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We propose to combine the gains of a downlink power control and a joint multicode detection, for an HSDPA link. We propose
an iterative algorithm that controls both the transmitted code powers and the joint multicode receiver filter coefficients for the
high-speed multicode user. At each iteration, the receiver filter coefficients of the multicode user are first updated (in order to
reduce the intercode interferences) and then the transmitted code powers are updated, too. In this way, each spreading code of
the multicode scheme creates the minimum possible interference to others while satisfying the quality of service requirement. The
main goals of the proposed algorithm are on one hand to decrease intercode interference and on the other hand to increase the
system capacity. Analysis for the rake receiver, joint multicode zero forcing (ZF) receiver, and joint multicode MMSE receiver is
presented. Simulation is used to show the convergence of the proposed algorithm to a fixed point power vector where the multicode
user satisfies its signal-to-interference ratio (SIR) target on each code. The results show the convergence behavior for the different
receivers as the number of codes increases. A significant gain in transmitted base station power is obtained.
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As wireless access to the internet rapidly expands, the need
for supporting multirate services (voice, data, multimedia,
etc.) over limited spectrum increases. CDMA technologies
are being considered for third-generation wireless networks,
UMTS. There are hence two channelization schemes for
achieving multirate transmissions. The first, known as the
variable spreading factor scheme, achieves variable-data rate
transmission by assigning the radio link a single variable-
length random spreading sequence. However, short codes,
when subjected to a large delay-spread multipath channel
loose their orthogonality and lead to a significant intersym-
bol interference (ISI). To circumvent this limitation, we con-
sider the second option called multicode transmission. The
high-rate data stream is split into several lower rate data sub-
streams [1]. Each substream is spread by a specific spreading
sequence and all the substreams are then transmitted syn-
chronously as virtual users. A future transmission mode such
as the high-speed downlink packet access (HSDPA [2]) will
make wide use of multicode to considerably increase the data
rate in the downlink with a peak-data rate in the range of 10—
14 Mbit/s. All the spreading sequences are orthogonal to each
other to avoid signal interference between parallel channel

codes in a synchronous multipath free channel. However,
multipath propagation partially destroys the orthogonality of
the multicode transmission and leads to a significant self in-
tercode interference which increases with the number of par-
allel codes for a multicode scheme. Therefore, the quality of
the downlink under frequency selective fading environments
is interference limited. In this paper, we consider a single cell
environment where one or more users employ a multicode
downlink transmission.

In order to improve the quality of the downlink which
is typically defined in terms of the signal-to-interference ra-
tio (SIR), a joint multicode reception was recently proposed
in [3] with the assumption that the different codes have a
fixed transmitting power. Based on a description of the signal
received over fading code-division multiple-access channel,
where many different data rates are considered, it is shown
in [3] that the problem of recovering the multicode user can
be expressed as a multiuser interference cancelation problem,
where each channel code represents a virtual user.

Independently in literature, power control is proposed,
classically for the link between the multiusers and the base
station (BS), to overcome the near-far problem, to maintain
the mobile station power consumption, and to reduce the
cochannel interference. The power control approach assumes
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that a fixed receiver, usually the conventional (single user)
receiver, is being used. It optimizes the communication be-
tween the mobiles and the BS by controlling the transmitted
powers of the different users [4, 5].

Given the importance of power control, an extensive re-
search is focused on this subject. In [6], two optimization
criteria are considered in a single-cell case: minimizing total
transmitted power and maximizing throughput. In [7], the
optimum power vector is given and also statistics on the re-
ceived power are considered. A statistical approach of the op-
timum power solution is developed in [8]. The existence (or
feasibility) of this optimal power allocation is also considered
in [7,9]. A distributed and iterative power control algorithm
where each user’s power converges to the minimum power
needed to meet its quality of service (QoS) specification is
proposed in [10]. A joint optimization of both receiver filters
and user transmit powers has been considered in [11] to find
the jointly optimum powers and linear MMSE (minimum
mean square error) filter coefficients. A similar approach is
proposed in reference [12] where the authors employ a suc-
cessive interference cancelation scheme. Recently, a unified
approach of the uplink power control that is applicable to
a large family of multiuser receivers is proposed in [13, 14],
based on the large system results published in [15].

Based on the fact that for a fixed base station assignment
the feasibilities of uplink and downlink are equivalent (see
[16] for more details), the authors in [16] present a joint
power control and base station assignment for the downlink.
Many others researchers are interested on the study of the
downlink power control such as [17-19]. In [17], the authors
studied the joint optimal power control and beamforming
in wireless networks. In [18], the authors studied the down-
link power control allocation for multiclass wireless systems.
However, in the case of HSDPA system, the way the base sta-
tion (BS) must allocate the power on the different codes in
the case of multicode transmission is still an open issue. It
is indeed desirable for the BS not to use more transmission
power than what it needs to. This paper proposes a possible
way to solve this problem.

In order to achieve this goal, we propose in this paper
to combine the downlink power control approach and the
joint multicode detection, presented in [3], for the multi-
code user. We propose an algorithm which controls both
the transmitted code powers at the BS and the joint mul-
ticode receiver filters implemented in the mobile. The re-
sulted algorithm adapts the transmitted code’s powers tak-
ing into account a multicode reception strategy at the mo-
bile which aims to reduce the intercode interference. Math-
ematically, the strategy involves two alternate optimization
problems which are resolved iteratively in the proposed algo-
rithm. At each iteration first the receiver filter coefficients of
the multicode user are updated to reduce the intercode in-
terference and then the transmitted code powers are updated
and assigned. So that, each spreading code of the multicode
scheme creates the minimum possible interference to others
while satistying the quality of service requirement. This al-
gorithm has as main goals to decrease intercode interference
and to increase the system capacity. Using downlink power

control, the BS output power is adapted to the radio link con-
ditions.

The implementation of this approach, in the HSDPA
mobile, requires interference measurements for each code.
These measurements are envisaged in HSDPA standard [20].
We show, using simulations, that the resulting algorithm
converges to a fixed point power vector where the multi-
code user satisfies its signal-to-interference ratio (SIR) tar-
get on each code. The feasibility of the proposed approach
is based on the transmission of the requested code power
via a feedback link in order to update the BS output pow-
ers. Such a feedback is considered in the HSDPA standard
where the mobile transmits the channel quality indicator to
the base station [2]. In this study, we consider the case of the
joint zero forcing and the joint minimum mean square er-
ror (MMSE) multicode linear receivers for various scenarios
where we compare their performance to those obtained by
considering a bank of rake receivers considered, here, as the
conventional power control strategy.

The paper is organized as follows. Section 2 introduces
the proposed linear algebraic model which describes the sig-
nal received over time-dispersive fading channel including
a hybrid multicode/variable spreading factor transmissions.
Section 3 gives the problem statement. The proposed strat-
egy is introduced in Sections 4 and 5, and its performance in
a simplified HSDPA environment is assessed by means of nu-
merical simulations in Section 6. Finally, Section 7 presents
our conclusions.

Throughout this paper scalars, vectors, and matrices are
lower case, lower-case bold and upper-case bold characters,
respectively. ()7, (-)~! denote transposition and inversion,
respectively. Moreover, E(-) denotes the expected value op-
erator.

2. SYSTEM MODEL

We assume a multicode CDMA frequency division duplex
cellular system. In each cell, K mobile users, each employ-
ing a different rate, communicate with a base station. Each
user receives a frame with a standardized number of chips
denoted by Neip. Based on the quality of service required by
user k, the base station assigns My spreading codes, the pro-
cessing gain is denoted by Gy, at the condition that N, =

GkNé? where Né? is the number of transmitted symbols for
user k. Under the constraint that a constant chip rate, 1/T,
where T, denotes the chip period, must be maintained, the
symbol period, denoted here by Tsx = Gy T, varies with the
requested rate by user k. The index s is related to the symbol
period and the index k is related to the kth user. In order to
facilitate the description, the terminologies defined in Table 1
are used in the rest of this paper.

The path-loss attenuation between the BS and the kth
user is denoted by z. In the no-shadowing scenario, the path
loss (PL) is modeled as a simple distance-dependent loss:

EPY (1)
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TasBLE 1: Terminology description.

Notation Description

K the number of user
Nehip the number of chips in a one radio block
Gy the spreading factor assigned to the kth user
My the number of spreading code assigned to the kth user
the number of bits or symbols transmitted in a
one radio block
T, the common chip period
Tsx the symbol period related to the kth user, 1 <k <K
Z the attenuation due to the path loss and the shadowing
L the number of paths
T the delay of the ith path
P the power of the mth code, 1 < m < M; of the kth user
n the symbol index time
b the transmitted symbol vector by the kth user
cw the spreading coding matrix related to the kth user

W®  the code’s power matrix related to the kth user
H®  the channel matrix related to the kth user
n the noise vector
or, in dB,
PL)
2"V [dB] = 10log,y(A) — 10 - ¢ - log,, (di),  (2)

where the constants A usually depend on the frequency used,
as well as the height of the base station and the wireless
terminal. The dj is the distance from user k to the base sta-
tion. The attenuation coefficient ¢ is usually between 2 and 6
for most indoor and outdoor environments. The model pre-
sented in (1) is a general form for the most empirical and
semiempirical path-loss attenuation model. For more details,
the reader can refer to [21].

In the shadowing case (SH), the variation due to shadow-
ing is added to the path-loss value to obtain the variations.
Therefore, the path-loss can be modeled as the product of a
distance-dependent path-loss attenuation and a random log-
normally distributed shadowing effect [21]:

z]((PL,SH) ~ )Ld,:g10£k/wa & ~ N(0, (7,52) 3)

or, in dB,

2" [dB] ~ 101og,,(A) — 10 - ¢ - logy, (di) + &,  (4)

where N (0, (752) is the Gaussian density with mean 0 (in dB)

and variance (752 (in dB). In the rest of the paper, we denote

PL SH) by Z.

The effect of the downlink multipath channel is repre-
sented by a vector with L paths denoted, here, by

h: [“0)“1)~~~)“L71]T (5)

with corresponding delays [7o,...,77—1]. Therefore, the

channel, corresponding to user k, is described as the follow-
ing:

hi = z:h. (6)

The transmit power towards the kth user on mth code will be

denoted by p,(jf). The transmitted signal for the kth user can
be written as

Nbitk—1 Mg
)= > S ApwWbP )l (t - nT),  (7)
n=0 m=1
where
B() Z DDy (t = qT.) (8)

with Gy the spreading factor for the kth user and b,(ylf)(n) is
the transmitted symbol at time n for the kth user on the
mth channel-code denoted by (8 - v is a normalized chip
waveform of duration T.. The base-band received signal at
the desired user can be written as

r(t)
K L-1 Npiek—1 My .

= z Zk Z o Z Z pgn)bﬁff)(n)ci,ﬂ‘)(t—nTs,k—Tl)+n(t),
k=1 =0  n=0 m=1

)

where n(t) is a zero-mean additive white Gaussian noise
(AWGN) process.

The received signal is time-discretized at the rate of 1/T,,
leading to a chip-rate discrete-time model that can be written
as

TZZY(ITC)
K L-1  Nigk—1 My
Xada X 3 MY (G-t T
k=1 1=0 n=0 m=1
+n(IT.),
(10)

where t;; = | 7;/Gk | is the time-discretized path delay in sam-
ple intervals (chip period).

Throughout the paper, we employ a block model. The
blocks of transmitted symbols for each user, k = 1,...,K, are
concatenated in a vector:

b = [690),.... b5 0),.... B (N - 1] (D
containing Nt(,ﬁ) bits transmitted with the different codes for
a given user, k.

The transmission of the data sequence over the CDMA
channel can be expressed by the received sequence r [3]:

T
r= [rl’ e rNchip+L71]

K (12)
= S COHOWHBE 4 p,
k=1
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where H®) = diag(hy, ..., hy) is of size (Néﬁ)MkL, Néft)Mk) and

W® = diag(P®,P®), . PV) of size N\& My where PK) =
diag(+/ pgk) A p§"),...,1z pl(\],}i) and diag(X) represents the di-

agonal matrix containing only the diagonal elements of the
matrix X. The matrix C¥) represents the code matrix of size

((Nepip + L — 1), N¥ My L) built as follows:

(k) _ [k k
c" = [Vo,o,o) e ’VNbi(,k—l,Mk—l,L—l]’
T
k _|oT kT T
Vim] = [OnGk’um,l’O(Nbil,k—n—l)Gk] )
(13)
k _ 10T kT oT T
um,l - [Otucm >0L7t171] >

ck = [cﬁ(l),...,cﬁq(Gk)]T,

wheren=0,...,Npir—1,m=0,...,My—1,and [=0,...,[—1.

0, denotes the null vector of size n. The vector n, of length
Nehip + L — 1, represents the channel noise vector with Ny as
a power spectral density.

The vector ¢\ = [k (1),...,ck (Gk)]T denotes the spread-
ing code vector of length Gy related to the kth user. It is
obtained by the discretization at the chip rate of the func-
tion c%c)(t) given by (8). The index m denotes the index of
the spreading code in the multicode scheme containing M
codes.

The model just proposed for a multirate and multicode
DS-CDMA system follows the structural principles of practi-
cal downlink UMTS and leads to a convenient algebraic form
which allows for a powerful receiver design for a multicode
multirate CDMA system.

For the sake of simplicity, the propagation channel is as-
sumed to be time invariant during the transmission of Nepip
chips. We also assume that the interferences due to symbols
before and after N, data block can be completely cancelled.
This is possible when those interfering symbols are known by
the receiver via a training sequence. The model presented in
(12) can be generalized to incorporate scrambling codes and
multiple antenna transmissions.

3. PROBLEM STATEMENT

Without loss of generality, the user 1 is chosen as the user of
interest. By denoting A¥) = CWH®), the received signal can
be expressed as

K
- AOWDBD + S AOWELE 4
—_— -
desired signal + intercode interference k=2 noise
MAI +ISI

(14)

where we separate the user of interest’s signal, the multiple
access interference (MALI), and intersymbol interference (ISI)
caused by the other users and the noise. The first term in
(14) contains the useful signal and the intercode interference
caused by the multicode scheme.

Let F denote the joint multicode receiver filter employed
by the receiver of user 1, user of interest. From the output
of the joint multicode receiver, y = F'r, the SIR of virtual
user of interest can be written for code m and symbol # as
the following:

pmE(B(E, by, €9 [ B3 () |°)

S (1w )

(15)

form=1,...,M;,m'=1,...,M;,and n=1,..., Nvit,1 - QO £m)
is the sum of the intercode interferences, the multiple access
interference, the intersymbols interference, and the noise.
B(F, hy, C®) denotes the term depending on the multicode
receiver filter coefficients, the spreading code and the chan-
nel coefficients. p,, denotes the power assigned to the mth
code. In the sequel, we present the expression of the terms
B(F, hy, C®) and Q(pyy£m) in the case of the rake, the zero
forcing, and the MMSE multicode receivers.

The aim of the power control algorithm in CDMA sys-
tem is to assign the mobile the minimum power necessary to
achieve a certain QoS which is typically defined in terms of
SIR. In this context, the most employed power control algo-
rithm was proposed by Foschini and Miljanic in [10] and it
is known as distributed power control (DPC). The optimum
transmission power of user k, supposed monocode user, is
computed iteratively in order to achieve an SIR target de-
noted here by SIRqrget.

SIRtargetp (l’l) (16)

P+ 1) = iRy Pr

When the target SIR is achieved, the power’s updating
stops. This approach assumes a fixed receiver, usually a sin-
gle receiver. To overcome this limitation, Ulukus and Yates in
[11] proposes to optimize jointly the multiuser receiver and
the user’s power in the uplink. As the main result, it is shown
that the same performance as the DPC algorithm is achieved
with less transmitted power. In continuation of Yates’ idea
of a combined power control and receiver adaptation in a
CDMA uplink, we develop, here, a joint power control and
multicode receiver adaptation algorithm suitable for a high-
speed UMTS downlink.

So, the problem is to determine the different code pow-
ers, pm, and multicode receiver filter coefficients, such that
the allocated power to the multicode user is minimized
while satisfying the quality of service requirement on each
code, SIR,; = SIR(arget, Where SIR,, = E,((SIR(m, n))), m =
1,..., My, and SIRyget is the minimum acceptable level of
SIR for each code. E, denotes the expectation over the sym-
bol index. Therefore, the problem can be stated mathemati-
cally as follows:

M,

mpin Z Pm (17)

m=1
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constrained to

E( | Q(Pm’%m) |2>
E(B(E,he, CW) [ ()] %) (18)
Pm < Pmax, m=1,..., M,

Pm = SIRtarget

where pmax denoted the maximum allowed transmitted
user’s power.

The following optimization problem is difficult since the
constraints denominators are also power dependent. The so-
lution is to consider a double optimization problem where
an inner optimization is inserted in the constraint set as the
following:

M,
min Z Pm (19)
P m=1

constrained to

E<|Q(pm’%m) |2)
E(B(E by, €) |5 (m) [*) (20)
m = 1,...,M1.

Pm = SIRtarget mFin

Pm = Pmax>

In [11], the equivalence between the optimization for-
mulation given by (17) and the formulation given by (19)
is demonstrated.

The second optimization formulation is a two alternate
optimization problem. The first optimization problem in-
volved in (19), and called the outer optimization, is defined
over the code power. Whereas the second one, called the in-
ner optimization, which is involved in (20), assumes a fixed
power vector. It is defined over the filter coefficients of the
multicode receiver. In this stage, we optimize the multicode
filter coefficients to maximally suppress the intercode inter-
ference. The implementation of these two alternate optimiza-
tion problems are realized iteratively in the algorithm de-
scribed in the next section.

4. COMBINED DOWNLINK POWER CONTROL
AND JOINT MULTICODE RECEIVERS

In this section, we propose to combine the downlink power
control and the joint multicode receivers. The objective of
the algorithm is to achieve an output SIR equal to a target
SIR{arget for each assigned code to the multicode user. To do
this, we exploit the linear relationship between the output
SIR and transmit code power as is seen in (15). The proposed
algorithm is a two-stage algorithm. First, we adjust the filter
coefficients for a fixed code power vector, the inner optimiza-
tion. Second, we update the transmitted code powers to meet
the SIR constraints on each code for the chosen filter coeffi-
cients using (16). The description of the proposed algorithm
is as follows:

The subscript 1 marks out the considered multicode user.

If we consider also a maximum transmit power limitation
prmax form = 1,..., M, step (3) from the above algorithm is

. . e (1) (1)

(1)i= 0., start with initial POWeTS po -+ Py -

(2) Receiver parameter calculation and receiver output SIR
calculation.

(3) Update the code powers using

P (i+ 1) = (SIRqueger /En[SIR(m, )]) pia (i), for m =
1,..., M.

(4) [W(i+1)]j; = /p (i +1), with j = m + (n — )M,
wherem =1,...,M; and n = 1,..., Npic1.

(5) i =i+ 1, stop if convergence is reached; otherwise, go to
step (2).

ALGORITHM 1

modified according to

D) = i | SRy an] )
Py’ (i+1) = min mpm @, p™ . (21)

The new code power calculated in step (3) are transmitted
via a feedback link to the BS.

In the sequel, we present the SIR derivation in the case of
the zero forcing and the MMSE multicode joint receivers.

5. JOINT MULTICODE RECEIVER STRUCTURES

In this section, we derive the expression of the output SIR on
each code by considering the joint multicode receivers: ZF
and MMSE.

The received signal given by (14) can be written as

r = AWb + & (22)

by denoting & = S5, AOW®BK) 4 p,

5.1. Rake receiver

The conventional data estimator consists of a bank of rake
receivers. In this case, the output signal is

Yrake = Alr = TWb + AR, (23)

where T = A7A.
We separate the desired user’s symbols, the intercode in-
terference generated by the multicode transmission and the

MALI +ISI + noise generated by the noise and the other users,
YRake = \diag{l"Wb}J + \diag{}"Wb}/ + Afa

MAI +ISI + noise

v
desired symbols  intercode interference

(24)

where diag(X) = X — diag(X) represents a matrix with zero
diagonal elements containing all but the diagonal elements
of X.

The useful signal for the nth transmitted symbol on the
mth code is given by

B} (1tw;,60 )"} = (rwi,) e |60 | ],
25)
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where [X]; ; denotes the element in the jth row and jth col-
umn of the matrix X.
The interference and the noise are given by

I = E{ (TWb- diag{TWb} + A"'H)*]. (26)

We consider in the sequel that E{| bil)(n) 12} = 1.

After developing the term I and taking the jth diagonal
element, the SIR at the output of the rake receiver related to
the nth transmitted symbol on the mth code can be expressed

as follows by denoting I’ = TW and R; = E[ffi ] as the
covariance matrix of the MAI, ISI and noise,
(P j)2
’ ’ 2 Y2)> X4
[(@)2];; = [(@);,]" + [['RGT]

SIRRake(m’ f’l) =
(27)

for j=m+(n—1)M; wherem=1,...,M;andn=1,..., N,.

5.2. Joint multicode zero forcing receiver
In the case of the joint ZF receiver, the output signal is
yzi = I 'YRae = Wb+ TTAPR (28)

The joint ZF receiver leading to the estimate of the de-
sired symbols, b, is called zero forcing since it tries to force
the residual intercode interference to zero.

Therefore, the SIR at the output of the joint ZF receiver
relating to the nth transmitted symbol on the mth code can
be expressed as follows:

(W13,

[T-TAHRATH]

SIRzp(m, n) =

(29)
for j=m+(n—1)M, wherem=1,...,M;andn=1,..., Npit1-

5.3. Joint multicode MMSE receiver

The joint multicode MMSE linear receiver minimizes the
output mean squared error

E{”FYRake _Wb”z} (30)

with respect to F which yields

F = WTH[TW2TH + AFR;A] . (31)
Therefore, the output signal from the MMSE receiver yields,
by denoting Wy, = FT,

ymmse = Fypae= WoWb + WaerHlNl. (32)

Now, we can separate the desired user’s symbols, the in-
tercode interference generated by the multicode transmis-
sion and the MAI + ISI + noise generated by the noise and the
other users,

ymuse = diag {WoWb} + diag{WoWb} + W 'AF AR R,
(33)

The SIR at the output of the MMSE receiver relating to
the nth transmitted symbol on the mth code can be expressed
as follows by denoting W' = WyW as

SIRmmsE (1, 1)
([W']j,j)z
[(WWH = (IW]5,)” + [Wg TA"RGAT W]
(34)

for j=m+(n—1)M, wherem=1,...,M;andn=1,..., Npit.

The proposed approach involves complex matrix in-
verse computations due to the employment of instantaneous
MMSE filtering. This drawback can be recovered by replac-
ing instantaneous MMSE filtering with adaptive filtering. As
is suggested in [22], the least mean square and the minimum
output energy algorithms present an ease implementation
and analysis. As a future work, we suggest to focus on the
complexity reduction of the proposed approach.

6. SIMULATION RESULTS

Simulation results analyze the performance of the proposed
strategy considering the joint multicode MMSE and the joint
ZF receivers, and the performance obtained from the con-
ventional power control which assumes a bank of fixed rake
receivers. We compare the different solutions by evaluating
the total transmit (or mean transmit) power and the SIR (or
mean SIR) at the mobile receiver.

Users are placed randomly in a hexagonal cell with ra-
dius R = 1000 m around the BS. The path-loss exponent is
taken ¢ = 4 and no shadowing is assumed. We consider a 6-
path downlink channel. The target SIR is fixed at SIRqrget = 4
(around 6 dB) for all simulations. We consider a number of
K = 20 users, among them we have K’, K’ < K multi-
code users. The spreading factor for the single-code users is
Gr = 128 for any k = K’,...,K. The multicode users has
a spreading gain G = 64, k' = 1,...,K’. We fix the user
1 as user of interest. We vary its number of allocated codes
between M| = 4 and M, = 64.

In Figure 1, we plot the mean SIR, (1/M;) 2%‘:1 SIR(m),
versus iteration index in the case of M; = 4 for the con-
ventional power control algorithm (fixed rake receiver) and
the proposed strategy which optimizes the joint MMSE and
ZF multicode receiver coefficients. We note the one-iteration
convergence of the multicode ZF receiver, the fast conver-
gence of the multicode MMSE receiver, and the much slower
convergence of the rake receiver.

In the case of M; = 16, the conventional rake receiver
cannot meet the target SIR anymore, as shown in Figure 2,
where we plot the variation of the SIR(m) on each code.
However, the multicode receivers (ZF and MMSE) show
good performance. Adding more virtual users brings the
conventional receiver to even worse performance as is shown
in Figure 3.

For M; = 64, the different lines for each receiver type
correspond to the variation of the SIR on each code, SIR(m),
versus iteration index.
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FIGURE 1: The SIR convergence for the rake, ZF, and MMSE re-
ceivers in the case M; = 4 multicode.

From Figures 2 and 3, we observe the difficulty of the
conventional power control to reach the target SIR because
of the MAI, ISI, and the intercode interferences. In the case
of low load in the cell (few users), the conventional power
control reaches the SIR target; see Figure 1. However, in this
case, our proposed strategy presents a faster convergence.

The variation of the base station transmit power ra-
tios pzr/Prake and pyvmse/ Prake Versus the iteration index is
shown in Figure 4 in the case of a number of codes M; = 16
codes of the multicode user. We note a decrease of about 20%
of the transmitted BS power.

However, a much significant gain in transmitted BS pow-
er is noted in the case of M, = 64, as we can deduce from the
results of Figure 5. The MMSE shows its optimality with sig-
nificantly improved results with respect to the ZF receiver:
the MMSE always gains power with respect to the rake re-
ceiver (the ratio is smaller than 1) where the ZF increases first
the required power to achieve the required SIR.

We observe from Figures 4 and 5 that the proposed strat-
egy of joint downlink power control and multicode receivers
outperforms the conventional downlink power control in
terms of total transmitted power of the multicode user.

In all simulations, we note the very fast (1 iteration) con
vergence of the ZF receiver, the fast convergence of the
MMSE receiver, and the much slower convergence of the
conventional power control. The fast convergence of the ZF
receiver is easy to explain: since this receiver performs an or-
thogonal projection into the subspace formed by the inter-
fering signals, the output desired signal does not depend on
the interfering signals’ amplitudes. There is only one update
of (21). In the case of the joint multicode MMSE receiver, at
each iteration the receiver is updated since it depends on the
received powers of each code. Finally, the rake receiver is a
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FiGure 2: The SIR convergence for the rake, ZF, and MMSE re-
ceivers in the case M, = 16 multicode.
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FiGgure 3: The SIR convergence for the rake, ZF, and MMSE re-
ceivers in the case M, = 64 multicode.

fixed receiver that takes into account only the desired signal
processing the MAL ISI, and intercode interferences as noise,
therefore yielding the worst performance.

The best performance in minimizing transmit powers
and maximizing the cell capacity is obtained by the MMSE
receiver. The ZF receiver shows slightly lower performance,
in terms of total transmit power, at high-cell loads (case of
M, = 64, see Figure 5).
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FIGURE 4: The mean total transmit powers ratio pz/prake and
Pmmse/ Prake Versus the iteration index for M; = 16.

It should be noticed that at very low-cell loads (i.e., few
interfering single-code users and few codes for the multicode
user (case of M; = 4)) the three receivers show similar per-
formance, a result that is expected.

After the convergence of the proposed strategy using a
joint multicode MMSE receiver, the codes’ power alloca-
tion is shown in Figure 6. As one can notice, it is not the
same power per code. This confirms the interest of this
power allocation-strategy for the downlink of the multicode
user.

7. CONCLUSION

In this paper, we have analyzed the benefits of combining
the downlink power control and the joint multicode detec-
tion for a multicode user. The proposed algorithm updates
iteratively the transmitted code powers of the multicode
users and the joint multicode receiver filter coefficients. We
have used simulations to show the convergence and perfor-
mance of the proposed algorithm in a system of practical in-
terest. An important gain in transmit power reduction is ob-
tained by implementing joint multicode detection. The per-
formance of the ZF receiver allows an important reduction
in computations (step 4 is avoided). The study of theoretical
convergence of the proposed algorithm is under investigation
based on the analysis proposed in [23].

In order to overcome the limitation of power control due
to temporal filtering only, a joint power control and beam-
forming for wireless network is proposed in [17] where it is
shown that a capacity increase is possible if array observa-
tions are combined in the MMSE sense. Therefore, as a di-
rection for further research, the combination of the three ba-
sic interference cancelation approaches (transmit power con-
trol, multiuser detection, and beamforming) represents an
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Ficure 5: The mean total transmit power ratio pzp/prae and
PMmsE/ Prake Versus the iteration index for M; = 64.

Transmit powers on each code, MMSE receiver

Power in dBm on each code

2 2.5 3 3.5

Iteration index

FIGURE 6: The code power allocation in the case of M; = 10 codes
after convergence.

ambitious challenge to be met by third-generation systems
in order to provide high-capacity flexible services.
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