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A serious disadvantage of orthogonal frequency-division multiplexing (OFDM) is its sensitivity to carrier frequency offset (CFO)
and timing offset (TO). For many low-complexity algorithms, the estimation ambiguity exists when the CFO is greater than one
or two subcarrier spacing, and the estimated TO is also prone to exceeding the ISI-free interval within the cyclic prefix (CP).
This paper presents a method for joint CFO ambiguity resolution and accurate TO estimation in multipath fading. Maximum-
likelihood (ML) principle is employed and only one pilot symbol is needed. Frequency ambiguity is resolved and accurate TO
can be obtained simultaneously by using the fast Fourier transform (FFT) and one-dimensional (1D) search. Both known and
unknown channel order cases are considered. Computer simulations show that the proposed algorithm outperforms some others
in the multipath fading channels.
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1. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) is an
effective technique to deal with the multipath fading channel
in high-rate wireless communications [1]. It has been chosen
for the European digital audio and video broadcasting stan-
dards, as well as for the wireless local-area networking stan-
dards IEEE802.11a and HIPERLAN/2. It is also a promising
candidate for the fourth-generation (4G) mobile communi-
cation standard.

Despite many advantages, OFDM systems are very sen-
sitive to symbol timing offset (TO) and carrier frequency
offset (CFO) [2, 3]. A lot of schemes for CFO and TO es-
timation for OFDM systems have been proposed in the lit-
erature [4–12]. However, most low-complexity estimation
approaches can only estimate the CFO within one or two
subcarrier spacing [4–6]. When the CFO is larger than one
subcarrier spacing, the frequency ambiguity would appear.
The frequency ambiguity is called integer frequency offset
(IFO) because it is the integer multiple of one subcarrier
spacing. The part of CFO within one subcarrier spacing is
called fractional frequency offset (FFO). Schmidl and Cox
[7] presented an efficient algorithm (called SCA for simplic-
ity) for estimating the FFO, IFO, and TO. For the IFO es-
timation, however, their algorithm requires the observation

of two consecutive symbols and supposes that the symbol
timing is perfect. Moreover, the broad timing metric plateau
inherent in [7] results in a large TO estimation variance.
Morelli et al. [8] and Chen and Li [9] enhanced the per-
formance of SCA [7] for the IFO estimation by employ-
ing maximum-likelihood (ML) technique (note that if there
is no virtual subcarrier, Morelli’s method is equivalent to
Chen’s method). However, their methods require perfect
timing still. Park et al. [10] proposed an IFO estimator robust
to the timing error, but its performance is unsatisfactory (see
Figure 3).

In this paper, an efficient method for joint estimation
of the IFO and TO in multipath fading channels is derived.
Maximum-likelihood principle is employed and only one
pilot symbol is needed. Both of them can be obtained by
using the fast Fourier transform (FFT) and one-dimensional
(1D) search. The estimation in the cases of known channel
order (KCO) and unknown channel order (UCO) are also
discussed. Our method for IFO estimation outperforms
the methods in [7–10], even if those methods use two pilot
symbols. The performance of the proposed method for
TO estimation is also better than that of the conventional
methods [7, 11] in multipath fading channel. In effect, our
approach can be viewed as an extension of the Morelli and
Mengali algorithm [13].
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Figure 1: Accurate timing position under multipath fading.

The organization of this paper is as follows. The signal
model of OFDM is introduced in Section 2. In Section 3, the
algorithm for joint timing and IFO estimation using FFT
is developed and the estimation in the cases of UCO and
KCO are discussed. Computer simulations are presented in
Section 4 to demonstrate the performance of the proposed
algorithm with comparisons to the available methods [7, 9–
11]. Section 5 concludes the paper.

Notation

Capital (small) bold face letters denote matrices (column
vectors). Frequency domain components are indicated by a
tilde. (·)∗, (·)T , and (·)H represent conjugate, transpose, and
conjugate transpose, respectively. ‖·‖ denotes the Frobenius
norm, and IN×N denotes the N × N identity matrix. Re(·)
denotes the real part of a complex number (·). diag(·) de-
notes a diagonal matrix constructed by a vector. ∗ denotes
the convolution and fft(·) denotes the FFT of the columns of
a matrix.

2. PROBLEM FORMULATION

The OFDM signal is generated by taking the N-point inverse
fast Fourier transform (IFFT) of a block of symbols with a
linear modulation such as PSK and QAM. The OFDM sam-
ples at the output of IFFT are given by

x(i) =
∑N−1

n=0 ãn
[
exp( j2πni/N)

]

√
N

, 0 ≤ i ≤ N − 1, (1)

where ãn is modulated data sequence with unit energy. The
useful part of each block has the duration of T seconds and
is preceded by a cyclic prefix (CP) with the size of LCP, longer
than the channel impulse response, so as to eliminate the in-
terference between adjacent blocks. Each OFDM block is se-
rialized for the transmission through the possible unknown
time-invariant composition multipath channel. The channel
can be denoted by a discrete-time filter h(l) with order L
(L ≤ LCP):

h(l) = gtr(t)∗ hp(t)∗ grec(t)|t=lTs−t0 , (2)

where gtr(t) and grec(t) are, respectively, the response of
transmitting and receiving filters. hp(t) is the impulse
response of the dispersive channel. Ts = T/N is sampling

period, and t0 is propagation delay. In the presence of a fre-
quency offset f , the samples at the receiving filter output are

r(k) = exp
[
j2πk

(
vI + vF

)

N

] L−1∑

l=0
h(l)x(k − l) +w(k), (3)

where vI and vF are, respectively, the IFO and the FFO nor-
malized by the subcarrier space 1/T , x(m(N + LCP) + n) is
the serialized version of the mth OFDM block with the nth
entry, and w(k) denotes zero-mean additive white Gaussian
noise (AWGN).

Assuming that a length-N observation window slides
through the received data stream (Figure 1), we can ob-
tain observation vectors represented by the following matrix
form:

r(τ) = C
(
vF
)
C
(
vI
)
X(τ)hξ +w(τ), (4)

where τ is the start point of observation window, ξ =
exp[ j2πτ(vF + vI)/N],

r(τ) = [r(τ), r(τ + 1), . . . , r(τ +N − 1)
]T
,

C(v) = diag
(

1, exp
(
j2πv
N

)

, . . . , exp
(
j2πv(N − 1)

N

))

,
[
X(τ)

]
i, j = x(i− j), τ ≤ i ≤ N + τ − 1, 0 ≤ j ≤ L− 1,

h = [h(0),h(1), . . . ,h(L− 1)
]T
,

(5)

and w(τ) = [w(τ), . . . ,w(τ +N − 1)]T is a zero-mean Gaus-
sian vector with covariance matrix

Cw = E
{
wwH

} = σ2IN×N . (6)

As illustrated in Figure 1, as long as the timing estimate is
within the ISI-free guard interval, the timing offset, regard-
less of its values, will not degrade the system performance.

Assume the FFO is corrected in advance, then the term
C(vF) in (4) can be removed. We construct the matrix X
by pilot symbol [xN−L+1, . . . , xN , x0, . . . , xN−1] and replace the
matrix X(τ) in (4) by the matrix X. The term ξ in (4) can be
incorporated into the channel parameters h. Then the ob-
served data can be expressed as

r(τ) = C
(
vI
)
Xh +w(τ). (7)
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Now, we can find from the first term in the right-hand
side of (7) that there are three kinds of unknown parame-
ters in (7), namely TO τ, IFO vI , and channel parameters.
Assume τ0 is the offset from a given reference to the ISI-free
interval. Our task is to find τ0 and estimate the IFO vI simul-
taneously based on the observation r(τ) for given X.

3. MAXIMUM-LIKELIHOOD ESTIMATION USING
FAST FOURIER TRANSFORM

In this section, the ML principle is applied to derive an al-
gorithm for jointly estimating the timing and IFO. The joint
estimation problem in the case of unknown channel order is
also discussed.

3.1. Derivation of the algorithm

Since all the parameters except for noise in (7) are determin-
istic, the log-likelihood function of received data can be rep-
resented as

ln(L) = const−2N ln
(
σ2
)−

∥
∥r(τ)− C

(
vI
)
Xh
∥
∥2

σ2
. (8)

The estimation of τ, vI , and h is the solution of the fol-
lowing joint optimization problem:

[
h, τ, vI

] = min
ĥ,τ̂,v̂I

∥
∥r(τ)− C

(
vI
)
Xh
∥
∥2. (9)

For given τ and vI , the minimum for (9) is

ĥ = (XHX
)−1

XHCH
(
vI
)
r(τ). (10)

Substituting (10) into (9), τ and vI can be obtained by
maximizing the following cost function:

J
(
vI , τ

) = [CH
(
vI
)
r(τ)

]H
P
[
CH
(
vI
)
r(τ)

]
(11)

= −b(0, τ) + 2Re

[ N−1∑

m=0
b(m, τ) exp

(

− j2πmvI
N

)]

,

(12)

b(m, τ) =
N−1∑

k=m
[P]k−m,kr

∗(k −m + τ)r(k + τ), (13)

where P = X(XHX)−1XH and [P]i, j is the (i, j)th entry of P.
The main steps in obtaining (12) are outlined in the ap-

pendix.
As vI and τ are integers, the estimation range of the nor-

malized IFO vI is in [0,N −1] and the search range of timing
τ is in [0,Lτ − 1] (assume τ0 is in [0,Lτ − 1]), where 0 is the
reference point of TO and Lτ is the length of TO search.

Construct two N × Lτ matrices B and J whose entries
are denoted by b(m, τ) and J(vI , τ), respectively. The cost

function (12) can be expressed in the following matrix form:

J = 2Re
[

fft(B)
]− B0, (14)

where B0 is an N × N matrix with the same columns from
the first column of B.

The maximum entry of the matrix J can be obtained by
1D search. It is clear that the indexes of the row and col-
umn corresponding to the maximum entry of J represent the
IFO vI and the TO τ0, respectively.

3.2. Unknown channel order case

In fact, there is still a hidden parameter unknown in the data
model (7). In order to construct the matrix X, the channel
order L should be known in advance. Thus the additional
algorithm for the channel order estimation is needed. Fur-
thermore, since the channel order is varying in practice, the
matrices X and P have to be reconstructed according to dif-
ferent L. However, we find that the estimator is robust to the
overestimated channel order. Hence the channel order L can
be simply replaced by LCP under the condition of LCP ≥ L
which is generally satisfied in OFDM systems. Therefore, we
do not need to estimate L and to reconstruct X and P. Com-
parisons of the KCO with the UCO will be given in detail
next.

3.3. Effects of unknown channel order

Assume the IFO vI = 13 and the search range of TO is from
0–18. The cost function J(vI , τ) in the cases of the KCO and
UCO are plotted in Figure 2. It can be seen that the cost
function has a narrow timing metric plateau when vI = 13
in the case of KCO, whereas it gives a wide timing metric
plateau within the ISI-free guard interval in the case of UCO.
It should be noted that the wide plateau is likely to be be-
yond the ISI-free interval to degrade the performance (see
Simulation 2 in Section 4). For both the KCO and UCO, the
cost functions have the unique tall peak at the IFO metric.
However, the IFO metric of the UCO case has higher side-
lobes relative to the mainlobe than that of the KCO case. It
implies that there is still loss in terms of the performance
of the IFO estimation when channel order is unknown (see
Simulation 1 in Section 4).

Remarks

(1) Matrix P can be calculated in advance, which reduces
largely the burden of online computations.

(2) The multipath fading channel parameters can be ob-
tained by (10) after both the IFO and TO, are corrected. The
phase offset of estimated channel parameters can be compen-
sated by itself in the process of channel equalization.

(3) Only one pilot symbol is needed in the algorithm to
estimate the IFO, TO, and channel parameters, and the pilot
symbol can be selected as a random sequence.

(4) The proposed algorithm can also be extended to
MIMO-OFDM systems directly, if there are a set of pilot
symbols, each corresponding to a transmitting antenna.
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Figure 2: Cost function for joint IFO and TO estimations (N = 64, LCP = 16, L = 8, SNR = 20dB, vI = 13): (a) the case of KCO and (b)
the case of UCO.

4. SIMULATION RESULTS ANDDISCUSSIONS

The performance of the proposed approach to joint estima-
tion of the IFO and TO is evaluated by computer simula-
tions. Consider an OFDM system with 64 subcarriers and
the length of cyclic prefix with 16 samples. The QPSK sym-
bol modulation is employed. The additive channel noise is
zero-mean white Gaussian. The delay-power-spectrum func-
tion is exponential. The channel order L is varying between
8 and 16. The TX/RX filters in the simulations are raised-
cosine rolloff filters with a rolloff factor 0.5. The performance
of the estimated IFO is evaluated by means of the probability
of failure (POF), Pr{v̂I �= vI}. The performance of the esti-
mated TO is evaluated by mean square error (MSE) and the
timing error is counted with reference to the bound of the
ISI-free guard interval.

Simulation 1 (performance of integer frequency offset esti-
mation). In Figure 3, the POF of the proposed method for
the IFO estimation using one pilot symbol is compared with
that of the SCA [7] and Chen’s method [9]. Firstly, we use
Minn’s method [11] to obtain the timing. And then, SCA
and Chen’s method are used to estimate the IFO. Note that
the SCA and Chen’s method are based on two pilot symbols.
Park’s method using one pilot symbol [10] with 32 virtual
subcarriers is also plotted in Figure 3. The timing error is as-
sumedwithin τ0±3 for the estimator in [10]. The simulations
were performed with 100 000 runs. As shown in Figure 3, our
method has smaller POF than other methods even in the case
of UCO. Similar to the previous simulation, the estimated
performance in the KCO case is better than that in the UCO
case.

Simulation 2 (performance of timing offset estimation).
Figure 4 shows the MSE of the proposed and conventional
methods for the TO estimation. We can observe that our
method outperforms both the SCA [7] and Minn’s method
[11] in both the KCO and UCO cases. It is also noted that in
the KCO case, the proposed method has a much smaller MSE
than in the UCO case. The reason is that the timing metric
plateau of the cost function in the UCO case is beyond the
ISI-free interval.
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Figure 3: IFO performance comparison for the proposed method,
SCA, Chen’s method, and Park’s method (N = 64, LCP = 16, vI =
13). Note that only the pilot symbol of Park’s method has virtual
subcarriers.

Simulation 3 (word error rate (WER) performance). Sup-
pose a CFO including both FFO and IFO has an arbitrary
subcarrier spacing inside [0, 64]. Figure 5 compares theWER
performance of the system (by the use of SCA [7] to joint
FFO and coarse TO estimation along with the proposed
method) with that of the system with ideal timing and fre-
quency synchronization. The channel parameters can be ob-
tained by (10) and the phase offset is compensated by itself
in the process of channel equalization. 128 000 words were
used to obtain the results. It can be seen that for high SNRs,
the proposed method, after the SCA [7], has essentially the
same WER performance as the ideal system even in the case
of UCO. The result indicates that although the replacement
of L by LCP impacts the performance of the TO and IFO es-
timates considerably, the impact of the replacement on the
systemWER is negligible in high SNR.
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Figure 4: TO performance comparison for the proposed method,
SCA, and Minn’s method (N = 64, LCP = 16, vI = 13).
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Figure 5: WER performance comparison for the system using pro-
posed method along with SCA and the ideal synchronized system.
SCA is used to estimate the FFO and coarse TO.

5. CONCLUSIONS

A method for joint frequency ambiguity resolution (or IFO
estimation) and TO estimation using one pilot symbol for
OFDM system is proposed. The FFT and the 1D search are
employed to obtain the accurate estimation of the TO and
IFO. Especially, when channel order is known, the perfor-
mance of both the IFO and TO can be improved consider-
ably. The replacement of channel order by the length of CP
leads to the negligible loss in terms of the WER of systems.

APPENDIX

This appendix outlines the main steps in obtaining (12):

J
(
vI , τ

) = [CH
(
vI
)
r(τ)

]H
P
[
CH
(
vI
)
r(τ)

]

=
N−1∑

i=0

N−1∑

k=0
[P]i,kr∗(τ + i)r(τ + k)

× exp
{

− j2πvI(k − i)
N

}

m=k−i=
N−1∑

m=−N+1

N−1+m∑

k=m
[P]k−m,kr

∗(τ + k −m)r(τ + k)

× exp
(

− j2πvIm
N

)

= −
N∑

k=0
[P]k,kr∗(k + τ)r(k + τ)

+
N−1∑

m=0

N−1+m∑

k=m
[P]k−m,kr

∗(k −m + τ)r(k + τ)

× exp
(

− j2πvIm
N

)

+
0∑

m=−N+1

N−1+m∑

k=m
[P]k−m,kr

∗(k −m + τ)r(k + τ)

× exp
(

− j2πvIm
N

)

.

(A.1)

The third term in the right-hand side of (A.1) can be
transformed as follows:

0∑

m=−N+1

N−1+m∑

k=m
[P]k−m,kr

∗(k −m + τ)r(τ + k)

× exp
(

− j2πvIm
N

)

m′=−m=
N−1∑

m′=0

N−1−m′
∑

k=−m′
[P]k+m′,kr

∗(k +m′ + τ)r(k + τ)

× exp
(
j2πvIm′

N

)

k′=k+m′=
N−1∑

m′=0

N−1∑

k′=0
[P]k′,k′−m′r∗(k′ + τ)r(k′ −m′ + τ)

× exp
(
j2πvIm′

N

)

=
N−1∑

m=0

N−1∑

k=0
[P]k,k−mr∗(k + τ)r(k −m + τ)

× exp
(
j2πvIm

N

)

.

(A.2)

Note

(1) Because P is an N ×N matrix, the range of k in (A.1)
and (A.2) is fromm to N − 1.
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(2) Because P is a projection matrix, [P]k−m,k =
([P]k,k−m)∗.

Substituting (A.2) into (A.1) results in

J
(
vI , τ

) = [CH
(
vI
)
r(τ)

]H
P
[
CH
(
vI
)
r(τ)

]

= −
N∑

k=0
[P]k,kr∗(k + τ)r(k + τ)

+ 2Re

{ N−1∑

m=0

N−1∑

k=m
[P]k−m,kr

∗(k −m + τ)

× r(k + τ) exp
(

− j2πvIm
N

)}

(A.3)

= −b(0, τ) + 2Re

[ N−1∑

m=0
b(m, τ) exp

(

− j2πmvI
N

)]

(A.4)

b(m, τ) =
N−1∑

k=m
[P]k−m,kr

∗(k −m + τ)r(k + τ). (A.5)
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