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M-ary on-off frequency-shift keying (OOFSK) is a digital modulation format in whichM-ary FSK signaling is overlaid on on/off
keying. This paper investigates the potential of this modulation format in the context of wideband fading channels. First, it is
assumed that the receiver uses energy detection for the reception of OOFSK signals. Capacity expressions are obtained for the
cases in which the receiver has perfect and imperfect fading side information. Power efficiency is investigated when the transmitter
is subject to a peak-to-average power ratio (PAR) limitation or a peak power limitation. It is shown that under a PAR limitation, it
is extremely power inefficient to operate in the very-low-SNR regime. On the other hand, if there is only a peak power limitation,
it is demonstrated that power efficiency improves as one operates with smaller SNR and vanishing duty factor. Also studied are the
capacity improvements that accrue when the receiver can track phase shifts in the channel or if the received signal has a specular
component. To take advantage of those features, the phase of the modulation is also allowed to carry information.
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1. INTRODUCTION

A wide range of digital communication systems in wireless,
deep space, and sensor networks operate in the low-power
regime where power consumption rather than bandwidth is
the limiting factor. For such systems, power-efficient trans-
mission schemes are required for effective use of scarce en-
ergy resources. For example, in sensor networks [1], nodes
that are densely deployed in a region may be equipped with
only a limited power source and in some cases replenishment
of these resources may not be possible. Therefore, energy-
efficient operation is vital in these systems. Recently, there
has also been much interest in ultra-wideband systems in
which low-power pulses of very short duration are used for
communication over short distances. These wideband pulses
must satisfy strict peak power requirements in order not to
interfere with existing systems.

The power efficiency of a communication system can be
measured by the energy required for reliable communica-
tion of one bit. When communicating at rate R bps with
power P, the transmitted energy per bit is Eb = P/R. Since
the maximum rate is given by the channel capacity, C, the
least amount of bit energy required for reliable communica-
tion is Eb = P/C. In [2], Shannon showed that the capacity
of an ideal bandlimited additive white Gaussian noise chan-
nel is C = B log2(1 + P/BN0) bps, where P is the received

power, B is the channel bandwidth, and N0 is the one-sided
noise spectral level. As the bandwidth grows to infinity, the
capacity monotonically increases to (P/N0) log2 e bps, there-
fore decreasing the required received bit energy normalized
to the noise power to

Er
b

N0
= P/N0

C
−→
B→∞

loge 2 = −1.59dB. (1)

This minimum bit energy (1) can be approached by pulse-
position modulation with vanishing duty cycle [3] or by M-
ary orthogonal signaling asM becomes large [4]. In the pres-
ence of unknown fading, Jacobs [5] and Pierce [6] have noted
thatM-ary orthogonal signaling obtained by frequency-shift
keying (FSK) modulation can still approach the limit in (1)
for large values of M. Gallager [7, Section 8.6] also demon-
strated that over fading channels M-ary orthogonal FSK
signaling with vanishing duty cycle approaches the infinite
bandwidth capacity of unfaded Gaussian channels as M →
∞, thereby achieving (1). The result that the infinite band-
width capacity of fading channels is the same as that of un-
faded Gaussian channels is also noted by Kennedy [8]. Telatar
and Tse [9] considered a more general fading channel model
that consists of a finite number of time-varying paths and
showed that the infinite bandwidth capacity of this chan-
nel is again approached by using peaky FSK signaling. Luo
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and Médard [10] have shown that FSK with small duty cy-
cle can achieve rates of the order of capacity in ultrawide-
band systems with limits on bandwidth and peak power. Ref-
erence [11] shows, in wider generality than was previously
known, that the minimum received bit energy normalized to
the noise level in a Gaussian channel is −1.59 dB, regardless
of the knowledge of the fading at the receiver and/or trans-
mitter. It is also shown in [11] that if the receiver does not
have perfect knowledge of the fading, flash signaling is re-
quired to achieve the minimum bit energy. The performance
degradation in the wideband regime incurred by using sig-
nals with limited peakedness is discussed in [9, 12, 13]. The
error performance of FSK signals used with a duty cycle is
analyzed in [14, 15].

Besides approaching the minimum energy per bit, FSK
modulation is particularly suitable for noncoherent commu-
nications. Butman et al.[16] studied the performance of M-
ary FSK, which has unit peak-to-average power ratio, over
noncoherent Gaussian channels by computing the capacity
and computational cutoff rate. Stark [17] analyzed the ca-
pacity and cutoff rate ofM-ary FSK signaling with both hard
and soft decisions in the presence of Rician fading and noted
that there exists an optimal code rate for which the required
bit energy is minimized.

In this paper, we study the power efficiency of M-ary
on/off FSK (OOFSK) signaling in whichM-ary FSK signaling
is overlaid on top of on/off keying, enabling us to introduce
peakedness in both time and frequency. Our main focus will
be on cases in which the peakedness of input signals is lim-
ited. The organization of the paper is as follows. Section 2 in-
troduces the channel model. In Section 3, we find the capac-
ity ofM-ary orthogonal OOFSK signaling with energy detec-
tion at the receiver and investigate the power efficiency in two
cases: limited peak-to-average power ratio and limited peak
power. In Section 4, we consider joint frequency and phase
modulation and analyze the capacity and power efficiency of
M-ary OOFPSK signaling in which the phase of FSK signals
also convey information. Finally, Section 5 includes our con-
clusions.

2. CHANNELMODEL

In this section, we present the systemmodel. We assume that
M-ary orthogonal OOFSK signaling, in which FSK signal-
ing is combined with on/off keying with a fixed duty factor,
ν ≤ 1, is employed at the transmitter for communication
over a fading channel. In this signaling scheme, over the time
interval of [0,T], the transmitter either sends no signal with
probability 1 − ν or sends one of M orthogonal sinusoidal
signals,

si(t) =
√

P

ν
e j(ωit+θi), 0 ≤ t ≤ T , 1 ≤ i ≤M, (2)

with probability ν. To ensure orthogonality, adjacent fre-
quency slots satisfy |ωi+1 − ωi| = 2π/T . Choosing ν = 1, we
obtain ordinary FSK signaling. If the channel input is X = i
for 1 ≤ i ≤M, the transmitter sends the sine wave si(t), while
no transmission is denoted by X = 0. Note that OOFSK

signaling has average power P, and peak power P/ν. We as-
sume that the transmitted signal undergoes stationary and
ergodic fading and that the delay spread of the fading is much
less than the symbol duration. Under these assumptions, the
fading has a multiplicative effect on the transmitted signal
and the received signal can be modeled as follows:

r(t) = h(t)sXk

(
t − (k − 1)T

)
+ n(t),

(k − 1)T ≤ t ≤ kT , for k = 1, 2, . . . ,
(3)

where {Xk}∞k=1 is the input sequence with Xk ∈ {0, 1,
2, . . . ,M}, h(t) is a proper1 complex stationary ergodic fad-
ing process with E{h(t)} = d and var(h(t)) = γ2, and n(t)
is a zero-mean circularly symmetric complex white Gaussian
noise process with single-sided spectral densityN0. Note that
s0(t) = 0. If we further assume that the symbol duration T
is less than the coherence time of the fading, then the fad-
ing stays constant over the symbol duration and the channel
model now becomes

r(t) = hksXk

(
t − (k − 1)T

)
+ n(t), (k − 1)T ≤ t ≤ kT.

(4)

At the receiver, a bank of correlators is employed in each
symbol interval to obtain the M-dimensional vector Yk =
(Yk,1, . . . ,Yk,M), where

Yk,i = 1√
N0T

∫ kT

(k−1)T
r(t)e− jωit dt, i = 1, 2, . . . ,M. (5)

It is easily seen that, given the symbol Xk = i, phase θi and
fading coefficient hk, Yk, j is a proper complex Gaussian ran-
dom variable with

E
{
Yk, j | Xk = i, θi,hk

} = αhke
jθiδi j ,

var
(
Yk, j | Xk = i, θi,hk

) = 1,
(6)

where δi j = 1 if i = j and is zero otherwise, and α2 =
PT/νN0 = SNR/ν with SNR denoting the signal-to-noise ra-
tio per symbol.

3. CAPACITY OFM-ARY ORTHOGONAL OOFSK
SIGNALINGWITH ENERGY DETECTION

In this section, we analyze the capacity of M-ary orthogonal
OOFSK signaling when in every symbol interval, the non-
coherent receiver measures the energy at each of the M fre-
quencies, that is, computes

Rk,i =
∣∣Yk,i

∣∣2 =
∣∣∣∣ 1√

N0T

∫ kT

(k−1)T
r(t)e− jωit dt

∣∣∣∣
2

,

1 ≤ i ≤M, for k = 1, 2, . . . ,

(7)

and the decoder sees the vector Rk = (Rk,1, . . . ,Rk,M). With
this structure, the receiver does not need to track phase

1 See [18].
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changes in the channel. We consider the cases where the re-
ceiver has either perfect or imperfect fading side informa-
tion, while the transmitter has no knowledge of the fading
coefficients. Besides providing the ultimate limits on the rate
of communication, capacity results also offer insight into the
power efficiency of OOFSK signaling by enabling us to obtain
the energy required to send one bit of information reliably.

In the low-power regime, the spectral-efficiency/bit-
energy tradeoff reflects the fundamental tradeoff between
bandwidth and power. Assuming that the bandwidth of M-
ary OOFSK modulation is M/T , where T is the symbol du-
ration, the maximum achievable spectral efficiency is

C
(
Eb
N0

)
= 1

M
C(SNR) bps/Hz, (8)

where C(SNR) is the capacity in bits/symbol, and

Eb
N0

= SNR
C(SNR)

(9)

is the bit energy normalized to the noise power. For average-
power-limited channels, the bit energy required for re-
liable communications decreases monotonically with de-
creasing spectral efficiency, and the minimum bit energy
is achieved at zero spectral efficiency, that is, Eb/N0min =
limSNR→0(SNR/C(SNR)) = loge 2/Ċ(0), where Ċ(0) is the
first derivative of the capacity in nats. Hence, for fixed rate
transmission, reduction in the required power comes only
at the expense of increased bandwidth. Reference [11] ana-
lyzes the spectral-efficiency/bit-energy function in the low-
power regime for a general class of average-power-limited
fading channels and shows that the minimum bit energy is
loge 2 = −1.59 dB as long as the additive background noise
is Gaussian. This minimum bit energy is achieved only in the
asymptotic regime of infinite bandwidth. If one is willing to
spend more power, then reliable communication over a fi-
nite bandwidth is possible. Hence, achieving the minimum
bit energy is not a sufficient criterion for finite bandwidth
analysis. The wideband slope [11], defined as the slope of
the spectral efficiency curve C(Eb/N0) in bps/Hz/3dB at zero
spectral efficiency, is given by

S0
def= lim

Eb/N0↓Eb/N0|C=0
C(Eb/N0)

10 log10(Eb/N0)− 10 log10(Eb/N0)|C=0
× 10 log10 2

= 1
M

2
(
Ċ(0)

)2
−C̈(0) ,

(10)

where Ċ(0) and C̈(0) denote the first and second derivatives
of the capacity in nats. Note that differing from the origi-
nal definition in [11], normalization by M is introduced in
(10) due to the scaling in (8). The wideband slope closely ap-
proximates the growth of the spectral-efficiency curve in the
power-limited regime and hence is a useful tool providing
insightful results when bandwidth is a resource to be con-
served.

3.1. Perfect receiver side information

We first assume that the receiver has perfect knowledge of
the magnitude of the fading, |h|. For this case, the capacity
as a function of SNR = PT/N0 of M-ary OOFSK signal-
ing with energy detection is given by the following proposi-
tion. Throughout the paper, we denote the probability den-
sity function and distribution function of a random vari-
able Z by pZ and FZ , respectively, with arguments omitted
in equations in order to avoid cumbersome expressions.

Proposition 1. Consider the fading channel model (4) and
assume that the receiver knows the magnitude but not the
phase of the fading coefficients {hk, k = 1, 2, . . .}. Further
assume that the transmitter has no fading side information.
Then the capacity of M-ary orthogonal OOFSK signaling
with a fixed duty factor ν ≤ 1 with energy detection is

C
p
M(SNR) = E|h|

{
(1− ν)

∫
pR|X=0 log

pR|X=0
pR||h|

dR

+ ν

∫
pR|X=1,|h| log

pR|X=1,|h|
pR||h|

dR
}
,

(11)

where

pR||h| = (1− ν)pR|X=0 +
ν

M

M∑
i=1

pR|X=i,|h|, (12)

pR|X=0 = e−
∑M

j=1 Rj , (13)

pR|X=i,|h| = e−
∑M

j=1 Rj f
(
Ri, |h|, SNR

)
, 1 ≤ i ≤M, (14)

f
(
Ri, |h|, SNR

) = exp
(
− SNR

ν
|h|2

)
I0

(
2

√
SNR

ν
|h|2Ri

)
.

(15)

For the proof, see Appendix A.
Formula (11) must be evaluated numerically, and com-

putational complexity imposes a burden on numerical tech-
niques for large M. Fortunately, a simpler expression is ob-
tained in the limitM →∞.

Proposition 2. The capacity expression (11) for M-ary
OOFSK signaling in the limit asM ↑ ∞ becomes

C
p
∞(SNR) = D

(
pR|x̃,|h|

∥∥pR|x̃=0,|h|∣∣F|h|Fx̃), (16)

where

R = |y|2 = |hx̃ + n|2, (17)

x̃ is a two-mass-point discrete random variable with the fol-
lowing mass-point locations and probabilities,

x̃ =

⎧⎪⎪⎨
⎪⎪⎩
0, with probability 1− ν,√

SNR
ν

, with probability ν,
(18)

and n is zero-mean circularly symmetric complex Gaussian
random variable with E{|n|2} = 1. Therefore,

pR|x̃,|h| = e−R−x̃
2|h|2I0

(
2
√
x̃2|h|2R

)
. (19)

For the proof, see Appendix B.
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3.2. Imperfect receiver side information

In this section, we assume that neither the receiver nor the
transmitter has any side information about the fading. Un-
like the previous section, here we consider a more special
fading process: memoryless Rician fading where each of the
i.i.d. hk’s is a proper complex Gaussian random variable with
E{hk} = d and var(hk) = γ2. Note that the unknown Ri-
cian fading channel can also be regarded as an imperfectly
known fading channel where the specular component is the
channel estimate and the fading component is the Gaussian-
distributed error in the estimate. As argued in [19], the
Bayesian least-squares estimation over the Rayleigh channel
leads to such a channel model. However, we want to empha-
size that no explicit channel estimation method is considered
in this section.

The following result gives the maximum rate at which
reliable communication is possible with OOFSK signaling
using energy detection over the memoryless Rician fading
channel. As noted in Section 1, the capacity of the special case
of M-ary FSK signaling (ν = 1) was previously obtained by
Stark [17].

Proposition 3. Consider the fading channel (4), and assume
that the fading process {hk} is a sequence of i.i.d. proper
complex Gaussian random variables with E{hk} = d and
var(hk) = γ2, which are not known at either the receiver or
the transmitter. Further, assume that energy detection is per-
formed at the receiver. Then the capacity of M-ary orthog-
onal OOFSK signaling with fixed duty factor ν ≤ 1 is given
by

C
ip
M(SNR) = (1− ν)

∫
pR|X=0 log

pR|X=0
pR

dR

+ ν

∫
pR|X=1 log

pR|X=1
pR

dR,
(20)

where

pR = (1− ν)pR|X=0 +
ν

M

M∑
i=1

pR|X=i, (21)

pR|X=0 = e−
∑M

j=1 Rj , (22)

pR|X=i = e−
∑M

j=1 Rj f
(
Ri, SNR

)
, 1 ≤ i ≤M, (23)

f
(
Ri, SNR

) = 1
γ2 SNR /ν + 1

exp
(
SNR /ν

(
γ2Ri − |d|2

)
γ2 SNR /ν + 1

)

× I0

(
2
√
SNR /ν|d|2Ri

γ2 SNR /ν + 1

)
.

(24)

Proof. With the memoryless assumption, the capacity of the
M-ary OOFSK signaling can be formulated as the maximum
mutual information between the channel input Xk and out-
put vector Rk for any k. Thus, considering a generic symbol

interval, and dropping the time index k, we have

C = max
X

I(X ;R) = max
X

(1− ν)
∫
pR|X=0 log

pR|X=0
pR

dR

+
M∑
i=1

P(X = i)
∫
pR|X=i log

pR|X=i
pR

dR.

(25)

Similarly as in the proof of Proposition 1, due to the symme-
try of the channel, an input distribution equiprobable over
nonzero input values, that is, P(X = i) = ν/M for 1 ≤ i ≤M,
where P(X = 0) = 1− ν achieves the capacity, and we easily
obtain (20) by noting that conditioned on X = i, Rj = |Yj|2
is a chi-square random variable with two degrees of freedom,
or more generally,

pRj |X=i

=

⎧⎪⎪⎨
⎪⎪⎩

1
α2γ2 + 1

exp

(
−Rj + α2|d|2

α2γ2 + 1

)
I0

(
2
√
α2|d|2Rj

α2γ2 + 1

)
, j= i,

e−Rj , j �= i,
(26)

where, as before, α2 = PT/νN0. Note also that due to the or-
thogonality of signaling, the vector R has independent com-
ponents and we denote SNR = PT/N0.

Similarly to Proposition 2, we can find the infinite band-
width capacity achieved as the number of orthogonal fre-
quencies increases without bound. The proof is omitted as it
follows along the same lines as in the proof of Proposition 2.

Proposition 4. The capacity expression (20) ofM-ary OOFSK
signaling in the limit asM ↑ ∞ becomes

C
ip
∞(SNR) = D

(
pR|x̃

∥∥pR|x̃=0∣∣Fx̃), (27)

where

R = |y|2 = |hx̃ + n|2, (28)

x̃ is a two-mass-point discrete random variable with mass-
point locations and probabilities given in (18), and n is a
zero-mean circularly symmetric complex Gaussian random
variable with E{|n|2} = 1. Therefore,

pR|x̃ = 1
γ2x̃2 + 1

exp
(
− R + x̃2|d|2

γ2x̃2 + 1

)

× I0

(
2
√
x̃2|d|2R

γ2x̃2 + 1

)
.

(29)

The following remarks are given for the asymptotic case in
whichM grows to infinity.

Remark 1. Assume that in the case of perfect receiver side in-
formation, {hk} is a sequence of i.i.d. proper complex Gaus-
sian random variables. Then the asymptotic loss in capacity
incurred by not knowing the fading is

C
p
∞(SNR)− C

ip
∞(SNR)

= D
(
pR|x̃,|h|

∥∥pR|x̃=0,|h|∣∣p|h|Px̃)
−D

(
pR|x̃

∥∥pR|x̃=0∣∣Px̃) = I
(|h|;R | x̃),

(30)

where R = |hx̃ + n|2.
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Remark 2. Consider the case of imperfect receiver side infor-
mation, where

C
ip
∞ = D

(
pR|x̃

∥∥pR|x̃=0∣∣Px̃) = (γ2 + |d|2) SNR
− ν log

(
γ2

SNR
ν

+ 1
)
− 2 SNR |d|2

γ2 SNR /ν + 1

+ νER

{
log I0

(
2
√
(SNR/ν)|d|2R

γ2(SNR/ν) + 1

)} (31)

with SNR = PT/N0. From (31), we can easily see that for
fixed symbol interval T ,

lim
ν↓0

1
T
C
ip
∞(SNR)= 1

T

(
γ2 + |d|2) SNR = (γ2 + |d|2) P

N0
nats/s,

(32)

and for fixed duty factor ν,

lim
T↑∞

1
T
C
ip
∞(SNR) = (γ2 + |d|2) P

N0
nats/s. (33)

Note that right-hand sides of (32) and (33) are equal to the
infinite bandwidth capacity of the unfaded Gaussian chan-
nel with the same received signal power. Hence, these results
agree with previous results [5–7], where it has been shown
that the capacity of M-ary FSK signaling over noncoherent
fading channels approaches the infinite bandwidth capacity
of the unfaded Gaussian channel for large M and large sym-
bol duration T or small duty factor ν.

3.3. Limited peak-to-average power ratio

The peak-to-average power ratio (PAR) of OOFSK signaling
is equal to the inverse of the duty factor, 1/ν. In this section,
we examine the low-SNR behavior when we keep the duty
factor fixed, while the average power P vanishes. We show
that under this limited PAR condition, OOFSK communi-
cation with energy detection at low SNR values is extremely
power inefficient even in the unfaded Gaussian channel.

Proposition 5. The first derivative of the capacity at zero SNR
achieved by M-ary OOFSK signaling with a fixed duty fac-
tor ν ≤ 1 over the unfaded Gaussian channel is zero, that is,
Ċ
g
M(0) = 0 and hence the bit energy required at zero spectral

efficiency is infinite,

Eb
N0

∣∣∣∣
C=0

= lim
SNR→0

SNR

C
g
M(SNR)

loge 2 =
loge 2

Ċ
g
M(0)

= ∞. (34)

Proof. Since we consider the unfaded Gaussian channel,
we set the fading variance γ2 = 0 in the capacity
expression (20). Note that the only term in (20) that
depends on the signal-to-noise ratio is f (Ri, SNR) =
exp(−|d|2 SNR)I0(2

√
SNR |d|2Ri) in (24). Using the fact that

limx→0(I1(a
√
x)/
√
x) = a/2 for a ≥ 0, one can show that the

derivative at SNR = 0 is ḟ (Ri, 0) = |d|2(−1 + Ri). The result
then follows by taking the derivative of the capacity (20) and
evaluating it at SNR = 0.
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Figure 1: Eb/N0 (dB) versus rate (bps) for the unfaded Gaussian
channel.M = 2.

Since the presence of fading that is unknown at the trans-
mitter does not increase the capacity, from Proposition 5, we
immediately conclude that Ċ(0) = 0 for fading channels, re-
gardless of receiver side information as long as ν is fixed and
hence the peak-to-average power ratio is limited. This result
indicates that operating at very low SNR is power inefficient,
and the minimum bit energy of M-ary OOFSK signaling is
achieved at a nonzero spectral efficiency. Proposition 5 stems
from the nonconcavity of the capacity-cost function under
peak-to-average constraints (see [11]). Theminimum energy
per bit must be computed numerically.

Figure 1 plots bit-energy curves as a function of rate
in (bps) achieved in the unfaded Gaussian channel by 2-
OOFSK signaling for different values of fixed duty factor ν.
Notice that for all cases minimum bit-energy values are ob-
tained at a nonzero rate and as the duty factor is decreased,
the required minimum bit energy is also decreased. With
ν = 0.0001, the minimum bit energy is about −0.2 dB. Note
that this is a significant improvement over the case ν = 1,
where the minimum bit energy is about 6.7 dB. However,
this gain is obtained at the cost of a considerable increase
in the peak-to-average ratio. Figure 2 plots the bit-energy
curves in the unknown Rician channel with Rician factor
K = 0.5.

3.4. Limited peak power

In this section, we consider the case where the peak level of
the transmitted signal is limited, while there is no constraint
on the peak-to-average power ratio. Hence we fix the peak
level to the maximum allowed level, A = P/ν. Therefore, as
P → 0, the duty factor also has to vanish and hence the peak-
to-average ratio increases without bound. In this case, the
minimum bit energy is achieved at zero spectral efficiency,
and the wideband slope provides a good characterization of
the bandwith/power tradeoff at low spectral-efficiency val-
ues.
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Figure 2: Eb/N0 (dB) versus rate (bps) for the unknown Rician
channel with K = 0.5.M = 2.

Proposition 6. Assume that the transmitter is limited in peak
power, P/ν ≤ A, and the symbol duration T is fixed. Then

the capacity achieved byM-ary OOFSK signaling, with fixed
peak power A, is a concave function of P. For the perfect re-
ceiver side information case, the minimum received bit en-
ergy and the wideband slope are

Er
b

N0 min
= loge 2(

E|h|ER
{
log I0

(
2
√
η|h|2R)}/η(γ2 + |d|2))− 1

,

S0 =
2
(
EhER

{
log I0

(
2
√
η|h|2R)}− η

(
γ2 + |d|2))2

Eh
{
I0
(
2η|h|2)}− 1

,

(35)

respectively, where R is a noncentral chi-square random vari-
able with

pR = e−R−η|h|
2
I0
(
2
√
η|h|2R

)
(36)

and η = A(T/N0) is the normalized peak power. For the im-
perfect receiver side information case, the minimum received
bit energy and the wideband slope are

Er
b

N0 min
= loge 2

1− (1/(γ2 + |d|2))(2|d|2/(ηγ2 + 1) + log
(
ηγ2 + 1

)
/η − E

{
log I0

(
2
√
η|d|2R/(ηγ2 + 1

))}
/η
) , (37)

S0 =

⎧⎪⎪⎨
⎪⎪⎩
2
(
η
(
γ2 + |d|2)− 2η|d|2/(ηγ2 + 1

)− log
(
ηγ2 + 1

)
+ E
{
log I0

(
2
√
η|d|2R/(ηγ2 + 1

))})2
1/
(
1− η2γ4

)
exp

(
2η2γ2|d|2/(1− η2γ4

))
I0
(
2η|d|2/(1− η2γ4

))− 1
, ηγ2 < 1,

0, ηγ2 ≥ 1,

(38)

respectively, where R is a noncentral chi-square random vari-
able with

pR = 1
ηγ2 + 1

exp
(
− R + η|d|2

ηγ2 + 1

)
I0

(
2
√
η|d|2R

ηγ2 + 1

)
. (39)

Proof. Since perfect and imperfect receiver side information
cases are similar, for brevity we prove only the latter case.
When we fix the peak power A = P/v, we have v = SNR/η,
and the capacity becomes

C
ip
M(SNR) =

(
1− SNR

η

)∫
pR|X=0 log

pR|X=0
pR

dR

+
SNR
η

∫
pR|X=1 log

pR|X=1
pR

dR.

(40)

In the above capacity expression, pR = (1− SNR/η)pR|X=0 +
(SNR/Mη)

∑M
i=1 pR|X=i, where pR|X=0 and pR|X=i for 1 ≤

i ≤ M, do not depend on SNR because the ratio SNR/ν =
η is a constant. Concavity of the capacityfollows from the

concavity of −x log x and the fact that pR is a linear func-
tion of SNR. Since the capacity curve is concave, the min-
imum received bit energy is achieved at zero spectral effi-
ciency, Er

b/N0min = E{|h|2} loge 2/Ċ(0). The wideband slope
is given by (10), and depends on both the first and second
derivatives of the capacity. Hence the expressions in (37) and
(38) are easily obtained by evaluating

Ċ
ip
M(0) = γ2 + |d|2 − 2|d|2

ηγ2 + 1
− log(ηγ2 + 1)

η

+
E
{
log I0

(
2
√
η|d|2R/(ηγ2 + 1

))}
η

,

(41)

C̈
ip
M(0)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
η2M

(
1− 1

1− η2γ4
exp

(
2η2γ2|d|2
1− η2γ4

)
I0

(
2η|d|2
1− η2γ4

))
,

ηγ2 < 1,

−∞, ηγ2 ≥ 1.
(42)
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Figure 3: Eb/N0 (dB) versus spectral efficiency C(Eb/N0) (bps/Hz)
for the unfaded Gaussian channel.M = 2.

Similarly, for the perfect receiver side information case, we
note that

Ċ
p
M(0) =

E|h|ER
{
log I0

(
2
√
η|h|2R)}

η
− (γ2 + |d|2),

C̈
p
M(0) =

1− E|h|
{
I0(2η|h|2)

}
η2M

.

(43)

In contrast to the limited PAR case, the minimum bit
energy is achieved at zero spectral efficiency, and hence the
power efficiency of the system improves if one operates at
smaller SNR and vanishing duty factor. Note in this case that,
although the average power P is decreasing, the energy of
FSK signals, PT/ν, is kept fixed, and the average power con-
straint is satisfied by sending these signals less frequently. In
the imperfectly known channel, this type of peakedness in-
troduced in time proves useful in avoiding adverse channel
conditions. On the other hand, in the PAR limited case, the
decreasing average power constraint is satisfied by decreasing
the energy of FSK signals. Note that in the above result, for
both perfect and imperfect side information cases, the min-
imum bit energy and the wideband slope do not depend on
M. Therefore, on/off signaling with vanishing duty cycle is
optimally power efficient at very low spectral-efficiency val-
ues, and there is no need for frequency modulation. Further
note that in the imperfect receiver side information case, if
ηγ2 ≥ 1, then S0 = 0, and hence approaching the minimum
bit energy is extremely slow. If we relax the peak power limi-
tation and let η ↑ ∞, then it is easily seen that even in the im-
perfect receiver side information case, Er

b/N0min → loge 2 =
−1.59 dB. Indeed, [11] shows in a more general setting that
flash signaling with increasingly high peak power is required
to achieve the minimum bit energy of −1.59 dB if the fading
is not perfectly known at the receiver.

Figure 3 plots the bit-energy curves achieved by 2-
OOFSK signaling in the unfaded Gaussian channel for

different peak power values A. Notice that for all cases the
minimumbit energy is achieved in the limit as the spectral ef-
ficiency goes to zero and this energy monotonically decreases
to −1.59 dB as A→∞.

4. CAPACITY OFM-ARY OOFPSK SIGNALING

In this section, we consider joint frequency and phase mod-
ulation to improve the power efficiency of communication
with OOFSK signaling. Combining phase and frequency
modulation techniques has been proposed in the literature
(see, e.g., [20–23]). As we have seen in the previous sec-
tion, if the receiver employs energy detection and the peak-
to-average power ratio is limited, then operating at very
low SNR is extremely power inefficient. The peak-to-average
power ratio constraint puts a restriction on the energy con-
centration in a fraction of time. Hence, for low average power
values, the power of FSK signals is also low, and depend-
ing solely on energy detection leads to severe degradation
in the performance. On the other hand, if the receiver can
track phase shifts in the channel or if the received signal has
a specular component as in the Rician channel, then the per-
formance is improved at low spectral-efficiency values if in-
formation is conveyed in not only the amplitude but also the
phase of each orthogonal frequency. Hence we propose em-
ploying phase modulation in OOFSK signaling. Therefore, in
this section, we assume that the phase θi of the FSK signal,

si,θi(t) =
√

P

ν
e j(wit+θi), 0 ≤ t ≤ T , (44)

is a random variable carrying information. Henceforth this
new signaling scheme is referred to as OOFPSK signaling.
The channel input can now be represented by the pair (X , θ).
If X = i for 1 ≤ i ≤ M, and θ = θi, the transmitter sends the
sine wave si,θi(t), while no transmission is denoted by X = 0,
and hence s0(t) = 0. As another difference from Section 3,
the decoder directly uses the matched filtered output vector
Y = (Y1, . . . ,YM) instead of the energymeasurements in each
frequency component.

4.1. Perfect receiver side information

We first consider the case where the receiver has perfect
knowledge of the instantaneous realization of fading coeffi-
cients {hk}, and obtain the capacity results both for fixed M
and asM goes to infinity.

Proposition 7. Consider the fading channel model (4) and as-
sume that the receiver perfectly knows the instantaneous val-
ues of the fading, hk, k = 1, 2, . . . , while the transmitter has
no fading side information. Then the capacity of M-ary or-
thogonal OOFPSK signaling, with a fixed duty factor ν ≤ 1,
is

C
p
M(SNR) = −M − E|h|

{
(1− ν)

∫
pR|X=0 log pR||h| dR

+ ν

∫
pR|X=1,|h| log pR||h| dR

}
,

(45)
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where pR||h|, pR|X=0, pR|X=i,|h|, and f (Ri, |h|, SNR) for 1 ≤
i ≤M are defined in (12), (13), (14), and (15), respectively.

For the Proof, see Appendix C.

Proposition 8. The capacity expression (45) of M-ary OOF-
PSK signaling in the limit asM ↑ ∞ becomes

C
p
∞(SNR) = D

(
Py|x̃,h

∥∥Py|x̃=0,h
∣∣Fx̃Fh)

= E{|h|2} SNR
= (γ2 + |d|2) SNR,

(46)

where y = hx̃ + n, x̃ is a two-mass-point discrete random
variable with mass-point locations and probabilities given in
(18), and n is zero-mean circularly symmetric Gaussian ran-
dom variable with E{|n|2} = 1.

Note that 1/TC
p
∞(SNR) = (γ2 + |d|2)P/N0 nats/s is equal

to the infinite bandwidth capacity of the unfaded Gaussian
channel with the same received power. Hence, in the per-
fect side information case, ordinary FPSK signaling with duty
factor ν = 1 is enough to achieve this capacity.

4.2. Imperfect receiver side information

Similarly as in Section 3.2, we now assume that neither the
receiver nor the transmitter has any fading side information
and consider a more special fading process: memoryless Ri-
cian fading where each of the i.i.d. hk’s is a proper complex
Gaussian random variable with E{hk} = d and var(hk) = γ2.
The capacity of OOFPSK signaling is given by the following
result.

Proposition 9. Consider the fading channel (4) and assume
that the fading process {hk} is a sequence of i.i.d. proper
complex Gaussian random variables with E{hk} = d and
var(hk) = γ2, which are not known at either the receiver
or the transmitter. Then the capacity of M-ary orthogonal
OOFPSK signaling, with a duty factor ν ≤ 1, is given by

C
ip
M(SNR) = −M − ν log

(
γ2

SNR
ν

+ 1
)

− (1− ν)
∫
pR|X=0 log pR dR

− ν

∫
pR|X=1 log pR dR,

(47)

where pR, pR|X=0, pR|X=i, and f (Ri, SNR) for 1 ≤ i ≤ M are
defined in (21), (22), (23), and (24), respectively.

Proof. The proof is almost identical to that of Proposition 7.
Due to the symmetry of the channel, capacity is achieved by
equiprobable FSK signals with uniform phases. Note that in
this case,

C
ip
M(SNR) = (1− ν)

∫
pY|X=0,θ log

pY|X=0,θ
pY

dY
1
2π

dθ

+ ν

∫
pY|X=1,θ log

pY|X=1,θ
pY

dY
1
2π

dθ,
(48)

where

pY|X=i,θi

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
πM−1 e

−∑ j �=i |Yj |2 1
π(γ2α2 + 1)

e−|Yi−αde jθi |2/(γ2α2+1),

1 ≤ i ≤M,
1
πM

e−
∑M

j=1
∣∣Yj

∣∣2

, i = 0.

(49)

The capacity expression in (47) is then obtained by first inte-
grating with respect to θ, and then making a change of vari-
ables, Rj = |Yj|2.

Proposition 10. The capacity expression (47) ofM-ary OOF-
PSK signaling in the limit asM ↑ ∞ becomes

C
ip
∞(SNR) = D

(
Py|x̃

∥∥Py|x̃=0
∣∣Fx̃)

= (γ2 + |d|2) SNR−ν log
(
γ2

SNR
ν

+ 1
)
,

(50)

where y = hx̃ + n, h is a proper Gaussian random variable
with E{h} = d and var(h) = γ2, x̃ is a two-mass-point dis-
crete random variable with mass-point locations and prob-
abilities given in (18), and n is a zero-mean circularly sym-
metric complex Gaussian random variable with E{|n|2} = 1.

Similarly as before, the remarks below are given for the
asymptotic case in whichM →∞.

Remark 3. Assume that in the case of perfect receiver side in-
formation, {hk} is a sequence of i.i.d. proper complex Gaus-
sian random variables. Then the asymptotic loss in capacity
incurred by not knowing the fading is

C
p
∞(SNR)− C

ip
∞(SNR) = D

(
py|x̃,h

∥∥py|x̃=0,h∣∣FhFx̃)
−D

(
py|x̃

∥∥py|x̃=0∣∣Fx̃)
= I
(
h; y

∣∣x̃).
(51)

Remark 4. Consider the case of imperfect receiver side infor-
mation. For unit duty factor ν = 1, the capacity expression
(50) is a special case of the result by Viterbi [24]. From (50),
we can also see that for fixed symbol interval T ,

lim
ν↓0

1
T
C
ip
∞(SNR)= 1

T

(
γ2 + |d|2) SNR = (γ2 + |d|2) P

N0
nats/s,

(52)

and for fixed duty factor ν,

lim
T↑∞

1
T
C
ip
∞(SNR) = (γ2 + |d|2) P

N0
nats/s. (53)

Note that right-hand sides of (52) and (53) are equal to the
infinite bandwidth capacity of the unfaded Gaussian channel
with the same received signal power.

4.3. Limited peak-to-average power ratio

As in Section 3.3, we first consider the case where the trans-
mitter peak-to-average power ratio is limited and hence the
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duty factor ν is kept fixed, while the average power varies. The
power efficiency in the low-power regime is characterized by
the following result.

Proposition 11. Assume that the transmitter is constrained
to have limited peak-to-average power ratio and the PAR of
M-ary OOFPSK signaling, 1/ν, is kept fixed at its maximum
level. Then, for the perfect receiver side information case, the
minimum received bit energy and the wideband slope are

Er
b

N0 min
= loge 2, S0 = 2

(
E{|h|2})2
E
{|h|4} = 2

κ(|h|) , (54)

respectively, where κ(|h|) is the kurtosis of the fading mag-
nitude. For the imperfect receiver side information case, the
received bit energy required at zero spectral efficiency and the
wideband slope are

Er
b

N0

∣∣∣∣
C=0

=
(
1 +

1
K

)
loge 2, S0 = 2K2

(1 + K)2 −M/ν
, (55)

respectively, where K = |d|2/γ2 is the Rician factor.

Proof. For brevity, we show the result only for the imper-
fect receiver side information case. Note that in the capac-
ity expression (47), the only term that depends on SNR is
f (Ri, SNR). Using

lim
x→0

I1(a
√
x)√

x
= a

2
,

lim
x→0

I0(a
√
x)

x
− 2I1(a

√
x)

ax3/2
= a2

8
,

(56)

one can easily show that the first and second derivatives with
respect to SNR of f (Ri, SNR) at zero SNR are

ḟ
(
Ri, 0

) = 1
ν

(
γ2 + |d|2)(− 1 + Ri

)
,

f̈
(
Ri, 0

) = 1
ν2
(|d|4 + 2γ4 + 4γ2|d|2)(1− 2Ri +

R2
i

2

)
,
(57)

respectively. Then, differentiating the capacity (47) with re-
spect to SNR, we have

Ċ
ip
M(0) = |d|2, C̈

ip
M(0) = −

(
γ2 + |d|2)2

M
+
γ4

ν
. (58)

The received bit energy required at zero spectral efficiency is
obtained from the formula

Er
b

N0

∣∣∣∣
C=0

=
(
γ2 + |d|2) loge 2

Ċ(0)
, (59)

and the wideband slope is found by inserting the derivative
expressions in (58) into (10). Similarly, for the perfect re-
ceiver side information case, we have

Ċ
p
M(0) = E

{|h|2} = (γ2 + |d|2), C̈
p
M(0) = −

E
{|h|4}
M

.

(60)
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Figure 4: Eb/N0 (dB) versus spectral efficiency C(Eb/N0) (bps/Hz)
for the unknown Rayleigh channel (K = 0), unknown Rician chan-
nels (K = 0.25, 0.5, 1, 2), and the unfaded Gaussian channel (K =
∞) whenM = 2 and ν = 1.

Notice that in the perfect side information case, the min-
imum bit energy is −1.59 dB, and the wideband slope does
not depend on M and ν. In fact, Verdú has obtained the
same bit energy and wideband slope expression in [11] for
discrete-time fading channels when the receiver knows the
fading coefficients, and proved that QPSK modulation is op-
timally efficient achieving these values. More interesting is
the imperfect receiver side information case, where the min-
imum bit energy is not necessarily achieved at zero spectral
efficiency. Note that unlike the bit-energy expression in (55),
the wideband slope is a function ofM and ν, and is negative
if M/ν > (1 + K)2 in which case the minimum bit energy is
achieved at a nonzero spectral efficiency.

Figure 4 plots the bit-energy curves as a function of spec-
tral efficiency in bps/Hz for 2-FPSK signaling (ν = 1). Note
that for K = 0.25, the wideband slope is negative, and hence
the minimum bit energy is achieved at a nonzero spectral
efficiency. On the other hand, for K = 0.5, 1, 2, the wide-
band slope is positive, and hence higher power efficiency is
achieved as one operates at lower spectral efficiency. Simi-
lar observations are noted from Figure 5, where bit-energy
curves are plotted for 3-FPSK signaling. Figure 6 plots the
bit-energy curves for 2-OOFPSK signaling with different
duty cycle parameters over the unknown Rician channel with
K = 1. We observe that the required minimum bit energy
is decreasing with decreasing duty cycle. For instance, when
ν = 0.01, the minimum bit energy of ∼ 0.46 dB is achieved
at the cost of a peak-to-average ratio of 100. Note also that
since the received bit energy at zero spectral efficiency (55)
depends only on the Rician factor K, all the curves in Figure 6
meet at the same point on the y-axis.

4.4. Limited peak power

Here we assume that the transmitter is limited in its peak
power, while there is no bound on the peak-to-average power
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ratio. We consider the power efficiency of M-ary OOFPSK
signaling when the peak power is kept fixed at the maximum
allowed level, A = P/ν. Note that as the average power P →
0, the duty factor ν also must vanish, thereby increasing the
peak-to-average power ratio without bound. For this case, we
have the following result.

Proposition 12. Assume that the transmitter is limited in peak
power, P/ν ≤ A, and the symbol duration T is fixed. Then
the capacity achieved byM-ary OOFPSK signaling with fixed
peak power A is a concave function of the SNR. For the case

of perfect receiver side information, the minimum received
bit energy and the wideband slope are

Er
b

N0 min
= loge 2, S0 = 2η2

(
E
{|h|2})2

E
{
I0
(
2η|h|2)}− 1

, (61)

respectively, where η = A(T/N0) is the normalized peak
power. For the case of imperfect receiver side information,
the minimum received bit energy and the wideband slope are

Er
b

N0 min
= loge 2

1− log
(
γ2η + 1

)
/
(
γ2 + |d|2)η ,

S0 =

⎧⎪⎪⎨
⎪⎪⎩

2
(
η
(
γ2 + |d|2)− log

(
ηγ2 + 1

))2
1/
(
1− η2γ4

)
exp

(
2η2γ2|d|2/(1− η2γ4

))
I0
(
2η|d|2/(1− η2γ4

))− 1
, ηγ2 < 1,

0, ηγ2 ≥ 1,

(62)

respectively.

Proof. As before, we consider only the imperfect receiver side
information case. When we fix the peak power A = P/v, we
have v = SNR/η, and the capacity becomes

C
ip
M(SNR) = −M − SNR

η
log
(
γ2η + 1

)

−
(
1− SNR

η

)∫
pR|X=0 log pR dR

− SNR
η

∫
pR|X=1 log pR dR.

(63)

In the above capacity expression,

pR =
(
1− SNR

η

)
pR|X=0 +

SNR
Mη

M∑
i=1

pR|X=i, (64)

where pR|X=0 and pR|X=i for 1 ≤ i ≤ M do not depend on
SNR because the ratio SNR/ν = η is a constant. Concavity of
the capacity follows from the concavity of −x log x and the
fact that pR is a linear function of SNR. Due to concavity
of the capacity curve, the minimum bit energy is achieved
at zero spectral efficiency. Differentiating the capacity with
respect to SNR, we get

Ċ
ip
M(0) = γ2 + |d|2 − log

(
γ2η + 1

)
η

, (65)

and C̈
ip
M(0) having the same expression as in (42). Then, (62)

is easily obtained using the aforementioned formulas for the
minimum bit energy and the wideband slope. Similarly, we
note for the perfect side information case that

Ċ
p
M(0) = E

{|h|2} = γ2 + |d|2,

C̈
p
M(0) =

1− E
{
I0
(
2η|h|2)}

η2M
.

(66)

Note that the results in (61) and (62) do not depend
on M, and hence they can be achieved by pure on/off key-
ing. Further, note that (I0(2η|h|2)− 1)/η2 > |h|4 for η > 0.
Therefore, when the fading is perfectly known, the strategy of
fixing the peak power and letting ν ↓ 0 results in a wideband
slope smaller than that of fixed duty factor and hence should
not be preferred. In the imperfect receiver side information
case, if the peak power limitation is relaxed, that is, η ↑ ∞,
the minimum bit energy approaches −1.59 dB.

Figure 7 plots the bit-energy curves as a function of spec-
tral efficiency for the unknown Rayleigh channel (K = 0),
unknown Rician channels (K = 0.25, 0.5, 1, 2), and the un-
faded Gaussian channel (K = ∞) when the normalized peak
power limit is η = 1.We observe that for all cases the required
bit energy decreases with decreasing spectral efficiency, and
therefore the minimum bit energy is achieved at zero spec-
tral efficiency. Finally, Figures 8 and 9 plot the minimum bit-
energy and wideband slope values, respectively, as functions
of the normalized peak power limit η in the unknown Ri-
cian channel with K = 1. The curves are plotted for the case
in which no phase modulation is used, and the receiver em-
ploys energy detection (Section 3), and also for the scenario
in which phase modulation is employed.
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Figure 5: Eb/N0 (dB) versus spectral efficiency C(Eb/N0) (bps/Hz)
for unknown Rician channels (K = 0.25, 0.5, 1, 2) whenM = 3 and
ν = 1.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν = 0.01

ν = 0.1

ν = 0.5

ν = 1

C(Eb/N0) (bps/Hz)

E
b
/N

0
(d
B
)

Figure 6: Eb/N0 (dB) versus spectral efficiency C(Eb/N0) (bps/Hz)
for the unknown Rician channel with K = 1 for ν = 1, 0.5, 0.1, 0.01
whenM = 2.

5. CONCLUSION

We have considered transmission of information over wide-
band fading channels using M-ary orthogonal on/off FSK
(OOFSK) signaling, in which M-ary FSK signaling is over-
laid on top of on/off keying. We have first assumed that the
receiver uses energy detection for the reception of OOFSK
signals. We have obtained capacity expressions when the re-
ceiver has perfect and imperfect fading side information both
for fixed M and as M goes to infinity. We have investigated
power efficiency when the transmitter is subject to a peak-to-
average power ratio (PAR) limitation or a peak power limi-
tation. It is shown that under a PAR limitation, no matter
how large the transmitted energy per information bit is, reli-
able communication is impossible for small enough spectral
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Figure 7: Eb/N0 (dB) versus spectral efficiency C(Eb/N0) (bps/Hz)
for the unknown Rayleigh channel (K = 0), unknown Rician chan-
nels (K = 0.25, 0.5, 1, 2), and the unfaded Gaussian channel (K =
∞) whenM = 2 and fixed peak limit η = 1.

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

Phase mod.

No phase mod.

η

E
b
/N

0
m
in

Figure 8: Eb/N0min versus normalized peak power limit η in the un-
known Rician channel with K = 1.

efficiency even in the unfaded Gaussian channel, and hence
it is extremely power inefficient to operate in the very low
SNR regime. On the other hand, if there is only a peak power
limitation, we have demonstrated that power efficiency im-
proves as one operates with smaller SNR and vanishing duty
factor. We note that, in this case, on/off keying (OOK) is an
optimally efficient signaling in the low-power regime achiev-
ing the minimum bit energy and the wideband slope in both
perfect and imperfect channel side information cases, while
combined OOK and FSK signaling is required to improve en-
ergy efficiency when a constraint is imposed on the PAR.

We have also considered joint frequency-phase modu-
lation schemes where the phase of the FSK signals are also
used to convey information. Similarly, we have analyzed the
capacity and power efficiency of these schemes. Assuming
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Figure 9: Wideband slope S0 versus normalized peak power limit η
in the unknown Rician channel with K = 1.

perfect channel knowledge at the receiver, we have obtained
the minimum bit-energy and wideband slope expressions. In
this case, it is shown that FSK signaling is not required for
optimum power efficiency in the low-power regime as pure
phase modulation in the PAR limited case and OOK in the
peak power limited case achieve both the minimum bit en-
ergy and the optimal wideband slope. For the case in which
the receiver has imperfect channel side information and the
input is subject to PAR constraints, we have shown that if
M/ν > (1 + K)2, then the wideband slope is negative, and
hence the minimum bit energy is achieved at a nonzero spec-
tral efficiency, C∗ > 0. It is concluded that, in these cases,
operating in the region, where C < C∗, should be avoided.
We also note that, in general, the combined OOK and FSK
signaling performs better and indeed if the number of or-
thogonal frequencies, that is, M, is increased, then a smaller
minimum bit-energy value is achieved. Furthermore, for the
case in which only the peak power is limited with no con-
straints on the peak-to-average ratio, we have investigated
the spectral-efficiency/bit-energy tradeoff in the low-power
regime by obtaining both the minimum bit energy (attained
at zero spectral efficiency) and the wideband slope which can
be achieved by pure OOK signaling.

APPENDIX

A. PROOF OF PROPOSITION 1

Since the fading coefficients form a stationary ergodic pro-
cess, the capacity of OOFSK signaling can be formulated as
follows:

C(SNR) = lim
n→∞max

Xn

1
n
I
(
Xn;Rn

∣∣|h|n), (A.1)

where Xn = (X1, . . . ,Xn), Rn = (R1, . . . ,Rn), and |h|n =
(|h1|, . . . , |hn|). As the additive Gaussian noisesamples are

independent for each symbol interval, the conditional out-
put density satisfies

pRn|Xn,|h|n =
n∏

k=1
pRk|Xk ,|hk|, (A.2)

where

pRk|Xk=i,|hk|

=
⎧⎨
⎩e

−∑M
j=1 Rk j e−α2|hk|2I0

(
2
√
Rkiα2|hk|2

)
, 1 ≤ i ≤M,

e−
∑M

j=1 Rk j , i = 0,
(A.3)

with α2 = PT/νN0 = SNR/ν. From the above fact, one can
easily show that

I
(
Xn;Rn

∣∣|h|n) = n∑
k=1

I
(
Xk;Rk

∣∣|hk|)

−D

(
pRn||h|n

∥∥∥∥
n∏

k=1
pRk||hk|

∣∣∣∣F|h|n
)

≤
n∑

k=1
I
(
Xk;Rk

∣∣|hk|),
(A.4)

where D(·|| · F|h|n) denotes the conditional divergence. The
above upper bound is achieved if the input vector Xn =
(X1, . . . ,Xn) has independent components. Due to the sym-
metry of the channel, an input distribution equiprobable
over nonzero input values, that is, P(Xk = i) = ν/M for 1 ≤
i ≤ M, where P(Xk = 0) = 1− ν, maximizes I(Xk;Rk | |hk|)
for each k. To see this, note that since the mutual informa-
tion is a concave function of the input vector, a sufficient and
necessary condition for an input vector to be optimal is

∂

∂Pi

[
I
(
Xk;Rk

∣∣|hk|)− λ

( M∑
j=1

Pj − ν

)]
= 0, 1 ≤ i ≤M,

(A.5)

where λ is a Lagrange multiplier for the equality constraint∑M
j=1 Pj = ν, and Pj denotes P(Xk = j) for 1 ≤ j ≤ M. Note

that the duty factor is fixed, and hence P(X = 0) = 1 − ν
is a predetermined constant. Evaluating the derivatives, the
above condition can be reduced to

E|hk|

{∫
p
Rk

∣∣Xk=i,|hk| log
pRk|Xk=i,|hk|
p
Rk

∣∣|hk| dRk

}
− 1 = λ,

1 ≤ i ≤M,

(A.6)

and due to the symmetry of the channel, letting Pi = P(Xk =
i) = ν/M for 1 ≤ i ≤ Msatisfies the condition. Therefore, an
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i.i.d. input sequence with the above distribution achieves the
capacity. The capacity expression in (11) is easily obtained by
evaluating the mutual information achieved by the optimal
input, considering a generic symbol interval, and dropping
the time index k.

B. PROOF OF PROPOSITION 2

The method of proof follows primarily from [25], where
martingale theory is used to establish a similar result for M-
ary FSK signaling over the noncoherent Gaussian channel.
The capacity expression in (11) can be rewritten as

C
p
M(SNR) = νE|h|

{∫
e−R−(SNR/ν)|h|

2
I0

(
2

√
SNR

ν
|h|2R

)
log

e−R−(SNR/ν)|h|2I0
(
2
√
(SNR/ν)|h|2R)

e−R
dR

}

− E|h|

{∫
e−

∑M
i=1 Ri

SM(R)
M

log
SM(R)
M

dR

}
,

(B.1)

where the first term on the right-hand side can be recognized
as the conditional divergence D(pR|x̃,|h|‖pR|x̃=0,|h||F|h|Fx̃),
and

SM(R) =
M∑
i=1

(
ν f
(
Ri, |h|, SNR

)
+ (1− ν)

)
(B.2)

is a sum of i.i.d. random variables. The following result is
noted in [25].

Lemma 1. Let X1,X2, . . . be identically distributed random
variables having finite mean. Let Sn = X1 + · · · + Xn, and
βn = β(Sn, Sn+1, . . .), the Borel field generated by Sn, Sn+1, . . . .
Then {. . . , Sn/n, Sn−1/n− 1, . . . , S1/1} is a martingale with re-
spect to {. . . ,βn,βn−1, . . . ,β1}. Moreover, if g is a function
which is convex and continuous on a convex set containing the
range of X1, and if E{|g(X1)|} <∞, then {g(Sn/n)}∞ is a sub-
martingale.

From Lemma 1, we conclude that

χM = g
(
SM(R)
M

)
= SM(R)

M
log

SM(R)
M

(B.3)

is a submartingale, and hence from the martingale conver-
gence theorem [26], χM converges to a limit χ∞ almost surely
and in mean. Therefore, limM→∞ E{χM} = E{limM→∞ χM} =
E{χ∞}. Note also that from the strong law of large numbers
and continuity of the function g(x) = x log x,

lim
M→∞

χM = lim
M→∞

g
(
SM(R)
M

)
= g

(
lim
M→∞

SM(R)
M

)

= g
(
ER
{
ν f (R, |h|, SNR) + (1− ν)

})

= g
(∫

e−R
(
ν f (R, |h|, SNR) + (1− ν)

)
dR
)

= g(1) = 0.

(B.4)

Hence, we conclude that

lim
M→∞

ER

{(
SM(R)
M

)
log
(
SM(R)
M

)}
= 0. (B.5)

The first term on the right-hand side of (B.1) does not
depend on M, and the second term can be expressed as
E|h|ER{(SM(R)/M) log(SM(R)/M)}. The proof is completed
by showing that

lim
M→∞

E|h|ER
{
SM(R)
M

log
SM(R)
M

}

= E|h|
{

lim
M→∞

ER

{
SM(R)
M

log
SM(R)
M

}}
= 0,

(B.6)

where the interchange of limit and expectation needs to be
justified by invoking the Dominated Convergence Theorem.
Note that since {(SM(R)/M) log(SM(R)/M)} is a submartin-
gale,

0 ≤ ER

{
SM(R)
M

log
SM(R)
M

}
≤ ER

{
S1(R) log S1(R)

}
<∞.

(B.7)

By noting that f (R, |h|, SNR) is an exponentially decreasing
function of |h|, it can be easily shown that∫

ER
{
S1(R) log S1(R)

}
dF|h| <∞ (B.8)

for any distribution function F|h| with E{|h|2} < ∞. There-
fore, the Dominated Convergence Theorem applies using the
integrable upper bound ER{S1(R) log S1(R)}.

C. PROOF OF PROPOSITION 7

Similarly to the proof of Proposition 1, an i.i.d. input se-
quence achieves the capacity and due to the symmetry of
the channel, equiprobable FSK signals each having uniformly
distributed phases are optimal. Now, the maximum input-
output mutual information is

I
(
X , θ;Y|h)=Eh

{
(1− ν)

∫
pY|X=0,θ log

pY|X=0,θ
pY||h|

dY
1
2π

dθ

+ν

∫
pY|X=1,θ,|h| log

pY|X=1,θ,|h|
pY||h|

dY
1
2π

dθ

}
,

(C.1)
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where

pY|X=i,θi,h

=

⎧⎪⎪⎨
⎪⎪⎩

1
πM−1 e

−∑ j �=i |Yj |2
(
1
π

)
e−|Yi−αhe jθi |2 , 1 ≤ i ≤M,(

1
πM

)
e−

∑M
j=1 |Yj |2 , i = 0.

(C.2)

In the above formulation, α2 = PT/νN0 = SNR/ν. It can be
easily seen that

∫
pY|X=i,θ log pY|X=i,θ dY

1
2π

dθ = − log(πe)M , 0 ≤ i ≤M.

(C.3)

The capacity expression in (45) is then obtained by first inte-
grating

∫
pY|X=0,θ log pY dY

1
2π

dθ,
∫
pY|X=1,θ log pY dY

1
2π

dθ,

(C.4)

with respect to θ and thenmaking a change of variables, Rj =
|Yj|2.
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