
Kcek to the license server in the format of EPKls(Con-
tent ID‖Kcek‖IContent ID) where EPKIs is an asymmet-
ric encryption operation using the public key PKls of
the license server. Content ID is a content identity. In
order to make Content ID unique, Content ID con-
sists of local content identifier and the corresponding
content provider identifier. IContent ID is the rights
description information, such as price and play type.

(d) The license server stores Kcek, Content ID, and
IContent ID, and then generates the rights customiza-
tion web page which is hosted on the license server
for the rights customization phase.

(e) The license server transmitsContent ID and the URL
of corresponding rights customization web page to
the content server.

4.2. Rights Customization Phase. The rights customization
phase is used to customize the rights of a digital content.

(a) The user browses the content server web site and
selects the content (s)he wants.

(b) The DRM agent looks for a license with a Content ID
suffix in the device. If the DRM agent finds a corre-
sponding license, it will check the license against LSW
according to License ID. The rights customization
phase starts if the result is not correct or the rights is
unavailable. For example, the rights is available if the
rights information allows a user to play the content
for 5 times. But the rights is unavailable if the value
of play times is 0.

(c) The DRM agent requests the URL of rights cus-
tomization web page from the content server. As
the URL is received, the browser acquires rights
customization web page from the license server with
this URL and renders it. Then, the user customizes
the rights on the web page and confirms the rights
information (s)he selects. After that, the trigger
message TM, that is, (Content ID, License ID, rights,
license url) is generated and sent by the license
server. Here license url is the URL for acquiring the
corresponding license.

(d) After the user affirms TM, the license server stores the
rights information for generating a license later.



EURASIP Journal on Wireless Communications and Networking 9

User

Cloud client

License
storage

Player

Browser

DRM agent

Web page (HTTP)

Content server
based on cloud

P
re
pa
ra

ti
on

ph
as

e

License server
based on cloud

LSWP

ID
,R

an
d

SIM card
(IMSI, Kc

LSW)

Upload phase

(upload sub-protocol)

and payment)

License acquisition phase
(LAP)

Rights customization phase

(HTTP, trigger sub-protocol)

Render

Lice
nse

Content providers
contents
(SSLP)

P
re
pa
ra

ti
on

ph
as

e

Download

decryp
ted

content

(RTP, RTSP)

H
as

h
,E

K

K
ce

k
,C

K

PKls

Figure 4: The typical process of a use case.

4.3. License Acquisition Phase. The license acquisition phase
is used to acquire a license from the license server. The
process of both this phase and play phase is shown in
Figure 5.

(a) The DRM agent first generates a random number,
Rand, and passes Rand to the SIM card for calcu-
lating Kc and CK which are used for the SIM card
authentication by Algorithm 1. After that, the DRM
agent combines Rand, IMSI hash, Rights ID, and
CK as a request and transmits the request to the
license server.

(b) The license server checks whether CK is equal to the
CK∗ which is calculated by the same method using
Rand and IMSI hash. The SIM card is authentic if
CK and CK∗ are identical. The license server creates
a license. More details of the license generation are
shown in Algorithm 2.

(c) After the DRM agent receives a license for the
first time, it creates LSW in the SIM card. The
corresponding license and LSW will be updated
after the license is consumed. The upload phase is
launched in order to synchronize licenses and LSW

with the license server when the user starts up the
client of CS-DRM.

(d) The payment for the license is accomplished by the
SIM card after the user receives the license [16].
Before the purchase, the license server will check the
user account first. As long as the SIM card connects
to the network of the mobile operator, it will send
proactive comments [9] to the system of the mobile
operator for the payment.

4.4. Play Phase. The play phase describes steps of rendering
a digital content. The process of generating Kcek is the key of
this phase, as shown in Algorithm 4.

(a) The play phase is initiated when the DRM agent gets
a correct license with the Content ID suffix.

(b) The DRM agent extracts Rand and Hash from the
license and checks Hash with LSW in the SIM card.
If they are equal, the DRM agent sends Rand, EK ,
and License ID to the SIM card for generating Kcek,
as shown in Algorithm 3.



10 EURASIP Journal on Wireless Communications and Networking

License server

License or error

Manage the payment or error

License acquisition phase

Synchronization

Play phase

Check-license (license)

Content-decryption(license, En content)

DRM agent and SIM card

CK = SIM-authencation(Rand)

SIM proactive command for payment

SIM proactive command for upload phase

License = license-generation(Rand,
IMSI Hash, CK, Right ID)

Rand, IMSI Hash, CK

Figure 5: The process of License Acquisition Phase and Play Phase.

(c) The DRM agent decrypts the encrypted content
by Kcek. The decrypted content is rendered by the
player. The Kcek and the decrypted content are stored
in the secure memory of mobile device when a user is
enjoying the content.

(d) Once the user stops playing, the Kcek and the
decrypted content will be deleted. At the same time,
the DRM agent updates the rights information in the
license as well as the LSW in the SIM card.

(e) If the rights information is unavailable, the DRM
agent deletes the license and notifies the SIM card to
delete LSW.

4.5. Download/Upload Phase. The download/upload phase
is for the flexibility and integrity of CS-DRM, where the
download phase allows users to change the device and the
integrity is guaranteed by the upload phase.

In the download phase, if a user inserts a SIM card into
another device which does not have the content and license,
the user selects the “Download License” menu item. The
DRM agent downloads the license from the license server
according to the LSW. The DRM agent checks the new
license against the LSW in the SIM card. If the verification
fails, the new license will be deleted. Clearly, a user cannot
assist another user, say Bob, to “get” the appropriate keys or
contents without giving the SIM card to the user Bob.

The upload phase is launched once the user starts up the
client of CS-DRM. The SIM card sends the upload proactive

command to synchronize the license and LSW stored in the
license server when the upload phase starts.

5. Characteristics of CS-DRM

In this section, we discuss characteristics of CS-DRM by
analyzing security, privacy issues, the cost of CS-DRM, and
how the cloud enhances our DRM scheme. As shown in
Table 3, in order to elaborate on these characteristics more
clearly, we compare CS-DRM with several typical DRM
schemes.

5.1. Security Analysis. The security of our proposed CS-
DRM scheme is distinguished by the utilization of the SIM
card and LSW. The scheme we proposed is one solution
to focus on the encryption of data exchanged between the
SIM card and the DRM agent. It is noteworthy that the last
releases of the SIM card can support SSL over USB for secure
communications between the SIM card and the applications
outside the SIM card. When this kind of SIM card is widely
used in the mobile industry, it may be the more popular
solution for this encryption problem. Although the security
of cloud is also an important aspect to CS-DRM, it is not the
focus of this paper. There are a lot of research works in this
area [18]. Meanwhile, most commercial solutions of cloud,
for example, GAE, have their own security principles.

A SIM card is safe enough to storeKi and other important
information due to the following points, though it is perhaps
running in a hostile environment. Firstly, it is difficult
to crack a SIM card thanks to well-developed industrial
standards, such as ISO 7816, GSM 11.11, and GSM 11.14.
Secondly, algorithms used in a SIM card are kept strictly con-
fidential by the mobile operator. The encryption/decryption
schema of CS-DRM can be established on most of the
complex and advanced encryption/decryption algorithms,
which only need to customize the encryption/decryption
algorithms and adjust corresponding encryption/decryption
steps in the SIM card and license service. In this paper,
for convenience of explanation, the Advanced Encryption
Standard (AES) is adopted as the encryption/decryption
schema of CS-DRM. Thirdly, data hiding approaches applied
in the file system of the SIM card make LSW secure and
invisible to crackers. Finally, the interaction between a SIM
card and a DRM agent is protected by LSWP.

Another important security issue is how we can make
the DRM agent and the player in the mobile device enough
trustworthy. CS-DRM solves this issue from two aspects. On
one hand, in industry, there are kinds of certification systems
based on different mobile operating systems. The mobile
device can trust the applications if they pass the verifications
of these certification systems. For instance, since we are the
Symbian partner in business, we own a special certificate for
the electronic signature. The programs of the DRM agent and
the player are signed by our special key. The SIM card checks
signatures of the DRM agent and the player in order to make
sure that they are enough trustworthy. On the other hand, the
data stream for the communication between the applications
running on the mobile device, such as the DRM agent and



EURASIP Journal on Wireless Communications and Networking 11

Table 4: A Comparison of Some DRM Schemes.

DRM Scheme OMA DRM [1]
Conrado et al.’s

DRM [4]
TMP-based DRM [17] CS-DRM

Characteristic Device based Smart card based
Trust mobile platform

based
SIM card and cloud based

Encrypted Content Yes No Yes Yes

Privacy Protection No Yes Yes Yes

PKI used in the license
delivery

Yes No Yes No

Information Stored Public/Private key
PK/SK , SKp, and

SK ′
p

Public/Private key and
sensitive information for

proving the identity

Ki, LSW, and sensitive
information for proving the

identity

the player, are in the decoded format, which guarantees the
security of the communication.

Three types of attacks are listed as follows. We analyze
these attacks and present the solutions in CS-DRM.

Attack 1: Tamper the License. CS-DRM guarantees the
integrity of a license by the LSW and SIM card. A hash value
(Hash) will be calculated according to the license. The DRM
agent compares the computed Hash with License Hash in the
LSW by LSWP, before it uses the license. Once the license
has been tampered, the computed Hash is different from the
License Hash. The modification can be noticed by the DRM
agent, and then a mark is made on the license. The tampered
license is not available anymore; therefore, the attacker could
not use the tampered license.

Attack 2: Tamper or Detect the LSW. First, the LSW is stored
in the SIM card file system which owns complete access
control mechanism for the file system. Only authorized
program can access and modify the SIM card file system.
Because of that, a malicious user could not tamper the SIM
card file system. Second, a malicious user can scan the SIM
card file system using special tools such as SIMbrush [15].
However, the data hiding approach applied on the LSW
makes LSW invisible. Therefore, a malicious user will not
detect the LSW information even if (s)he can scan the file
system. Then, the attacker could not access the content by
tampering or detecting the LSW.

Attack 3: SIM Card Replication Attack. An attacker may
replicate a SIM card and attempt to illegally access the
content many times. However, the LSW will be modified
immediately once the attacker stops playing the content. The
information in the license server will be updated when the
upload phase starts. In the upload phase, only the LSW
with the correct version can be updated in the license server.
Otherwise, if another SIM card uploads LSW with the wrong
version, the license server will send a command to ask the
SIM card to delete LSW. So only one user can access the
content by the SIM card at a time.

5.2. Privacy Analysis. CS-DRM has the privacy protection
for users. In our scheme, IMSI of the SIM card is the only

sensitive information which can be used to know the user
identity. However, the hash value of IMSI instead of IMSI
itself is used during the process of the license acquisition,
so that the license server could not match this hash value
with a certain user. Meanwhile, the mobile operator does
not divulge user privacy, which makes sure that the license
server can only get Ki and is impossible to acquire the user
identity information from the mobile operator. Without the
permission of the mobile operator, the license server has
no rights to check IMSI. Let alone surveying user privacy.
Therefore, no one could acquire the privacy information of a
user, such as the license list of contents consumed by a user
and the user identity.

However, the certain user would be identified by exhaus-
tively searching all possible IMSI instead of reversing the hash
value. The number of the legal IMSI is limited. The attack
seems to be possible. In order to prevent this kind of exhaus-
tively searching attack, we can apply an encoding/decoding
function on the IMSI hash. Only the SIM card and the
mobile operator know how to encode/decode the message.
In this way, the IMSI hash is safe enough for the exhaustively
searching. This kind of encoding/decoding function can be
flexible. Here we give the mode we used, as shown in Table 5.
The IMSI hash is expressed in hexadecimal. The original
IMSI hash is 20 bytes in the prototype. After the IMSI hash
is encoded in the frontend, the new IMSI hash is 37 bytes.
The first byte denotes the mode of the encoding. If the first
bit is 0, the encoding starts from the left-hand side, otherwise
from the right-hand side. If there are more 1’s than 0’s in the
rest 7 bits, the distribution of 1’s in the next 4 bytes denotes
the positions of the original 20 bytes appearing in the new
one. The rest positions are padded with random numbers.
Otherwise, the distribution of 0’s denotes the positions. Only
the mobile operator can decode this new IMSI hash to the
original one, and then find the corresponding Ki.

5.3. Cost Analysis. In this subsection, we elaborate on
the cost of CS-DRM. Comparing with existing DRM
schemes, the cost of CS-DRM is much lower. First, for
smart card-based DRM schemes, a SIM card replaces a
smart card in CS-DRM, which reduces the cost for issuing
a smart card and a smart card reader. Second, the sensitive
data, for example, Kcek in the license, are encrypted by the



12 EURASIP Journal on Wireless Communications and Networking

Table 5: The encoding/decoding mode of IMSI hash.

1 byte 2–5 bytes 6–37 bytes expressed in hexadecimal

1 bit 2–8 bits 32 bits
The original IMSI hash:

C635D8403E49CC949D155FFB90C16E50E9383196

0 1001110 10011010001001110011110110111111
The new IMSI hash in the encoded format:

C6357835D8FA407894653EAC5749CC94BC219D155FFB5590C1F46E50E9383196

Left The distribution of 1’s denotes the positions

encryption/decryption and authentication mechanisms
designed in CS-DRM. Comparing with some DRM schemes
(such as OMA DRM) which protect the sensitive data
depending on the mechanisms of Certificate Authority (CA)
and PKI, CS-DRM removes CA from the scheme and then
reduces the cost of purchasing certifications for each cloud
client. Third, as we mentioned before in Section 2.2.3, CS-
DRM is a cloud-based DRM scheme whose most important
characteristic is its “pay-as-you-go” manner. The owner
of CS-DRM does not need to purchase the infrastructure
which may be too expensive to be afforded, such as software
and physical servers. CS-DRM only demands to rent services
provided by the cloud computing. The cost of renting
services is much lower than that of buying software and
hardware. Meanwhile, the high elasticity of the cloud brings
capabilities of matching resources to workload much more
closely by adding or removing resources at an acceptable
time of minutes rather than weeks, which makes CS-DRM
satisfy the requirements of cloud clients automatically
according to the current demands with a low cost. Also, the
disaster recovery and maintenance cost of the entire system
is reduced by the cloud.

5.4. Cloud DRM. CS-DRM is a cloud-based DRM scheme.
The cloud enhances our DRM scheme at three following
aspects. First, the virtualization technology used above the
infrastructure of the cloud guarantees the data security,
sharing, and isolation among tenants of the content server.
Second, because of the cloud, CS-DRM has high elasticity as
well as the “pay-as-you-go” manner of the cloud. The cost of
our DRM scheme is significantly lower than that of others,
especially when the number of active users scales up. Third,
cloud computing is a large service platform. We can integrate
the most popular services nowadays to our DRM scheme.
Based on the cloud, CS-DRM can own powerful service
support, which makes CS-DRM a flexible and humanistic
system with wonderful user experience. For instance, the
content server can provide kinds of content editing and
format conversion services for content providers.

6. Implementation

We have implemented a prototype, called “Phosphor”, of
our proposed CS-DRM scheme. Phosphor contains both the
frontend and the backend. Specifically, Phosphor is designed
for protecting mobile streaming multimedia. Obviously, we
can easily extend Phosphor to protect other kinds of media.
A preliminary description on Phosphor was presented in

[19]. In this section, we discuss the implementation details
of Phosphor. Firstly, we present the frontend and backend
of Phosphor in Sections 6.1 and 6.2, respectively. Secondly,
video encoding/decoding methods used in Phosphor are
brought forth. Finally, we concern the user experience of the
phosphor client.

6.1. Frontend. To verify our DRM scheme, we developed a
DRM video client, which is allowed to use the standard video
on demand services via RTSP protocol [14], on a mobile
device. It is a Symbian C++ application using the Nokia S60
3rd Edition Feature Pack 2 Software Development Kit [20].
We implemented a browser and a player besides the DRM
agent and SIM card. A user can browse the portal web site
hosted on the content server and the rights customization
web site on the license server by the browser. Meanwhile,
the player is for rendering video stream. A client receives
the encrypted video data from the content server via RTP
protocol [13] and applies for the decryption key from the
SIM card via APDU commands. If the acquisition of the key
is successful, the client decrypts the video data, decodes the
decrypted data to video frames, and renders the video frames
on the screen of the mobile device periodically.

6.2. Backend. We developed and deployed application ser-
vices of the CS-DRM scheme in both a private cloud and
a public cloud. The private cloud is a cluster of local
machines with abundant resources such as large storage
and efficient computation. Meanwhile, the public cloud is
based on the GAE under the J2EE framework. GAE [21]
has several features such as dynamic web serving, automatic
scaling, and load balancing. In the public cloud, the data
of CS-DRM is stored in the file system of Google through
JDO. In order to test and update the prototype easily and
conveniently, Phosphor mainly runs in the private cloud. The
public cloud is used to learn the characteristics of public
cloud platform and do comparative experiments with the
private cloud. In the content service, the content portal web
site is hosted and media are transmitted to cloud clients by
Darwin Streaming Server (DSS) [22]. However, DSS based
on C programming language could not be hosted on GAE
which only supports Java and Python. Therefore, DSS is only
deployed locally. We set up the license customization web
site for license customization phase on the license server. The
communication for license acquisition between cloud clients
and the license server is implemented based on HTTP, Web
services, and Java servlet technologies.



EURASIP Journal on Wireless Communications and Networking 13

Video
acquisition

H.263 frame

Sampling

3GP file

Padding c + b bits at the
end of a frame

s%b == 0

Encrypted H.263
frame

Encrypted H.263
frame

H.263 frame

Pseudo
H.263 frame

RGB/YUV

Anti-scrambling
/inverse DCTYes

c = 0No
w = s%b
c = b −w

Frame data
location

DCT/
scrambling

Content server

Yes

No

RTP/RTSP

AES encryption,
add info box

Assemble

AES decryption

Removing padding bits

Inverse transform

Device

Figure 6: The implementation process of the improved H.263 video encoding/decoding method in Phosphor.

Video
frame

Entropy
encoding

Quantization Stream

Scrambling/
encryption

DCT

(a)

Video
frame

Entropy
decoding

Inverse
quantization Stream

Anti-scrambling/
decryption

Inverse
DCT

(b)

Figure 7: The process of the improved H.263 video encod-
ing/decoding: (a) is the process of the improved H.263 video
encoding; (b) is the process of the improved H.263 video decoding.

6.3. Encoding/Decoding. We adopt an improved H.263 video
encoding/decoding method in Phosphor. The implementa-
tion process is shown in Figure 6. The encoding process is
carried out in the content server. First, we acquire the original
frames from the video. Through the DCT transform and
scrambling operations, the original video frame becomes a
H.263 frame. Then, the frame is encrypted by AES with
counter (CTR) mode [23] using Kcek and encoded by
the entropy encoding operation. After that, these frames
constitute a video streaming which is transmitted to the
device through RTP and RTSP. More details can be found

in Figure 7(a). The decoding process in the device, as shown
in Figure 7(b), is the inverse process of encoding.

Different from traditional encoding/decoding methods,
there are some improved ones, such as [24], in which the
scrambling operation is added into the encoding/decoding
process. In Phosphor, similarly, the scrambling operation
is after the quantization and before the entropy encoding
in the content service. Meanwhile, the inverse scrambling
operation is between the inverse quantization and the
entropy decoding, after the streaming is received by the
device. More details are shown in Figure 7.

We compare the original video data with the encoded
video data. The result of the comparison, shown in
Figure 8, demonstrates that the video is well protected
in Phosphor. Furthermore, the improved H.263 video
encryption/decryption method provides higher security and
reduces the computational cost of encryption/decryption
operations.

6.4. User Experience. We implemented and deployed the
client of Phosphor on a real device, Nokia N76. In this
subsection, a perceptual understanding of Phosphor through
user operations is given. The following pictures shown in
Figure 9 are taken by a camera to record some typical
scenarios of Phosphor on the real device.

As shown in Figure 9(a), a user is browsing the content
server web site and selecting her/his favorite. The user
customizes the rights of the content in Figure 9(b) if there is



14 EURASIP Journal on Wireless Communications and Networking

(a) (b)

Figure 8: The comparison between the original video data and the encoded video data. (a) is the original video data; (b) is the video data
after the improved H.263 encoding method.

(a) (b) (c) (d)

Figure 9: The implementation diagram of Phosphor: (a) describes the scene searching content on the content server web site; (b) describes
the scene customizing the rights on the license server; (c) describes the scene where the DRM agent is acquiring a license after successful
registration; (d) describes the process of rendering the media in the compliant player.

no license in the device. In detail, the user can customize the
rights in actions or types. For example, (s)he can customize
rights to play a video segment 3 times or in a time period.
After the user finishes customizing the rights, the trigger
message is sent to her/him. At present, the users can acquire
the license (see Figure 9(c)). Finally, as shown in Figure 9(d),
the user can watch the streaming media content, after (s)he
acquires the license and pays for it.

7. Experiments

We conduct extensive experiments on the performance
of our proposed CS-DRM scheme and Phosphor. In this
section, the experimental setting is described at first. Then,
extensive experimental results are reported to show the
effectiveness and the efficiency of the CS-DRM scheme.

For the aspect of the efficiency, we only focus on the
license service, because the results of the experiments on the

license service are representative and the similar conclusion
can also be reached to the content service.

It is worth noting that DRM is a special area for security.
We do not use any benchmark in our experiments. A DRM
system involves too many domains, for example, encryp-
tion/decryption, network transmission, the implementation
technology of the compliant client and servers; therefore,
there is no public benchmark so far.

7.1. Experimental Setting. Experiments run on both a cluster
of machines locally as a private cloud and the GAE platform
as a public cloud. In the private cloud, each local machine
has 4 single-core processors (2.1 GHz), 4 GB main memory,
and 1.5 TB hard disk. Each physical machine runs Ubuntu
9.04 with Java SE 6.0. In the experimental environment,
Hadoop 0.19.2 and HBase 0.19.3 are used as the datastore,
Apache Tomcat 6 as the http server, Axis2 as the web service
tool. In order to compare with private cloud environment,



EURASIP Journal on Wireless Communications and Networking 15

3

4

5

6

7

8

9

10

S C G R

T
h

e
re

sp
on

se
ti

m
e

(s
)

Standard process of phosphor

S: searching content
C: checking for a license

G: getting a license
R: rendering content

Figure 10: Running time.

the license service is also deployed on the GAE. However,
since we only have a free account of GAE, there are a
lot of limitations. For example, the maximum number of
simultaneous dynamic requests (users) is 30. It means that
we cannot simulate hundreds of users to connect the license
server concurrently. But it is enough for us to study the
performance of application services in both the private and
public clouds.

7.2. Effectiveness. We run our program in the N76 to
illustrate the effectiveness of CS-DRM according to a general
process. We divided the general process into four main steps
under different scenarios. The first scenario starts when a
user browses the content portal web site and ends when
(s)he selects her/his favorite. The second scenario starts
when the user clicks the “play” button to check for a
license for watching the content and ends when the rights
customization web page appears in the browser. The third
scenario starts when the user customizes the rights and ends
when (s)he acquires the license. The fourth scenario starts
when the user gets the license and ends when the user can
watch the media. As shown in Figure 10, we measure the
approximate running time of the whole general process,
which includes the time of artificial operations, such as filling
out forms.

Analyzing the running time of each scenario of CS-DRM,
we conclude that the third scenario takes more time than
other scenarios. It takes about 8 seconds in this scenario to
customize the rights, authenticate, and transmit the license.
Users need to do some artificial operations during the entire
process. Just because of artificial operations, users would not

feel intolerable or boring. Removing the time cost of these
artificial operations, our scheme has excellent effectiveness.

7.3. Efficiency. As mentioned in Section 5.3, the low access
speed and long latency are two major factors limiting the
development of the mobile Internet. In the CS-DRM scheme,
the response time of the communication between cloud
clients and cloud services becomes the most important
indicator of the performance. Both the license service and
content service are deployed in the cloud. We consider that
the performance of these two services is the key for CS-DRM
to provide a better user experience. Naturally, the response
time for user requests is an appropriate indicator for the
performance. Here we focus on the life cycle of a license,
which is involved in the LAP.

In this experiment, we simulate simultaneous users
sending requests to license service for acquiring licenses and
calculate the response time—Total andAverage. Total is the
running time from the first user sending a request to the last
user receiving a response and represents the longest delay the
user may incur. Average is the average response time of each
user and is calculated as

Average =
∑n

k=1 Timek
n

, (4)

where n is the number of simultaneous users and Timek is
the response time of the kth user. In this experiment, lots of
mobile phone simulators are utilized to run on computers,
because there are not enough physical mobile devices to
simulate hundreds of simultaneous users. The number of
simultaneous users for the private cloud increases from 50 to
500 with a step 50. Meanwhile, the number for GAE increases
from 5 to 30 with a step 5. If the number of simultaneous
users in GAE is bigger than 30, the error rate of requests
for GAE will raise extremely fast due to the limitation on
the maximum number of simultaneous requests for free. For
example, when the number of simultaneous users is 100, the
error rate is 78.4%.

As shown in Figures 11 and 12, both Total and Average
increase when the number of simultaneous users scales up.
Meanwhile, the total running time is a little longer than the
response time of the individual user. The results on both
GAE and the private cloud are reasonable. As shown in
Figure 11, for GAE, when the number of simultaneous users
is lower than the quota, the license service can get enough
resources to deal with requests without much latency. Also,
there are several interesting features. Firstly, Average of GAE
increases abruptly when the number of simultaneous users
increases from 5 to 10. But Average remains with very little
increase when the number increases from 15 to 30. For the
free account of GAE, we guess a watershed of the number of
simultaneous users is a number between 5 and 10. When the
number of simultaneous users is less than the watershed, one
cluster of machines can deal with the requests. If the number
of simultaneous users is larger than the watershed and lower
than the quota, another cluster of machines joins. The result
is that the simultaneous requests are dealt with without much
latency. Secondly, when the number of simultaneous users
reaches 30, less than 5% requests receive error responses,



16 EURASIP Journal on Wireless Communications and Networking

0

5

10

15

20

25

0 5 10 15 20 25 30 35

T
h

e
re

sp
on

se
ti

m
e

(s
)

The number of simultaneous users

Total
Average

Figure 11: Total response time in the public cloud.

0

10

20

30

40

50

0 100 200 300 400 500 600

T
h

e
re

sp
on

se
ti

m
e

(s
)

The number of simultaneous users

Total
Average

Figure 12: Total response time in the private cloud.

which reduces the Total. The last point of Total in Figure 11
fits well with the prediction.

In the private cloud, as shown in Figure 12, both Total
and Average increase proportionally to the number of
simultaneous users. It means that our private cloud does not
do well in the distributed computing, which can be improved
in the future. When there are 500 simultaneous requests,
the license server reaches a limitation of the resources of the
private cloud. It has to slow down and wait for new resources
to deal with rest requests. However, the total running time
of license service on GAE is much longer than that on the

0

0.5

1

1.5

2

2.5

3

Tr
ig
ge
r

A
u

th
en

ti
ca

ti
on

U
pl

oa
d

T
h

e
re

sp
on

se
ti

m
e

(s
)

Server-time
Network-time

Li
ce

n
se

tr
an

sm
is

si
on

Figure 13: Response time of LAP in the private cloud with 100
simultaneous users.

0

1

2

3

4

5

6

Tr
ig
ge
r

A
u

th
en

ti
ca

ti
on

Li
ce

n
se

tr
an

sm
is

si
on

U
pl

oa
d

T
h

e
re

sp
on

se
ti

m
e

(s
)

Server-time
Network-time

Figure 14: Response time of LAP in the public cloud with 20
simultaneous users.

private cloud when the number of simultaneous users is
the same. The main reason for this situation is the network
latency of GAE which is the main factor influencing the
performance of license service in the public cloud. The
results of the next experiment just explain it well.

In order to investigate factors influencing the perfor-
mance, we analyze the response time of subprotocols of
LAP according to Server-Time and Network-Time, where
Server-Time is the response time for dealing with user



EURASIP Journal on Wireless Communications and Networking 17

5

10

15

20

25

100 200 300 400

T
h

e
re

sp
on

se
ti

m
e

(s
)

The number of simultaneous users

Trigger
Authentication

License acquisition
Upload

Figure 15: Response time of LAP in the private cloud with
increasing simultaneous users.

0

5

10

15

20

5 10 20

T
h

e
re

sp
on

se
ti

m
e

(s
)

The number of simultaneous users

Trigger
Authentication

License acquisition
Upload

Figure 16: Response time of LAP in the public cloud with
increasing simultaneous users.

requests and generating responses in the license service,
and Network-Time is the network latency of the message
transmission. Here we fix the number of simultaneous users.
The simultaneous number of GAE is 20, and that of the
private cloud is 100. The results of two experiments are
shown in Figures 13 and 14. Obviously, the network latency
is the main factor influencing the performance of cloud.
The differences on Server-Time between GAE and the private
cloud are not too much, which means that the efficiency can
be satisfied by both the private and public clouds. Comparing
with each subprotocol, the trigger subprotocol needs the
longest Server-Time. In this subprotocol, the cloud analyzes
the requests, generates, and stores usage rights with a large
number of data operations for the corresponding licenses.
The upload subprotocol takes more time on network due
to uploading licenses and LSW. The other subprotocols do
not involve so much data operations; therefore, they take less
Server-Time.

From the analysis of the experiments on subprotocols of
LAP both in the private and the public clouds (see Figures
13 and 14), we conclude that, for the public cloud, Server-
Time changes a little, while Network-Time becomes the main
factor for GAE to provide high quality services. Since that,
we argue that there are some optimization opportunities for
reducing Network-Time in the public cloud, such as XML
compression. We can encode the license and transfer the
messages, which are both in the XML format, into binary
code. These binary encoded streams are used for delivery
between a client and a backend. However, the encoding and
decoding process may take more computational cost.

We show the relationship between the response time
of LAP including its subprotocols and the number of
simultaneous users. The results are shown in Figures 15 and
16. The response time of each LAP subprotocol increases
with the increasing of the number of simultaneous users in
the private cloud. Moreover, the response time of the trigger
subprotocol and that of the upload subprotocol increase
faster than those of the other two subprotocols in public
cloud.

8. RelatedWork

Digital Rights Management is an active area of research with
a lot of prior works. Device-based DRM schemes and smart
card based DRM schemes are two main categories for the
existing DRM schemes. OMA DRM [1] and Microsoft DRM
[2] are device-based DRM schemes which have a common
problem—inflexibility. In order to solve this problem, smart
card-based DRM schemes are proposed [4–6].

A significant portion of research on DRM systems is the
mobile DRM which has some special features such as the
wireless environment and the constraints on computation as
well as storage. The OMA completes an open standard for
mobile DRM. But it is still not detailed enough. Comparing
with the present situation of the usage of SIM card in the
DRM scheme, we design the whole scheme based on a SIM
card, including a set of algorithms and protocols. However,
OMA has standardized the usage of a SIM card in the DRM



18 EURASIP Journal on Wireless Communications and Networking

system in its last document of DRM specification. In the
specification, a SIM card is only used to bind Rights Objects
(RO) with user identity. Considering the authority of OMA,
both the scientific research and engineering practice on the
SIM card-based DRM should pay close attention to the
OMA DRM specification in the future. Smart card-based
DRM systems are more suitable for the mobile environment.
However, there are security issues, such as imposter attacks
[4, 5], in some existing smart card-based DRM schemes.
Although some solutions (e.g., [6]) are proposed to solve
these security issues, the complexity and cost of the system
dramatically increase.

Reference [17] is a relevant prior work about the SIM
card. It proposes a TMP-based DRM system which combines
the trust mobile platform (TMP) and OMA DRM. The TMP-
based DRM introduces SIM card to the DRM scheme, but
the usage of SIM card is very limited. The SIM card is just
for the authentication in [17], such as the confirmation
of the user identity for TMP, network as well as Rights
Issuer (RI). Moreover, the concrete authentication steps
and authentication algorithms are not mentioned anymore.
The security issue about the communication between TMP
and SIM card is also ignored. Reference [25] is another
relevant work on the multimedia content distribution on the
mobile phone. It introduces smart card in the DRM scheme.
Meanwhile, watermarking is applied to detect piracy in the
network. Reference [26] applies a smart card to the condition
access system and designs a communication method and the
interface between a set-top box and a smart card. Reference
[27] designs a fair exchange protocol for trading electronic
rights to claim goods and services. Reference [28] proposes
a smart card-based digital content protection scheme for the
workflow and implements the system.

There are also some related works on the performance
issue of mobile DRM schemes. References [29, 30] are
two schemes on how to improve the performance of
OMA DRM scheme. The device identifier is introduced
to the OMA DRM in [29]. The RI server encrypts RO
by using the symmetric encryption instead of asymmetric
encryption. The device identifier is the symmetric key for
the symmetric encryption. However, the device identifier has
to be transmitted by asymmetric encryption using public
key of RI. Since that, this scheme not only lacks flexibility,
like device-based DRM system, but also increases the cost
and complexity by transmitting the device identifier to
RI. Reference [30] improves the performance of the RO
generation algorithm by reducing generation and usage
times of the random number. However, the performance
improvement is very limited.

9. Conclusions

This paper presented a new DRM scheme—CS-DRM which
is a cloud-based SIM DRM scheme for the mobile Internet.
CS-DRM introduces a SIM card and cloud computing to
save the cost and provide higher security. Meanwhile, a pro-
totype of CS-DRM called Phosphor has been implemented.
Furthermore, our experimental results on the performance

of CS-DRM show that CS-DRM can satisfy performance
requirements of users well. All of these demonstrate that
CS-DRM is low cost, high efficient, secure, and practicable.
However, there are still some optimization opportunities for
CS-DRM, such as XML compression, which are our future
works.

Acknowledgments

The authors would like to thank the editor and the two
anonymous reviewers, who have made very valuable and
constructive comments that resulted in an improved paper.
Their thanks go to Wanpeng Tian and Dalei Bao for
their help in the deployment of Phosphor. Their thanks
also go to Shen He and Xianbo He for their hard work
in authors’ mobile DRM group. This work was partially
supported by the National Natural Science Foundation of
China (no. 60803016 and no. 90718010), the National
Basic Research Program of China (no. 2007CB310802), the
National HeGaoJi Key Project (no. 2010ZX01042-002-002-
01), and Tsinghua National Laboratory for Information
Science and Technology (TNLIST) Cross-discipline Founda-
tion.

References

[1] “OMA DRM Specification V 2.1,” 2009, http://www
.openmobilealliance.org/.

[2] “Microsoft DRM,” 2009, http://www.microsoft.com/windows
/windowsmedia/forpros/drm/default.mspx.

[3] “ISO 7816 Smart Card Standard,” http://www.iso.org/iso/
search.htm?qt=7816&sort=rel&type=simple&published=true.

[4] C. Conrado, F. Kamperman, G. J. Schrijen, and W. Jonker,
“Privacy in an identity-based DRM system,” in Proceedings
of the 14th International Workshop on Database and Expert
Systems Applications, pp. 389–395, 2003.

[5] H. M. Sun, C. F. Hung, and C. M. Chen, “An improved
digital rights management system based on smart cards,” in
Proceedings of the Inaugural IEEE-IES Digital EcoSystems and
Technologies Conference (DEST ’07), pp. 308–313, February
2007.

[6] S. Palavalli, U. S. Srinivas, and A. R. Pais, “Identity based DRM
system with total anonymity and device flexibility using
IBES,” in Proceedings of the 22nd EUROPEAN Conference
on Modelling and Simulation, June 2008, http://www.scs-eu-
rope.net/conf/ecms2008/ecms2008%20CD/hpcs2008%20pdf/
hpcs08w1-1.pdf.

[7] “Statistical Report on Internet Development in China,” July
2009, http://www.cnnic.cn/uploadfiles/pdf/2010/8/24/93145
.pdf.

[8] “GSM 11.11,” http://www.ttfn.net/techno/smartcards/gsm 11-
11.pdf.

[9] “GSM 11.14,” http://www.ttfn.net/techno/smartcards/GSM11
-14V5-2-0.pdf.

[10] M. Armbrust, A. Fox, R. Griffith et al., “Above the clouds: a
berkeley view of cloud computing,” Tech. Rep. UCB/EECS-
2009-28, EECS Department, University of California, Berke-
ley, February 2009.



EURASIP Journal on Wireless Communications and Networking 19

[11] M. Creeger, “Cloud computing: an overview,” Queue, vol. 7,
no. 5, pp. 3–4, 2009.

[12] P. Zou, C. Wang, Z. Liu, J. Wang, and J. Sun, “A cloud based
SIM DRM scheme for the mobile internet,” in Proceedings of
the 17th ACM Conference on Computer and Communications
Security, pp. 759–761, October 2010.

[13] “RTP: A Transport Protocol for Real-Time Applications. RFC
3550,” http://www.ietf.org/rfc/rfc3550.

[14] “Real Time Streaming Protocol (RTSP). RFC 2326,” 1998,
http://tools.ietf.org/html/rfc2326.

[15] A. Savoldi and P. Gubian, “Data hiding in SIM/USIM cards:
a steganographic approach,” in Proceedings of the 2nd Interna-
tional Workshop on Systematic Approaches to Digital Forensic
Engineering (SADFE ’07), pp. 86–97, Bell Harbor, Wash, USA,
April 2007.

[16] K. Wrona, M. Schuba, and G. Zavagli, “Mobile payments—
state of the art and open problems,” in Proceedings of the
Second International Workshop on Electronic Commerce, pp.
88–100, November 2001.

[17] Y. Zheng, D. He, H. Wang, X. Tang, and L. Fiege, “Secure DRM
scheme for future mobile networks based on trusted mobile
platform,” in Proceedings of the International Conference on
Wireless Communications, Networking and Mobile Computing,
vol. 2, pp. 1164–1167, 2005.

[18] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS
’09), pp. 199–212, November 2009.

[19] P. Zou, C. Wang, Z. Liu, and D. Bao, “Phosphor: a cloud based
DRM scheme with sim card,” in Proceedings of the 12th Asia-
Pacific Web Conference on Advances in Web Technologies and
Applications (APWeb ’10), pp. 459–463, April 2010.

[20] “Symbian Developer,” http://developer.symbian.org/.
[21] “Google App Engine,” http://code.google.com/appengine/.
[22] “Darwin Streaming Server,” http://dss.macosforge.org/.
[23] “Using Padding in Encryption,” http://www.di-mgt.com.au

/cryptopad.html.
[24] F. Dufaux and T. Ebrahimi, “Scrambling for video surveillance

with privacy,” in Proceedings of IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, vol. 2006,
June 2006.

[25] C. Fontaine, C. Delpha, P. Duhamel et al., “An end-to-end
security architecture for multimedia content distribution on
mobile phones,” Journal of ISAST Transactions on Communi-
cations and Networking, vol. 2, no. 1, pp. 81–91, 2008.

[26] K. Gi-seop, “Communication method between set-top box
and smart card and interface module used for the same,” US
Patent 2006/0 174 259 A1, August 2006.

[27] M. Terada, M. Iguchi, M. Hanadate, and K. Fujimura, “An
optimistic fair exchange protocol for trading electronic rights,”
in Proceedings of the 6th Smart Card Research and Advanced
Application IFIP Conference (CARDIS ’04), pp. 255–270, 2004.

[28] A. Durand, M. Éluard, S. Lelievre, and C. Vincent, “SmartPro:
a smart card based digital content protection for professional
workflow,” in Procedings of the 8th IFIP WG 8.8/11.2 Inter-
national Conference on Smart Card Research and Advanced
Applications (CARDIS ’08), vol. 5189 of Lecture Notes in
Computer Science, pp. 255–266, September 2008.

[29] Z. Liu, G. Liu, and B. Lee, “An efficient key distribution
method applying to OMA DRM 2.0 with device identifier,”
in Proceedings of the 9th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, pp. 3–7, 2008.

[30] J. Han, H. -Y. Chang, S. Cho, and M. Park, “EMCEM: an
efficient multimedia content encryption scheme for mobile
handheld devices,” in Proceedings of the International Confer-
ence on Information Science and Security (ICISS ’08), pp. 108–
114, January 2007.


	1. Motivation
	2. Preliminaries
	3. The CS-DRM Scheme
	4. A Case Study
	5. Characteristics of CS-DRM
	6. Implementation
	7. Experiments
	8. Related Work
	9. Conclusions
	Acknowledgments
	References

