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Abstract

We investigate the feasibility of using correlation-based methods for estimating the spatial location of distributed
receiving nodes in an indoor environment. Our algorithms do not assume any knowledge regarding the
transmitter locations or the transmitted signal, but do assume that there are ambient signal sources whose
location and properties are, however, not known. The motivation for this kind of node localization is to avoid
interaction between nodes. It is most useful in non-line-of-sight propagation environments, where there is a lot of
scattering. Correlation-based node localization is able to exploit an abundance of bandwidth of ambient signals, as
well as the features of the scattering environment. The key idea is to compute pairwise cross correlations of the
signals received at the nodes and use them to estimate the travel time between these nodes. By doing this for all
pairs of receivers, we can construct an approximate map of their location using multidimensional scaling methods.
We test this localization algorithm in a cubicle-style office environment based on both ray-tracing simulations, and
measurement data from a radio measurement campaign using the Stanford broadband channel sounder. Contrary
to what is seen in other applications of cross-correlation methods, the strongly scattering nature of the indoor
environment complicates distance estimation. However, using statistical methods, the rich multipath environment
can be turned partially into an advantage by enhancing ambient signal diversity and therefore making distance
estimation more robust. The main result is that with our correlation-based statistical estimation procedure applied
to the real data, assisted by multidimensional scaling, we were able to compute spatial antenna locations with an
average error of about 2 m and pairwise distance estimates with an average error of 1.84 m. The theoretical
resolution limit for the distance estimates is 1.25 m.
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1 Introduction
Indoor localization is a long-standing open problem in
wireless communications [1], particularly in wireless
sensor networks [2,3]. Localization techniques in non-line-
of-sight indoor environments face two major challenges:
(i) multipath from rich scattering makes it difficult to
identify the direct path, limiting the use of distance esti-
mation based on time-delay-of-arrival (TDOA) methods;
(ii) the strongly changing propagation loss due to shadow-
ing impairs distance estimation based on the received sig-
nal strength (RSS).
In both kinds of algorithms, TDOA and RSS, nodes

can estimate their own location relative to several
“anchor nodes” acting as transmitters. This is commonly

done by estimating the distances to the anchor nodes
and subsequently using triangulation for position
estimation.
The estimation of the TDOA is done either by round-

trip time estimation [4], the transmission of specific
training sequences [5], or simply by detecting the first
peak of the received signal [6]. Ultra-wide band commu-
nications are specifically suited for TDOA distance esti-
mation because of the large available bandwidth [7].
Many publications discuss RSS-based distance estima-

tion. The work presented in [8] provides a comprehen-
sive overview of an actual implementation using WiFi
hotspots in a self-configuring network.
Another technique described in [9] uses spatial signa-

tures for localization. However, this requires multiple
antennas at the nodes and a database of spatial locations.
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Moreover, this technique is limited to specific antenna
requirements.
Correlation-based methods [10] have been widely used

in the last few years in a variety of fields, including sen-
sor networks. Some examples include estimation of the
local propagation speed of surface seismic waves and
even earthquake prediction [11]. The idea is to cross
correlate seismic noise signals from seismographs
deployed in a wide area so as to estimate the travel time
of the seismic waves from one sensor to the other.
Given the sensor locations, the wave speed can be esti-
mated using travel time tomography.

Contribution
In this paper, we investigate the feasibility of passive,
correlation-based indoor radio localization.
In contrast to previous works, our localization scheme

only relies on ambient signals with wide bandwidth.
Thus, no dedicated transmitters need to be deployed as
long as the ambient signals from other wireless systems
are sufficiently rich. In effect, the radio signals are
unknown, the location of the sources is unknown, even
the number of effective sources is unknown.
Even under these very stringent conditions, the distances

between the receiving nodes can be estimated in a three-
step procedure: (i) first, all nodes are receiving and record-
ing ambient signals, (ii) the nodes communicate their
received signals to a central entity or node, (iii) the central
entity estimates the pairwise travel times, hence the dis-
tances, between all the nodes by cross correlating their
received signals and identifying peaks in the cross-correla-
tion function. If the ambient signals have sufficient spatial
diversity, then the peaks of the cross correlations provide a
robust estimate of the distance between the two receiving
antennas. By doing this for all pairs of receiving nodes, we
construct an approximate map of their locations using
weighted least-squares methods, in particular multidimen-
sional scaling (MDS) [12,13].
This method suggests that there are several advan-

tages for radio localization:

• There is no communication overhead between
nodes by active probing. Ranging is done without
nodes cooperating or even communicating with each
other. Nodes do not even know how many other
peers are in their vicinity.
• Only the central entity has the information from
which to estimate the location of the nodes. The
gains of cooperative localization (i.e., the pairwise dis-
tance estimates between peers) are achieved at the
central entity, without having the nodes cooperate.
This is advantageous for situations, where nodes do
not want to reveal their location to other peers, as
with active probing.

• While the performance of TDOA ranging methods is
inherently limited by the bandwidth of the (known)
transmitted signals, correlation-based localization is
only limited by the bandwidth of the (unknown)
received signals, depending on communication or
other wireless activities in the environment. Thus, cor-
relation-based methods are not limited by scarce band-
width allocations. Using wide-band receivers, a much
higher ranging resolution can be obtained by simply
recording ambient signals from any occupied bands.
By that, the performance improves with the employed
bandwidth of the receivers.

To show the feasibility of this approach, we explore
the performance of correlation-based radio localization
in an indoor environment. To quantify it, we use (i) ray-
tracing simulations and (ii) data from a recently con-
ducted radio measurement campaign, using the RUSK
Stanford multi-antenna radio channel sounder with a
center frequency of 2.45 GHz and bandwidth of 240
MHz [14].
The strongly scattering nature of the indoor environ-

ment makes the pairwise distance or travel time estima-
tion challenging. However, in contrast to other
localization methods, multipath from rich scattering is
now both helpful and harmful for distance estimation.
While multipath increases spatial diversity of the signals,
it also leads to additional peaks in the correlation func-
tion that reduce the robustness of travel time estima-
tion. The main feature in this work is the proper
treatment and utilization of the beneficial properties of
rich multipath while controlling its negative effects. To
achieve this goal, we propose statistical peak-selection
algorithms that significantly increase the localization
accuracy.
We demonstrate, therefore, that passive, correlation-

based radio localization is feasible in wireless indoor
environments.

Organization
The paper is organized as follows. Section 2 provides a
brief motivation for using correlation-based methods for
distance estimation. In Section 3, we consider the pro-
blem of travel time estimation using cross correlations.
Section 4 presents different approaches for improving the
pairwise travel-time estimation based on correlation-
based methods. Section 5 briefly presents how we use
MDS to find position estimates, discusses the results
from applying our algorithms and MDS to the simulated
and measured data, and demonstrates the effect of trans-
mitter positions using the simulated data. With Section
7, we conclude the paper. Appendices A.1 and A.2 pro-
vide brief descriptions of the ray-tracing simulations and
the measurement data we use in this paper.
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2 Motivation for the Use of Cross Correlations in
Distance Estimation
We start out with a simple example. Consider a line-of-
sight environment, as shown in Figure 1. A single source
emits a pulse s(τ) = δ(τ), while two receivers record the
signals r1(τ) and r2(τ), respectively, where τ denotes the
delay and δ (·) denotes the Dirac delta function. The
positions of the source and of the receivers are
unknown. The signal emitted by the source is received
by both receivers with certain delay lags. Thus, the
received signals become r1(τ) = g1δ(τ - τ1), and r2(τ) =
g2δ(τ - τ2), where τk denotes the delay lag from the
source to the kth receiver, and gk denotes the path loss
of the signal. By cross correlating the two received sig-
nals,

c1,2(τ ) =
∫

r1(τ ′)r2(τ + τ ′)dτ ′ = γ1γ2δ(τ − (τ1 − τ2)),(1)

we see that the resulting cross correlation is a pulse at
the delay difference Δτ = τ1 - τ2. This also holds for arbi-
trary source signals, as long as they have certain auto-
correlation properties, as shown in the next section.
By finding the peak in the received signals cross corre-

lation, we can estimate the distance between the recei-
vers as d̂ = �τ c0, with c0 indicating the speed of light.
When the transmitter is on a straight line going through
the two receivers, this estimated distance is the exact
distance between the nodes [10]. However, when there
is an angle a between the direction of the plane wave
front and the straight line between the receivers, the dis-
tance estimate will give d̂ = d | cos(α) |, which carries a
systematic error.
Since we do not know the position of the source, we

cannot correct for this systematic error, but we can
quantify its distribution. For this, we make the following
assumptions: (i) we consider horizontal wave propaga-
tion only, since it is predominant in indoor environ-
ments; (ii) all directions of the transmitted signals are
equally likely, i.e., a is distributed uniformly,
α ∼ U[−π ,π)). So, we can calculate the probability den-

sity function of the estimated distance, pd̂(d̂) by

transformation of the random variable a as

pd̂(d̂) =

⎧⎪⎨
⎪⎩

2
π

1

d

√
1 − (d̂/d)

2
. . . 0 ≤ d̂ ≤ d,

0 . . . d̂ > d,

(2)

and also obtain its cumulative distribution function

F(d̂) =
2
π
arcsin

(
d̂
d

)
. . . 0 ≤ d̂ ≤ d, (3)

which is shown in Figure 2. It turns out that in 50% of
all cases, our distance estimation error is less than 30%
(indicated by the dashed lines).
While basing the distance estimation on a single plane

wave is questionable because of the rather large sys-
tematic error, real radio propagation environments pro-
vide directional diversity by multiple sources and by
multipath.
Multipath is both advantageous and challenging: (i)

The receiver cross correlation gets multiple peaks pro-
viding more information about the propagation environ-
ment, which improves distance estimation, (ii) By
reflections, the length of some paths can actually exceed
the distance between the nodes.
Note that in this scheme, the existence of a direct line

of sight (LOS) or non-LOS between the nodes is of
reduced interest. More important is whether a wave can
travel unobstructed over a pair of nodes. While we may
observe an obstructed direct LOS between the nodes,
we may still get a good distance estimate from another
wave front connecting the node pair from a different
propagation angle.
The way to exploit this signal diversity and how to

obtain a robust distance estimate is the topic of the rest
of this paper.

3 Computation of Cross Correlations
This section describes the computation of the cross cor-
relations using a more complex setting with multiple
sources, including scattering in the environment. A
finite number of L sources, Sl, l = 1,...,L, transmit ran-
dom uncorrelated signals sl(t, τ), i.e.,

Rx2Rx1
d

Tx

α

d̂ = Δτ c0 = d cos(α)
Figure 1 A plane wave from a single source is observed with a specific delay at both receivers. The delay difference is used to estimate
the distance between the receivers
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E{sl(t, τ )sl′(t′, τ ′)} =
{
1 . . . l = l′ ∧τ = τ ′

0 . . . l �= l′ ∨ τ �= τ ′, (4)

where ∧ denotes the logic AND operator, ∨ the logic
OR operator, t denotes absolute time (assuming block
transmission), and τ denotes the delay lag. For example,
white noise signals fulfill these properties asymptotically,
when τ ® ∞. We assume that the channel stays con-
stant within the transmission of a block and then
changes due to fading. A number of K receivers, Rk, k =
1,...,K, record their respective received signals rk(t,τ)
from these multiple random sources, i.e.,

rk(t, τ ) =
L∑
l=1

∫
τ ′

sl(t, τ ′)hkl(t, τ − τ ′)dτ ′, (5)

where hkl(t, τ) denotes the time and frequency selec-
tive radio channel from the lth source to the kth
receiver.
The cross-correlation function (CCF) between two

received signals at time t is

ck,k′(t, τ ) =
∫
τ ′

rk(t, τ ′)rk′(t, τ + τ ′)dτ ′, (6)

which can be written as

ck,k′(t, τ ) =
L∑
l=1

∫
τ ′

hkl(t, τ ′)hk′ l(t, τ + τ ′)dτ ′, (7)

when the source signals fulfill the condition in (4).
This CCF provides information about the delay lag

between the two receivers Rk and Rk’ as discussed in the
previous section.
When applying this method to radio channel measure-

ments, the CCF can be averaged over all measured time
instants T (i.e., averaging over fading variations of the
channel) by

ĉk,k′(τ ) =
1
T

T∑
t=1

ck,k′(t, τ ). (8)

For the actual implementation, all convolutions and
correlations in delay domain are implemented as multi-
plications in frequency domain.
It is well known [10] that for an infinite number of

(uncorrelated) orthogonal sources, isotropically distribu-
ted in space, the resulting CCF has a rectangular shape,
centered at zero and having a width of 2d/c0. The range
resolution is limited by the bandwidth of the source sig-
nal and is given by c0/B [15] due to using peak-search
in a signal of limited bandwidth. In our setup, c0/B =
1.25 m. Since in our simulations and measurements (cf.
Appendices A.1 and A.2) only a finite number of trans-
mitting antennas contribute to the signal recorded at
each receiving antenna, we rely on sufficient scattering
in the environment for enhancement of directional
diversity. This leads to a trade-off between two effects:
(i) Multipath increases the signal diversity and thus cre-
ates peaks in the CCF that better represent the true dis-
tance, but (ii) multipath also generates “wrong”
(additional) peaks from propagation paths that do not
directly travel through the receivers, which in turn
reduce the accuracy of distance estimation.
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Figure 2 Cumulative distribution function of d̂ for d = 1, assuming a uniform distribution of the direction of the impinging wave. In
50% of the cases, the estimation error is less than 30%
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An example of signals received at a pair of receivers
and a CCF evaluated from our measurements (cf.
Appendix A.2) is shown in Figure 3. We observed a
strong directionality of the impinging radio waves,
which leads to peaks at various distances. The true dis-
tance of 4.9 m, indicated by the dashed lines, is clearly
visible as a peak in the CCF. However, other strong
peaks are also present. Because of these multiple peaks,
which sometimes dwarf the accurate peaks, a more ela-
borate distance estimation method is necessary.

4 Improved Distance Estimation Method
The distance estimation can be improved by combining
four ideas: (i) using short-time estimates of the CCF, (ii)
using multiple peaks from the CCF for distance estima-
tion, (iii) using relative weighting on the peaks from the
CCF to distinguish between peaks of comparable height
(power), and (iv) using multi-dimensional scaling (MDS)
to jointly improve the distance estimation and produce
a location estimate.
As explained in detail above, given sufficient source

diversity and a weakly scattering environment, the peak
of the cross-correlation of signals recorded by two sen-
sors in the environment corresponds to the travel time
between them. However, little-to-no theory exists for
the case of limited source diversity and a strongly scat-
tering environment. In this situation, we have multiple
strong peaks where possibly none correspond to the
correct travel time. As a result, we developed an empiri-
cal approach to peak selection that tries to utilize the

information we have from both multiple peaks in the
correlation functions and multiple realizations of the
multipath in the environment. Others have studied how
to address multiple peaks in cross-correlation in rever-
berant environments and developed strategies using sec-
ondary peaks, weighting, and a type of fourth order
correlation function [16,17]. Peak selection in an opti-
mal way is a challenging problem that will be the sub-
ject of future work.

4.1 Short-time Estimates of the CCF
The long-time averaging applied in the original
approach in (8) may reduce information about the pro-
pagation environment. By using the short-time estimates
of the CCF from (6), individual differences in the propa-
gation environment, caused by fading, can be utilized to
improve the distance estimation as follows.

4.2 Multiple Peaks for Distance Estimation
As motivated in Section 2, the distance between two
receivers is proportional to the propagation delay,

d̂k,k′ = τ̂k,k′ c0, (9)

where d̂k,k′ and τ̂k,k′ denote the distance estimate and
travel time estimate, respectively.
A direct way to estimate the delay between two recei-

vers is to identify the largest peak in their CCF. This
approach does not perform well in multipath environ-
ments. Instead, we consider a more robust statistical
approach based on multiple peaks in the CCF. The
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Figure 3 A cross-correlation function computed from our data (between receiving nodes 2 and 6). The true distance of 4.9 m is nicely
reflected by the peaks
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problem is how to choose and how to use the peaks in
the CCF.
We use a statistical approach as follows: the CCF is

sorted according to

ĉk,k′(t, τ1) > ĉk,k′(t, τ2) > · · · > ĉk,k′(t, τM), (10)

with M denoting the number of resolved delays in the
CCF. From this sorting, we use p = 0.5% of the delays
having the strongest CCF values, i.e.,

τ̂k,k′(t,n) =| τn |, n ∈ [
1, . . .

⌊
pM

⌋]
, (11)

which corresponds to taking the top ⌊pM⌋ = 4 peaks
in our data set. The value of p should balance the trade-
off between choosing enough peaks to average both the
under- and over-estimation of the travel time and
choosing few enough to exclude peaks that do not add
useful information to travel-time estimation. Our choice
for p is based on our empirical observations of the data.
We then take a weighted average of these multiple

delays as the distance estimate, i.e.,

τ̂k,k′ =
1

T · ⌊
pM

⌋ T∑
t=1

	pM
∑
n=1

wk,k′(t,n)τ̂k,k′(t,n), (12)

where the choice of the weights wk,k’ (t, n) is described
in the next section.

4.3 Cross-correlations with Weights
To improve the distance estimation further, we propose
to distinguish between dominant peaks and peaks of
similar amplitude. For this reason, we weigh the peaks
based on their relative amplitude.
Since we are using N = ⌊pM⌋ peaks, we assigned a

weight to each peak equal to the ratio between its
amplitude over the Nth largest peak’s amplitude,

wk,k′(t,n) = ĉk,k′(t, τN)/ĉk,k′(t, τN), n ∈ [1,N]. (13)

The estimates computed by this statistical procedure
can subsequently be improved by taking geometrical
considerations into account as shown in the next
section.

4.4 Multidimensional Scaling
Multidimensional scaling (MDS) algorithms are statisti-
cal techniques dating back 50 years, that take as its
input a set of pairwise similarities and assign them loca-
tions in space [12,13]. Recently, it was applied to a dif-
ferent, but related problem, of node localization in
sensor networks [3].
In our problem, the input is the distance estimates

between all receiver pairs. Multidimensional scaling,
after introducing a few more assumptions as stated

below, improves these individual distance estimates by
jointly estimating receiver positions. The estimated
receiver positions are also of much interest in this pro-
blem and are not simply a by-product in improving
pairwise distance estimates.
In MDS, we have the following least-squares optimiza-

tion problem

min
{Rk

}
∑
k �=k′

λk,k′ | d̂k,k′− ‖ Rk − Rk′ ‖ 2 |2, (14)

where d̂k,k′ are the provided distance estimates, lk,k’
are weights, || · ||2 is the Euclidean distance, and Rk

is the location of receiver k. In our problem, we
assume the locations lie in ℝ2. As we will show in
the next section, the error in our pairwise distance
estimates is correlated with the distance estimates

themselves. Thus, a natural weighting is λk,k′ = 1/d̂α
k,k′,

for a ≥ 0. We found that a = 1 produced the smallest
mean squared localization error. To solve this opti-
mization problem, we used the algorithm given in
[18], which resulted in the final position estimates
{Rk} of the receivers. The results using this algorithm
are sensitive to the initial guess, so we used the fol-
lowing procedure to compute our initial position esti-
mate:

1. To fix our initial receiver location, we first choose
the receiving antenna Rk(1) that has the smallest
average estimated distance from the other receiving
antennas and place it at the origin, i.e., Rk(1) = (0,0).
2. The second receiver Rk(2) is then chosen to be the
one with the smallest estimated distance from the

first receiver and is placed at Rk(2) =
(
d̂k(1)k(2), 0

)
.

3. The third receiver Rk(3) is then chosen to be the
one with the smallest estimated distance from recei-
vers Rk(1) and Rk(2) and placed at the point in the
first quadrant d̂k1k3 from Rk(1) and d̂k(2)k(3) from Rk(2).
Should the third receiver fall on a line with the first
two anchors, the triangle inequality is not valid and
the space not properly spanned. In this case, another
third receiver is chosen.
4. The rest of the receiving antennas are placed
using the iterative least-squares lateration procedure
in [19].

With position estimates computed using MDS, which
jointly uses the pairwise distance estimates, we can com-
pute new pairwise distance estimates. These distance
estimates should be an improvement as they are “jointly
computed” and explicitly use the geometry of the setup,
i.e., the receivers lie in a 2-D plane.
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5 Results
In the subsections that follow, we apply these distance
estimation and localization methods to both a simulated
dataset and data from an indoor radio channel measure-
ment campaign.

5.1 Ray-tracing Simulations
We first present our localization method applied to a
environment simulated using a state-of-the-art ray-tra-
cing tool including diffuse scattering. A detailed descrip-
tion of the ray-tracing algorithm is provided in
Appendix A.1. The nodes were set up as shown in Fig-
ure 4. We estimated the distance between all pairs of
nodes and calculated the distance estimation error using
the ("statistical peak selection”) method presented in
Section 4. As reference to with which to compare, we
use the long-time average peak method ("cumulative
peak”), i.e., selecting the strongest peak out of the aver-
aged long-time CCF given in (8).
A scatter plot of the true distance versus the estimated

distance for these approaches is shown in Figure 5. This
plot exhibits a significant underestimation bias. We
expect this from the theory, especially when we have
strong sources illuminating from the “wrong” angle.
The empirical cdfs of the distance estimation errors

are shown by the dashed lines in Figure 6. Using only
the peak of the averaged long-time CCF performs worst,
by far, because it does not use the diversity in time. In
contrast, using our statistical peak selections signifi-
cantly lowers the distance estimation error.

With the simulated channel bandwidth of 240 MHz,
our theoretical resolution is limited to an accuracy of c/
B = 1.25 m. Our final results produced an average pair-
wise distance estimation error of 4.55 m.
Next, we used MDS to obtain position estimates. By

the weights introduced in the MDS, a we make use of
the correlation between the distance estimation and its
error. In Figure 7, the localization results using our sta-
tistical method are shown. The true locations are
denoted by circles, while the estimated locations are
marked by squares. The arrows are connecting the esti-
mates to their respective true locations. The positions
computed in the MDS need to be anchored by a frame
of reference as translation, rotation, and reflection in the
2-D plane do not affect them. Three anchor positions
would be needed to anchor the entire network. Instead
of visualization, we find the rotation, translation, and
reflection that gives the closest positions to the true
locations in the least-squares sense.
Looking at this figure, we notice that the error is mostly

in the x-direction. The reason for this is the strong direc-
tionality of the waves coming mostly from top/bottom,
but not from left/right. This naturally leads to an underes-
timation of the distance between the horizontally-spaced
node pairs. We also observe that the receiving antennas
that are lying centrally have the smallest position estima-
tion errors. This is due to the increased diversity of the
source signals. We find an average position estimation
error of 3.66 m, with a minimum error of 1.25 m, a maxi-
mum error of 5.87 m, and a standard deviation of 1.56 m.
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Looking at the position estimates when using only the
long-time average peak in Figure 8, the results seem
questionable. Some distances are strongly underesti-
mated as already seen in Figure 5. In this approach, reli-
able position estimation becomes impossible. This
clearly demonstrates that multipath must not be

ignored, but needs to be utilized to enable acceptable
distance estimation.
To compare our position estimates to a benchmark,

we compute the localization Cramer-Rao lower bound
as in [20]. Limits of cooperative localization have also
been studied in [21]. The distance estimation error is
modeled by

σ 2
ij = KEd

β

ij , (15)

where KE is an environment factor, d denotes the dis-
tance between two nodes, and b an appropriate expo-
nent. After calibrating this model with our simulations
and using the equations from [20], we can quantify the
CRLB of the estimation error for every individual node.
The results are summarized in Table 1.
If our estimator is optimal (fulfilling the CRLB), then

the mean value of the last column should be 1. In our
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Figure 5 Scatter plots of true distance versus estimated
distance for different localization approaches. Notice the large
underestimation bias
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case, the mean value is ≈10. In other words, the variance
of our distance estimator is about 10 times higher than
the one of the CRLB; however, this estimate is based on
just 14 samples.
Additionally, we can recompute pairwise distance esti-

mates from the position estimates. The empirical cdfs of
the distance estimation error are shown by the solid
lines in Figure 6. While we expect these new distance
estimates to be improved because they are computed
jointly with the other receiver pairs constrained to lie on
the plane via MDS, we see that this is not the case with
the simulations. Since the distance estimates in our
simulations are almost always underestimated, the MDS
fails to improve over the initial distance estimates and
rather makes the whole “environment” smaller.

5.2 Effect of Transmitter Locations
As mentioned earlier, the locations of the transmitters
have a great effect on the quality of the distance and
position estimation. With our simulated data, we can
actually turn off and on certain transmitters and exam-
ine the effect that this has. Figure 9 demonstrates that
selecting different sets of transmitters produce very dif-
ferent results. These figures use four different sets of
transmitters: all, top and bottom, left and right, and the
configuration that gave the minimal average position
error in a thorough but not exhaustive search.
As expected, using the top and bottom transmitters

results in good location estimation in the y-direction
while using the left and right transmitters gives good
location estimation in the x-direction. Comparing the
location estimates of the top left and bottom right scat-
terers in Figure 9d to their position estimates using all
of the transmitters (plot (a) in the same figure), one can
observe that including the transmitter closest to the true
receiver location results in that receiver’s estimated posi-
tion error being larger. This is also consistent with the
intuition brought forward in Section 2. Sources close to
the receiver nodes will most likely lead to an underesti-
mation of the distance.

5.3 Performance in a Measured Environment
As a proof of concept, we applied our localization
method to an indoor radio channel measurement
described in Appendix A.2 The nodes were set up in
two squares as shown in Figure 10. As with the ray-tra-
cing simulations, we estimated the distance between all
pairs of nodes using the ("statistical peak selection”)

method presented in Section 4. As reference to with
which to compare, we use the long-time average peak
method ("cumulative peak”), i.e., selecting the strongest
peak out of the averaged long-time CCF given in (8).
A scatter plot of the true distance versus the estimated

distance for these approaches is shown in Figure 11.
The interesting fact noted here is that for larger true
distances, the distance estimation error becomes larger.
This effect can be easily explained by the underlying
wave propagation: our approach needs strong waves tra-
veling through the receiver pair. When the receivers are
far apart, the probability of a direct wave from one to
the other becomes much lower. This is also the reason
why the long-time average peak method performs so
badly. The distance between the nodes is strongly
underestimated. Only when making use of fading, i.e.,
diversity in time, the distance estimates become reliable.
It is important to note that this result is significantly dif-
ferent than the result with the simulated data. This is
due to the fact that the real measurements capture
more of the complexity of the rich-scattering channel,
and also contain measurement noise.
Again, the empirical cdfs of the distance estimation

errors are shown by the dashed lines in Figure 12. With
the measurement bandwidth of 240 MHz, our theoreti-
cal resolution is limited to an accuracy of c/B = 1.25 m.
Our results produced an average pairwise distance esti-
mation error of 2.33 m. Moreover, the distance estima-
tion errors of almost half of our 28 receiving antenna
pairs were below the resolution limit, which is again an
effect of using the diversity offered by the time varia-
tions in the channel. Furthermore, when we recompute
pairwise distance estimates from the position estimates,
we see that joint estimation using MDS improves the
results. This is shown by the solid lines in Figure 12.
The average pairwise distance error is then 1.84 m.
We also present the results of the location estimation

in Figure 13. The true locations are denoted by circles,
while the estimated locations are marked by squares.
The arrows are connecting the estimates to their respec-
tive true locations.
Looking at the quadrangle of the bottom four nodes,

we observe that the estimates are placed in a rhomboid.
The reason for this is the strong directionality of the
waves coming mostly from left/right, but not from top/
bottom. This naturally leads to an underestimation of
the distance between the vertically-spaced node pairs.
The result is that the nodes appear squeezed in the y-
direction, but do have the correct distance in the x-
direction. We also observe that the receiving antennas
that are lying centrally have the smallest position esti-
mation errors. This is due to the increased diversity of
the source signals. We find an average position estima-
tion error of 2.1 m, with a minimum error of 0.4 m, a

Table 1 CRLB versus localization errors

CRLB 3
√
CRLB |Rk − R̂k| |Rk − R̂k|2

CRLBk

Simulations 1.74 m2 3.92 m 3.66 m 9.69

Experiments 0.51 m2 2.09 m 2.10 m 10.03
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maximum error of 3.36 m, and a standard deviation of
0.92 m.
Again, we compare these results to a benchmark using

the Cramer-Rao lower bound. The results are summar-
ized in Table 1. The variance of our distance estimator
is about 10times higher than the one of the CRLB; how-
ever, this estimate is based on just 8 samples. For our
estimation scheme, this is quite a good result, leading to
useful estimates in indoor environments. Note that even
though the direct LOS between some nodes is some-
times obstructed by people, the distance estimation is
still reasonable. This is due to wave fronts from other
directions, which are not obstructed. Thus, our

algorithm is inherently robust against NLOS problems,
as long as wave fronts can propagate over both nodes in
a non-obstructed way.
As before, when comparing our method to using only

the long-time average peak in Figure 14, the results are
inaccurate and unreasonable.

6 Implementation and Complexity
A realistic implementation of these methods would of
course require the consideration of several practical
issues, including timing synchronization and information
exchange between the receiver node and the central
entity, and optimal selection of the radio band for
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Figure 9 Localization results from the simulated data with 4 different choices of transmitters are presented for different localization
approaches. The asterisks denote the transmitter locations: a Uses all the transmitters, b uses only the top and bottom transmitters, c uses only
the left and right side transmitters and d is the configuration found to give the best location estimate (the search was not exhaustive)
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providing enough ambient signal strength. Also note
that the central entity can be connected to the nodes by
any means of wired or wireless communication.
Since the central entity performs all the calculations,

there is no communication or ranging overhead between
the nodes. The central entity can also ensure the syn-
chronization between the nodes [22].
As for all delay-based localization algorithms, the

receiving nodes need to sample the ambient signals with
a high sampling rate (and thus bandwidth) using a fast
analog-to-digital converter. The advantage of our
approach is that the sampling can be done with a low
bit resolution, against which our approach is robust. Of
course, the recorded data can be further compressed
before sending it on to the master.
As numerical example, we consider a bandwidth of B

= 240 MHz, and a maximum resolvable distance of dmax

= 50 m, a minimum number of 2Bd/c samples must be
acquired. An ADC resolution of 8 bit is more than suffi-
cient for the correlation-based ranging, thus the sampled
data to be transmitted equals to 80 bytes per recorded

block. When employing data compression algorithms,
this number is reduced even further (which is most ben-
eficent when recording multiple blocks). Thus, only a
limited amount of data needs to be transmitted, leading
to a much smaller necessary communication bandwidth
than what was needed for sampling the ambient signals.
The complexity of the localization problem can be

segmented into the complexity for ranging, and the
complexity for estimating the node positions. Since the
latter complexity is the same for both kinds of algo-
rithms, we just compare the ranging complexity.
The complexity of our scheme per distance estima-

tion sample for K nodes is comprised of K signal sam-
pling, storing, and communication events (nodes
transmitting the recorded signals to the central entity),
and K(K -1)/2 computations of the signal cross corre-
lations and peak searches. Note that the computation
of cross correlations can be done computationally effi-
ciently using the fast Fourier transform. In contrast,
conventional TDOA-based schemes need K(K - 1)/2
ranging actions (i.e., ranging between all pairs of
nodes). Subsequently, the ranging information must be
communicated by at least K - 1 nodes. Thus, the main
difference in complexity lies in the computation of the
cross correlations.
The complexity increase of the proposed scheme

needs to be seen together with the advantage of the
algorithm’s robustness against NLOS environments,
strongly reduced communication and coordination over-
head, and the much higher available bandwidth and
thus ranging resolution.

7 Conclusions
In this paper, we consider the feasibility of radio locali-
zation in a rich-scattering indoor environment using
correlation-based techniques, where nodes only use
unknown ambient signals for localization and do not
probe actively.
We presented a systematic way to use peaks in the

cross correlations of the received signals for computing
pairwise distance estimates and spatial location esti-
mates for a passive network of wireless receiving nodes
(sensors). The robustness of the estimation is enhanced
by multipath due to scattering but its accuracy is dimin-
ished by it. The increased signal diversity improves the
estimation robustness while generating many peaks in
the cross correlations. To enhance inter receiver (sen-
sor) distance estimation, we use statistical methods that
exploit multipath effects by taking into account multiple
fading realizations of the channel.
The advantages of this scheme are threefold: (i) there

is no ranging or communication overhead between the
nodes, all communications and calculations are done by
a central entity; (ii) the algorithm is inherently robust

Figure 10 Floor plan of the cubicle-style office environment
used for the localization measure-ments. R × 1-R × 8 are the
locations of the receiving nodes while T × 1-T × 8 are the locations
of the antennas generating the ambient signals
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against non-line-of-sight between nodes; (iii) by using
just unknown ambient signals for localization, there are
no regulatory limitations of bandwidth (and thus
resolution).

We demonstrated the feasibility of our approach using
both simulated and real measurements in a cubicle-style
office environment. In our simulations, we use a 3-D ray-
tracing tool, operating at 2.45 GHz, to measure the radio
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Figure 11 Scatter plots of true distance versus estimated distance for different localization approaches.
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Figure 14 Localization using the peak of the averaged long-time CCF. Localization is worse but not impossible when multipath is not
exploited
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channels between 14 transmitters and 14 receivers in a
simulated cubical office environment with diffuse scatter-
ing. In the real measurements, the radio channels between
eight transmitters and eight receivers were measured
using the RUSK Stanford channel sounder, operating at
2.45 GHz with a bandwidth of 240 MHz. The experimen-
tal equipment is special and favors our localization
approach. Realistic implementation would require several
practical aspects to be considered. Most importantly, a
master node would be necessary to centralize the compu-
tation and synchronize the receiver nodes. However, using
our equipment, we have demonstrated the feasibility of
correlation-based radio localization techniques.
Despite the lack of a large number of transmitting

antennas, we were able to utilize the spatial diversity of
the strongly scattering room by using our improved esti-
mation methods. The main result is that with the real
data we were able to estimate spatial antenna locations
with less than 2 m error when the theoretical resolution
limit is 1.25 m.

Endnotes
aThese weights are not to be confused with the weight-
ing of the peaks.

Appendix
A.1 Ray-tracing Simulations
Ray-Tracing (RT) is a site-specific geometrical technique
that evaluates propagation paths generated by rays as
they interact with the environment. A key feature of
indoor propagation channels is diffuse scattering. For
this reason, in this work, we model the channel with a
classic 3-D RT tool [23], improved with penetration and
diffuse scattering [24]. The model of diffuse scattering is
described in [25]. A geometrical description of the
environment, frequency, number of interactions and
dielectric properties of materials are some of the input
parameters of a RT tool. In the following sections, the
ones used in this work are discussed.
A.1.1 Setup Parameters
The simulation frequency has been set to 2.45 GHz.
Antenna radiation patterns are the ones of vertically
polarized dipoles both at receive (Rx) and source/trans-
mit (Tx) side. Whenever Tx are placed at walls, they radi-
ate only into the relative half-space. A maximum of three
reflections, single diffraction, and single-bounce scatter-
ing has been used in the simulations. A directive scatter-
ing pattern model with scattering coefficient S = 0.4 and
beamwidth ar = 4 has been chosen. These paths were fil-
tered using a rectangular filter in frequency domain with
a bandwidth of 240 MHz to resemble the measurements.
A.1.2 Simulated Environment
A cubicle-style office scenario has been used as input for
the RT tool. The dimensions of the room have been set

to 50 × 20 m with a height of 4 m. The walls, the ceil-
ing, and the floor are supposed to be made of concrete.
Cubicles are 4 × 3 × 1.8 m and are organized in two
rows. Cubicles are represented by their metallic frames
that have been treated as perfect electric conductors. A
number of 14 receiving nodes were placed in these cubi-
cles, while the ambient noise signals are generated by 14
sources placed at the outer wall of the room. At both
sides, the antennas are placed at an height of 1 m. Fig-
ure 4 shows a 2-D map of the simulated environment as
well as the positions of the receivers and sources. A
rough model for the human body as a rectangular paral-
lelepiped has been used. For the human body, a classic
two-thirds muscle homogeneous model [26,27] has been
used to get realistic values. The time variance of the
channel has been modeled by randomly placing ten per-
sons in the scenario in 100 different realizations. The
relative dielectric permittivity εr was set to 9 for con-
crete walls, and 35.2 for the human body, while the con-
ductivity s was set to 0.06 and 1.16, respectively.

A.2 Radio Channel Measurements
In this paper, we use channel measurements obtained
during the Stanford July 2008 Radio Channel Measure-
ment Campaign. More details on the full campaign can
be found in [14]. In this appendix, we briefly summarize
the most important features of the measurement setup.
A.2.1 Environment
To provide good input data for our localization algo-
rithms, we set up the test environment as shown in Fig-
ure 10. We took measurements in a cubicle-style office
environment with rich scattering due to the metallic
frames of the cubicles and highly reflective walls. The
room size was around 34 × 12 m. Eight receivers were
placed in two squares, while the transmitters were posi-
tioned at the outer walls. To simulate real time-variant
environments, people were moving in the room while
the measurements were being recorded.
A.2.2 Measurement Equipment
The measurements were taken with the RUSK Stanford
channel sounder at a center frequency of 2.45 GHz with
a bandwidth of 240 MHz, and a test signal length of 3.2
μs. The transmitter output power of the sounder was
0.5 W. A rubidium reference in the transmit (Tx) and
receive (Rx) units ensured accurate timing and clock
synchronization. The sounder used fast 1 × 8 switches
at both transmitter and receiver, enabling switched-array
MIMO channel measurements of up to 8 × 8 antennas,
i.e., 64 links. The Tx and Rx antennas were off-the-shelf
WiFi antennas, which were connected to the switches of
the sounder units using long low-loss cables.
The full 8 × 8 channel was sounded every 100.76 ms.

We recorded a total of T = 1, 200 samples, capturing
the time variations of the channel. By proper calibration,
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we removed the RF effects of the equipment and of the
cables so that the resulting data only contain the
impulse responses of the channels, denoted as hkl(t, τ).
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