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region

Motivated by the uplink scenario in cellular cognitive radio, this study considers a communication network in
which a point-to-point channel with a cognitive transmitter and a Multiple Access Channel (MAC) with common
information share the same medium and interfere with each other. A Multiple Access-Cognitive Interference
Channel (MA-CIFC) is proposed with three transmitters and two receivers, and its capacity region in different
interference regimes is investigated. First, the inner bounds on the capacity region for the general discrete
memoryless case are derived. Next, an outer bound on the capacity region for full parameter regime is provided.
Using the derived inner and outer bounds, the capacity region for a class of degraded MA-CIFC is characterized.
Two sets of strong interference conditions are also derived under which the capacity regions are established. Then,
an investigation of the Gaussian case is presented, and the capacity regions are derived in the weak and strong
interference regimes. Some numerical examples are also provided.
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1. Introduction

Interference avoidance techniques have traditionally been
used in wireless networks wherein multiple source-desti-
nation pairs share the same medium. However, the
broadcasting nature of wireless networks may enable
cooperation among entities, which ensures higher rates
with more reliable communication. On the other hand,
due to the increasing number of wireless systems, spec-
trum resources have become scarce and expensive. The
exponentially growing demand for wireless services along
with the rapid advancements in wireless technology has
lead to cognitive radio technology which aims to over-
come the spectrum inefficiency problem by developing
communication systems that have the capability to sense
the environment and adapt to it [1].

In overlay cognitive networks, the cognitive user can
transmit simultaneously with the non-cognitive users and
compensate for the interference by cooperation in send-
ing, i.e., relaying, the non-cognitive users’ messages [1].
From an information theoretic point of view, Cognitive
Interference Channel (CIFC) was first introduced in [2]
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to model an overlay cognitive radio and refers to a two-
user Interference Channel (IFC) in which the cognitive
user (secondary user) has the ability to obtain the mes-
sage being transmitted by the other user (primary user),
either in a non-causal or in a causal manner. An achiev-
able rate region for the non-causal CIFC was derived in
[2], by combining the Gel'fand-Pinsker (GP) binning [3]
with a well-known simultaneous superposition coding
scheme (rate splitting) applied to IFC [4]. For the non-
causal CIFC, where the cognitive user has non-causal full
or partial knowledge of the primary user’s transmitted
message several achievable rate regions and capacity
results in some special cases have been established
[5-14]. More recently a three-user cognitive radio net-
work with one primary user and two cognitive users is
studied in [15,16], where an achievable rate region is
derived for this setup based on rate splitting and GP
binning.

In the interference avoidance-based systems, i.e., when
the communication medium is interference-free, uplink
transmission is modeled with a Multiple Access Channel
(MAC) whose capacity region has been fully characterized
for independent transmitters [17,18] as well as for the
transmitters with common information [19]. Recently,
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taking the effects of interference into account in the uplink
scenario, a MAC and an IFC have been merged into one
setup by adding one more transmit-receive pair to the
communication medium of a two-user MAC [20,21],
where the channel inputs at the transmitters are indepen-
dent and there is no cognition or cooperation.

In this paper, we introduce Multiple Access-Cogni-
tive Interference Channel (MA-CIFC) by providing the
transmitter of the point-to-point channel with cogni-
tion capabilities in the uplink with interference model.
Moreover, transmitters of MAC have common infor-
mation that enables cooperation among them. As
shown in Figure 1, the proposed channe consists of
three transmitters and two receivers: two-user MAC
with common information as the primary network and
a point-to-point channel with a cognitive transmitter
that knows the message being sent by all of the trans-
mitters in a non-causa manner. A physical example of
this channel is the coexistence of cognitive users with
the licensed primary users in a cellular or satellite
uplink transmission, where the cognitive radios by
their abilities exploit side information about the envir-
onment to maintain or improve the communication of
primary users while also achieving some spectrum
resources for their own communication. In this sce-
nario, the primary non-cognitive users can be oblivious
to the or aware of the cognitive users [1]. When the
non-cognitive user is oblivious to the cognitive user’s
presence, its receiver’s decoding process is independent
of the interference caused by the cognitive user’s trans-
mission. In fact, the primary receiver treats interfer-
ence as noise. However, in the aware cognitive user’s
scenario, the decoding process at the primary receiver
can be adapted to improve its own rate. For example,
the primary receiver can decode the cognitive user’s
message and cancel the interference when the interfer-
ing signal is strong enough. If the multi-antenna cap-
ability is available at the primary receiver, it can also
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Figure 1 Graphic representation for MA-CIFC.
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reduce or increase the interfering signal by beam-steer-
ing, which results in the occurrence of the weak or
strong interference regimes [1].

To analyze the capacity region of MA-CIFC, we first
derive three inner bounds on the capacity region (achiev-
able rate regions). The first two bounds assume an obliv-
ious primary receiver, which does not decode the
cognitive user’s message but treats it as noise. Two differ-
ent coding schemes are proposed based on the superposi-
tion coding, the GP binning and the method of [6] in
defining auxiliary Random Variables (RVs). Later, we
show that these strategies are optimal for a degraded
MA-CIFC and also in the Gaussian weak interference
regime. In the third achievability scheme, we consider an
aware primary receiver and obtain an inner bound on the
capacity region based on using superposition coding in
the encoding part and allowing both receivers to decode
all messages with simultaneous joint decoding in the
decoding part. This strategy is capacity-achieving in the
strong interference regime. Next, we provide a general
outer bound on the capacity region and derive conditions
under which the first achievability scheme achieves capa-
city for the degraded MA-CIFC. We continue the capa-
city results by the derivation of two sets of strong
interference conditions, under which the third inner
bound achieves capacity. Further, we compare these two
sets of conditions and identify the weaker set. We also
extend the strong interference results to a network with k
primary users.

Moreover, we consider the Gaussian case and find
capacity results for the Gaussian MA-CIFC in both the
weak and strong interference regimes. We use the sec-
ond derived inner bound to show that the capacity-
achieving scheme in weak interference consists of Dirty
Paper Coding (DPC) [22] at the cognitive transmitter
and treating interference as noise at both receivers. We
also provide some numerical examples.

The rest of the paper is organized as follows. Section 2
introduces MA-CIFC model and the notations. Three
inner bounds and an outer bound on the capacity region
are derived in Section 3 and Section 4, respectively, for
the discrete memoryless MA-CIFC. Sections 5 presents
the capacity results for the discrete memoryless MA-
CIFC in three special cases. In Section 6, the Gaussian
MA-CIEC is investigated. Finally, Section 7 concludes
the paper.

2. Channel models and preliminaries

Throughout the paper, upper case letters (e.g. X) are
used to denote RVs and lower case letters (e.g. x) show
their realizations. The probability mass function (p.m.f)
of a RV X with alphabet set X is denoted by px(x),
where subscript X is occasionally omitted. AZ(X,Y) spe-
cifies the set of e-strongly, jointly typical sequences of
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length n. The notation Xﬁ indicates a sequence of RVs

(Xi» Xiv15 - X)), where X is used instead of X,
ity. N(0,02) denotes a zero mean normal distribution
with variance ¢o*.

Consider the MA-CIFC in Figure 2, which is denoted
by (X1 x Xy x A5, p(y], v4l1x1, x5, %5), V1 x V3), where
X; e X1,X, € Xy and X5 € A5 are channel inputs at
Transmitter 1 (Tx1), Transmitter 2 (Tx2) and Transmit-
ter 3 (Tx3), respectively; Y; € ) and Y3 € )5 are chan-
nel outputs at Receiver 1 (Rx1) and Receiver 3 (Rx3),
respectively; and p(y], y3|x}, x5, x3) is the channel transi-
tion probability distribution. In # channel uses, each Txj
desires to send a message pair (1, m;) to Rx1 where j
€ {1,2}, and Tx3 desires to send a message m3 to Rx3.

Definition 1: A (2R, 2"R1 2nRa 9nRs 1) code for MA-
CIFC consists of (i) four independent message sets
M; =11, ..., 2"%}, where j € {0, 1, 2, 3}; (ii) two encoding
functions at the primary transmitters,
f1 ZMQXMlHX{'at Tx1 and leMoXMzF—)XQH
at Tx2; (iii) an encoding function at the cognitive trans-
mitter, f3 : Mo x M; x My x M3+ &XJ; and (iv) two
decoding functions, g1 : Vi = Mo x My x M; at Rx1
and g3 : V§ = M3 at Rx3. We assume that the channel
is memoryless. Thus, the channel transition probability
distribution is given by

for brev-

n
PO Va1xh 5, 25) = T ] (i va,ileis %2, %3, 1)

i=1
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The probability of error for this code is defined as

1 n
Pe = on(Ro 4 Ry + Ry + Ry) Y pligs(Y5) #ms)u

Mo, My, My, m3

{81(YT) # (mo, m1, my)}(mo, m1, my, m3) sent].

Definition 2: A rate quadruple (R, Ry, Ry, R3) is
achievable if there exists a sequence of
(2R, onRy pnRa 9nRs 1) codes with P, — 0 as n —> oo.
The capacity region C, is the closure of the set of all
achievable rates.

3. Inner bounds on the capacity region of discrete
memoryless MA-CIFC

Now, we derive three achievable rate regions for the
general setup. Theorems 1 and 2 assume an oblivious
primary receiver (Rx1), which does not decode the cog-
nitive user’s message (m3) and treats it as noise. The
decoding procedure at the cognitive receiver (Rx3) dif-
fers in these schemes. In Theorem 1, the cognitive recei-
ver (Rx3) decodes the primary messages (mo, m, m,),
and all the transmitters use superposition coding. How-
ever, in Theorem 2, the cognitive receiver (Rx3) also
treats the interference from the primary messages (1,
my, my) as noise, while the cognitive transmitter (Tx3)
uses GP binning to precode its message for interference
cancelation at Rx3. We also utilize the method of [6] in
defining auxiliary RVs, which helps us to achieve the
outer bound in special cases. In fact, we achieve the
outer bound of Theorem 4 using the region of Theorem

Primary network

my,m; ( T . h 1
> ransmitter 1
(Tx1)
s A n
Mo, M, Transmitter 2 X 2
(Tx2)

Transmitter 3

(Tx3)

p(y1ay3 |x1,x2,x3)

Receiver 1
(Rx1)

N

Receiver 3
(Rx3)

Cognitive user

Figure 2 Multiple Access-Cognitive Interference Channel (MA-CIFC).
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1 for a class of degraded MA-CIFC in Section 5. The
region of Theorem 2 is used in Section 6 to derive the
capacity region in the weak interference regime. In the
scheme of Theorem 3, we consider an aware primary
receiver (Rx1) which decodes the cognitive user’s mes-
sage (ms3). The cognitive receiver (Rx3) also decodes the
primary messages (1o, m,, m,). Therefore, this region is
obtained based on using superposition coding in the
encoding part and by allowing both receivers to decode
all messages with simultaneous joint decoding in the
decoding part. In Section 5, we show that this strategy
is capacity-achieving in the strong interference regime.
Proofs are provided in “Appendix A”.
Theorem 1: The union of rate regions given by

Rs < I(X3;Y3|T, U, X1, V, X3) 2)
Ry <I(U,Xy; Y1|T, V, X3) (3)
Ry < I(V, X5 Y1IT, U, Xq) (4)
Ri+Ry <I(U,X1,V, X5, Y1|T) (5)
Ro+Ry +Ry <I(T,U,X1,V, X5, Y1) (6)
R +R3 < I(U,X1,X3;Y3|T, V, X3) (7)
Ry +R3 < I(V,X3,X3;Y3|T, U, X1) (8)
Ri +Ry +R3 < I(U, X1, V, Xy, X3; Y3|T) 9)

RO +R1 +R2+R3 SI(T, U,X],V,XQ,X3;Y3) (10)

is achievable for MA-CIFC, where the union is over all
p-m.fs that factor as

p(t)p(u’ X1 |t)p(U, X2 |t)p(x3 |t, u, X1, v, xZ)- (11)

Theorem 2: The union of rate regions given by (3)-(6)
and
Ry < I(W;Y3) — [(W; T, U, X1, V,X,) (12)

is achievable for MA-CIFC, where the union is over all
p.m.fs that factor as

p(0)p(u, x116)p(v, x2t)p(w, X3]t, u, x1, v, X2). (13)
Theorem 3: The union of rate regions given by
Rs < I(X3;Y31X1, X, T) (14)
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Ry +R3 < min{I(Xy, X3; Y11Xo, T), (15)
I(X1,X3; V31X, T)}

Ry, +R5 < miD{I(Xz,X3; Y11Xq, T), (16)
I(X3,X3; Y31X4, T)}

Ro+R;i +Ry+R3 < miD{I(Xl,Xz,X3; Yl),

(17)
I(X1, X2, X3;Y3)}

is achievable for MA-CIFC, where the union is over all
p-m.fs that factor as

p(e)p(x1[0)p(x2[E)p(x3 121, X2, 1).

Remark 1: We utilize the region of Theorem 1 in Sec-
tion 5 to achieve capacity results for a class of degraded
MA-CIFC, and the region of Theorem 2 to derive the
results for the Gaussian case in Section 6. The region of
Theorem 3 is also used to characterize the capacity
region under strong interference conditions in Section 5.

(18)

4. An outer bound on the capacity region of
discrete memoryless MA-CIFC
Here, we derive a general outer bound on the capacity
region of MA-CIFC which is used to obtain the capacity
region for a class of the degraded MA-CIFC in Section
5 and also to find capacity results for the Gaussian MA-
CIEC in the weak interference regime in Section 6. Let
R} denote the union of all rate quadruples (Ro, Ry, Ry,
R3) satistying (3)-(6) and

R3 =< I(X3;Y3/ Y1|T, UIXIIVIXZ)I (19)
where the union is over all p.m.fs that factor as (11).
Theorem 4: The capacity region of MA-CIFC satisfies

CCR,
Proof: Consider a (20, 2"R1 2mR> 2nRs ) code with

the average error probability of P — 0. Define the fol-
lowing RVs for i = 1, ..., n:

T = (Mo, Yi™) (20)
Ui = (Mo, My, Y} ') = (M4, Ty) (21)
Vi = (Mg, Ma, Y1) = (M, T)) (22)

Considering the encoding functions f; and f,, defined
in Definition 1, and the above definitions for auxiliary
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RVs, we remark that (X, U;) > T; > (Xa,, V;) forms a
Markov chain. Thus, these choices of auxiliary RVs
satisfy the p.m.f (11) of Theorem 4. Now using Fano’s
inequality [23], we derive the bounds in Theorem 4. For
the first bound, we have:

(a)
nRs = H(Ms) = H(Ms|Mo, M1, M,)

= I(M3; Y3 IMo, M1, Ma) + H(M3|Y3, Mo, M1, M) (23)

(b)
< I(M3; Y§|Mo, M1, M3) + nds,

where (a) follows since messages are independent and
(b) holds due to Fano’s inequality and the fact that con-
ditioning does not increase entropy. Hence,

nR3 — nds, < I(M3; YSIMO, MIIMZ)

(@

< I(M3, X5; Y3, Y{ Mo, My, M2, X1, X3)
n

b : .

O 1 (Ms X33 Vs YiilMo, My, Mo, X2, X3, VI, V1Y)
i=1

() & (24)

<> H (Ys,i, Y1,ilMo, M1, M2, X1,i, X2,i, Yi_l)
i=1
—H(Y3, Y1,iIMo, My, My, Y, Xy 1, X34, X3,:)

@) + ,
= > (X3, Y35, Yl Ty, Ui, X1,3, Vi, Xo,i)

i=1

where (a) is due to the encoding functions fi, f, and f;,
defined in Definition 1, and the non-negativity of
mutual information, (b) is obtained from the chain rule,
(c) follows from the memoryless property of the channel
and the fact that conditioning does not increase entropy,
and (d) is obtained from (20)-(22).

Now, applying Fano’s inequality and the independence
of the messages, we can bound R; as:

nRy — ndy, < I(Ml; YT|M0/ M2)
n
(a) i—
= ZI(MLXU; Y1,ilMo, Mo, Xa,1, YiT1)
i-1

n
i—1 i—1 (25)
= ZI(Ml/XI,izMO/ Y YilMo, My, Xo,i, Y

i=1
n

@ Z I(Ui, Xa,i; Y1,il Ty, Vi, Xa,),
i=1
where (a) follows from the chain rule and the encod-
ing functions f; and f;, and (b) from (20)-(22). Similarly,
we can show that

n
nRy — ndoy < Y 1(Vi, Xo,i; Y1,4|Ti, U, Xu,0).
i=1

(26)

Next, based on similar arguments, we bound R; + R,
as
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H(Rl +R2) — n((Sl,, + 52,,) < I(MI,MQ;YmMo)

n
= ZI(MI/XM, My, Xai; Y1,ilMo, Y1)

i=1

3 -1 iy @7
=ZI(M11X1,i/M2rX2,irY1 s Y1,ilMo, YT)

i=1

n
= I(Us, X1,i, Vi, Xo.5; Y1l Th).

i=1

The last sum-rate bound can be derived as follows:

n(Ro + R1 + Rz) — n(80n + 61n + 82,1) < I(MQ,M],Mz,' Y{l)
n
= ZI(MOIMI/XI,th,XZi; Y1,i|Y§_1)
i=1

(a) " i—1 (28)
< Z H(Y1,i) — H(Y1,ilMo, M1, X1,i, M2, X2, YT )

i=1
n

= ZI(Ti/ Ui, X1, Vi, Xo,i; Y1,0)
i1

where (a) follows since conditioning does not increase
entropy. Using the standard time-sharing argument for
(24)-(28) completes the proof.

5. Capacity results for discrete memoryless MA-
CIFC

In this section, we characterize the capacity region of
MA-CIFC under specific conditions. First, we consider a
class of degraded MA-CIFC and derive conditions under
which the inner bound in Theorem 1 achieves the outer
bound of Theorem 4. Next, we investigate the strong
interference regime by deriving two sets of strong inter-
ference conditions under which the region of Theorem
3 achieves capacity. We also compare these two sets of
conditions and identify the weaker set. Finally, we
extend the strong interference results to a network with
k primary users.

A. Degraded MA-CIFC

Now, we characterize the capacity region for a class of
MA-CIFC with a degraded primary receiver. We define
MA-CIFC with a degraded primary receiver as a MA-
CIFC where Y7 and X3 are independent given Y3, X;, Xo.
More precisely, the following Markov chain holds:

X31X1, X5 — Y31X1,Xp — Yi11Xq, Xo, (29)

or equivalently, X3 — (X3, X5, Y3) = Y7 forms a Mar-
kov chain. This means that the primary receiver (Rx1)
observes a degraded or noisier version of the cognitive
user’s signal (Tx3) compared with the cognitive receiver
(Rx3).
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Assume that the following conditions are satisfied for
MA-CIEC over all p.m.fs that factor as (11):

(U, X; 1T, V, Xy) < I(U, X4; Y5|T, V, X3) (30)
I(V, X2; Y1|T, U, X1) < I(V, Xa; Y3|T, U, X1) (31)
I(U, X1, V, Xo;1|T) < I(U, X1, V, X5; Y3|T) (32)
I(T,UX,,V,X5; Y1) <I(T,U,X;1,V,X5,Y3) (33)

Under these conditions, the cognitive receiver (Rx3)
can decode the messages of the primary users with no
rate penalty. If MA-CIFC with a degraded primary recei-
ver satisfies conditions (30)-(33), the region of Theorem
1 coincides with R} and achieves capacity, as stated in
the following theorem.

Theorem 5: The capacity region of MA-CIFC with a
degraded primary receiver, defined in (29), satisfying
(30)-(33) is given by the union of rate regions satisfying
(2)-(6) over all joint p.m.fs (11).

Remark 2: The messages of the primary users (m, m;,
m,) can be decoded at Rx3 under conditions (30)-(33).
Therefore, Rx3-Tx3 achieves the rate in (2). Moreover, we
can see that due to the degradedness condition in (29),
treating interference as noise at the primary receiver (Rx1)
achieves capacity. We show in Section 6 that, in the Gaus-
sian case the capacity is achieved by using the region of
Theorem 2 based on DPC (or GP binning), where the cog-
nitive receiver (Rx3) does not decode the primary mes-
sages and conditions (30)-(33) are not necessary.

Proof: Achievability: The proof follows from the region
of Theorem 1. Using the condition in (30), the sum of
the bounds in (2) and (3) makes the bound in (7) redun-
dant. Similarly, conditions (31)-(33), along with the
bound in (2), make the bounds in (8)-(10) redundant
and the region reduces to (2)-(6).

Converse: To prove the converse part, we evaluate R;
of Theorem 4 with the degradedness condition in (29).
It is noted that the p.m.f of Theorem 5 is the same as
the one for R). Moreover, the bounds in (3)-(6) are
equal for both regions. Hence, it is only necessary to
show the bound in (2). Considering (19), we obtain:

Rs; <I(X5; Y3, 11T, U, X1, V, X2)
=1(X5; Y3|T, U, X1, V, X)) +I(X3; Y1|T, U, X1, V, X3, Y3)

@101 V31T, U, X1, V, %)
where (a) is obtained by applying the degradedness
condition in (29). This completes the proof.

B. Strong interference regime
Now, we derive two sets of strong interference condi-
tions under which the region of Theorem 3 achieves
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capacity. First, assume that the following set of strong
interference conditions, referred to as Setl, holds for all
p.m.fs that factor as (18):

I(X5; Y31X1, X3, T) < I(X5; Y11X1, X2, T) (34)
I(X1,X3; Y11X2, T) < I(X1,X3; Y31X,, T) (35)
(X5, X3; Y11X1, T) < I(X2, X3; Y31X1, T) (36)
I(X1, X2, X3, Y1) < I(X1, X2, X3;Y3). (37)

In fact, under these conditions, interfering signals at
the receivers are strong enough that all messages can be
decoded by both receivers. Condition (34) implies that
the cognitive user’s message (m3) can be decoded at
Rx1, while conditions (35)-(37) guarantee the decoding
of the primary messages (mo, m;, m,) along with m3 at
Rx3 in a MAC fashion.

Theorem 6: The capacity region of MA-CIFC satisfying
(34)-(37) is given by:

Ci' = {(Ro,R1, Ry, R3) :
p(t)p(x11t)p(x2[t)p(x3]x1,%2,1)
Ro,Rl,Rz,R3 >0
R3 < I(X3;Y3|X1,Xa, T) (38)
Ri +R3 < I(X1,X3; Y11X2, T) (39)
Ry +R3 < I(X2,X3; 11Xy, T) (40)

Ro+Ry+ Ry + Ry <I(X1, X2, X3; Y1)} (41)

Remark 3: The message of the cognitive user (m3) can
be decoded at Rx1, under condition (34) and (m,, m14,
m,) can be decoded at Rx3 under conditions (35)-(37).
Hence, the bound in (38) gives the capacity of a point-
to-point channel with message 3 with side-information
X1, X, at the receiver. Moreover, (38)-(41) with condi-
tion (34) give the capacity region for a three-user MAC
with common information where R; and R, are the
common rates, R3 is the private rate for Tx3, and the
private rates for Tx1 and Tx2 are zero.

Remark 4: 1If we omit Tx2, i.e.,, X, = J, and Tx2 has no
message to transmit, i.e., R, = 0, the model reduces to a
CIFC, and Ci" coincides with the capacity region of the
strong interference channel with unidirectional coopera-
tion (or CIFC), which was characterized in [8, Theorem
5]. It is noted that in this case, the common message
can be ignored, ie, T = @ and Ry = 0.

Proof: Achievability: Considering (35)-(37), the proof
follows from Theorem 3.

Converse: Consider a (20, 2R onR2 91Rs 4y code
with an average error probability of P} — 0. Define the
following RV for i = 1, ..., n:

T" = M, (42)
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It is noted that due to the encoding functions f;, f>
and f3, defined in Definition 1, the independence of
messages, and the above definitions for T”, RVs satisfy
the p.m.f (18) of Theorem 6. First, we provide a useful
lemma which we need in the proof of the converse part.

Lemma 1: If (34) holds for all distributions that factor
as (18), then

I(X5; Y5IXT, X5, T", U) < I(X5; YT IXT, X5, T", U).  (43)

Proof: The proof relies on the results in [24, Proposi-
tion 1] and [25, Lemma]. By redefining X, = X3, Y5 =
Y3, X1 = (X1, X3, T) in [8, Lemma 5], the proof follows.

Now, using Fano’s inequality [23], we derive the
bounds in Theorem 6. Using (23) provides:

nR3 — 183, < I(M3; Y5|Mo, M1, M,)
9 1(Ms, X2 YT, My, My, XT, X2)

(b)

< I(X5; YHIT, X4, X5)

0 _ (44)
=) (X Yl T XL X5, V)

i=1

@) &

<D (X34 Y3,ilX1, Xa, T3)
i=1

where (a) is due to (42) and the encoding functions f;,
f> and f3, defined in Definition 1, (b) follows from two
facts; conditioning does not increase entropy and
(M1, M3, M3) — (X],X5,X3) —> Y§ forms a Markov
chain, (c) is obtained from the chain rule, and (d) fol-
lows from the memoryless property of the channel and
the fact that conditioning does not increase entropy.

Now, applying Fano’s inequality and the independence
of the messages, we can bound R; + R3 as

Tt(Rl + R3) — n((Sln + 8371) <
I(M;y; Y] Mo, M2) + I(Ms; Y5 Mo, M1, M2)

@ (M1, X35 Y 1Mo, Ma, X5)
+I(M31Xgll Y;1|MOI Ml/ leX’ill Xg)

4
@ 1(my, X0 Y01, My, X1)

+I(X5; Y5IT", M1, M2, XY, X3)

©
< I(My, X5 YT, My, X2) )

AL YT, My, Mo, X0, X8
= I(erX’il/Xgl; Y{l|TVl’ MZI-Xg)

n
, ‘
S My, X7 X YT, Mo, X5, YY)

i=1

(e) &
= Z I(X1,i, X3,i; Y1,ilX2,i, Th)
i1
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where (a) follows from encoding functions f;, f, and f;,
(b) follows from (42) and the fact that
M3 — (X1, X5, X5) — Y} forms a Markov chain, (c) is
obtained from (43), (d) follows from the chain rule, and
(e) follows from the memoryless property of the channel
and the fact that conditioning does not increase entropy.

Applying similar steps, we can show that,

n

n(Ry +Rs) = n(8an +830) < Y 1(Xa,i, X355 Y1,1|X1i, T1). (46)
-1

Finally, the sum-rate bound can be obtained as

Yl(R() + R1 + Rz + R3) — n(80n + 81,, + 52,, + 53,,)
< I(Mo, M1, M3; YT) + I(M3; Y5 Mo, M1, M3)
= I(MOVMllelx?!Xg; Y;l)

+I(M3/ Xglr Y§I|M01M1/ MZ/ X;l/ Xg)
(@)
=< I(T”,Ml,Mz,X;’,Xg; Y;l)

+I(X5; YTIT", My, M2, X7, X3)
= I(Tn/ Ml/ MZrXrlerg/Xg; Y;l)

(47)

b
D1, xq, x5, x5 v)

n

©

=) I(X i, X0, X35 Y1)
i=1

where (a) follows from steps (a)-(c) in (45), (b) is due
to the fact that (M1, My) — (X}, X5, X%) — Y7 forms a
Markov chain, and (c) follows from the memoryless
property of the channel and the fact that conditioning
does not increase entropy. Using a standard time-shar-
ing argument for (44)-(47) completes the proof.

Next, we derive the second set of strong interference
conditions, called Set2, under which the region of Theo-
rem 3 is the capacity region. For all p.m.fs that factor as
(18), Set2 includes (34) and the following conditions:

I(X1; V11X, T) < I(X1; Y31X2, T) (48)
I(X2; Y11X1, T) < I(Xy; Y31Xy, T) (49)
I(X4,X2; Y1) < I(X1, Xo; Y3). (50)

Remark 5: Similar to the condition Setl, under these
conditions interfering signals at the receivers are strong
enough that all messages can be decoded by both recei-
vers. The first condition in (34) is equal in the two sets
under which the cognitive user’s message (m3) can be
decoded at Rx1. However, conditions (48)-(50) imply
that the primary messages (1, m,, m,) can be decoded
at Rx3 in a MAC fashion, while in SetI, they can be
decoded along with m13.
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Theorem 7: The capacity region of MA-CIFC, satisfy-
ing (34) and (48)-(50), referred to as C5", is given by the
union of rate regions satisfying (14)-(17) over all p.m.fs
that factor as (18).

Proof: See “Appendix B”.

Remark 6: Similar to Remark 4, by omitting
Tx2 (T =X, =0, Ry = R, = 0), the model reduces to a
CIFC. Moreover, C, and Set2 reduce to the capacity
region and strong interference conditions which have
been derived in [13] for non-causal CIFC.

Remark 7 (Comparison of two sets of conditions): In
the strong interference conditions of Setl, the first con-
dition in (34) is used in the converse part, while (35)-
(37) are used to reduce the inner bound to C§". How-
ever, all the conditions of Set2 are utilized to prove the
converse part. Now, we compare the conditions in these
two sets. We can write (35) as

I(X1; Y11Xa, T) + [I(X3; Y11X1, X, T) — 1(X3; Y31X1, X5, T)]

Laife

< I(Xy; Y31Xo, T).

Considering (34), it can be seen that Iy > 0. Hence,
condition (35) implies condition (48), but not vice versa.
Similar conclusions can be drawn for other conditions
of these two sets. Therefore, Setl implies Set2, and the
conditions of Set2 are weaker compared to those of Setl.

C. Multiple access-cognitive interference network (MA-
CIFN)

Now, we extend the result of Theorem 6 to a network
with k + 1 transmitters and two receivers; a k-user
MAC as a primary network and a point-to-point chan-
nel with a cognitive transmitter. We call it Multiple
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Access-Cognitive Interference Network (MA-CIFN).
Consider MA-CIFN in Figure 3, denoted by
(X1 x A x - x Xy X Xt PO Vi X %5, - % X1 ) Vi X V),
where Xj € &j is the channel input at Transmitter j
(Txj), for je{l,...k+1};Y1 € V1 and Yj,1 € Vs are
channel outputs at the primary and cognitive recei-
vers, respectively, and p(y], Vi 101 X5, o X3 Xy, 1) 1S
the channel transition probability distribution. In #
channel uses, each Txj desires to send a message pair
m; to the primary receiver where j € {1, ..., k}, and
Txk + 1 desires to send a message mi,; to the cogni-
tive receiver. We ignore the common information for
brevity. Definitions 1 and 2 can be simply extended
to the MA-CIFN. Therefore, we state the result on
the capacity region under strong interference
conditions.

Corollary 1: The capacity region of the MA-CIFN,
satisfying

I(Xeot; Ve IX([1 2 k) < I(Xwr; YAIX([1:R]))  (51)

I(Xper1, X(S); Y11X(S°)) < I(Xe1, X(S); Vi1 1X(S7)) (52)

for all S € [1: k] and for every p(x1)p(x2)...p(xx) p(Xrs1]
X%, X )P (V1Y ke 1|¥1, %0, X 0 %0c11)5 18 given by

CS[[ =

net U {
P(x1)p(x2)...p (X0 )P (Xes1 X1,X2,., %)

(Ri,R2, ..., Ri,Ris1) R, R2, .., Riy Riy1 = 0
Rie1 < I(Xper1; Ve IX([1 2 k])) (53)
Ry + ZRj < I(X;Hl,X(S); Y, |X(SC))} (54)

jeS

for all S € [1: k], where X(S) is the ordered vector of
X, j € S, and S° denotes the complement of the set S.

m,m,,....m.m,  —>X

Figure 3 Graphic representation for the MA-CIFN.

m, ¢ e,
m, —m—» X2
m, —— X,
k+1 mk+1
Cognitive user
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Proof: Following the same lines as the proof of Theo-
rem 6, the proof is straightforward. Therefore, it is
omitted for the sake of brevity.

Remark 8: Under condition (51), the message of the
cognitive user (my,;) can be decoded at the primary
receiver (Y7). Also, the cognitive receiver (Y%,1), under
condition (52), can decode m; j € {1,...,k} in a MAC
fashion. Therefore, the bound in (53) gives the capacity
of a point-to-point channel with message m;,; with
side-information Xj; j € {1,.., k} at the cognitive receiver.
Moreover, (53) and (54) with condition (51), give the
capacity region for a k + 1-user MAC with common
information at the primary receiver.

6. Gaussian MA-CIFC

In this section, we consider the Gaussian MA-CIFC and
characterize capacity results for the Gaussian case in the
weak and strong interference regimes. For simplicity, we
assume that Tx1 and Tx2 have no common information.
This means that, Ry = 0 and Mg = @. to investigate
these regions. The Gaussian MA-CIFC, as depicted in
Figure 4, at time i = 1,.., n can be mathematically mod-
eled as

Yii=Xui+Xoi+h31X3i+ 21 (55)
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Y3, = hi3Xy,i + hosXoi + X3, + Z3, (56)

where /131, K13, and /p3 are known channel gains. X,
X,; and X3, are input signals with average power con-
straints:

n

1
p 2 ) =P

i=1

(57)

for j e {1,2, 3}. Z;; and Z3; are independent and iden-
tically distributed (i.i.d) zero mean Gaussian noise com-
ponents with unit powers, i.e., Zj; ~ N(0,1) for j e {1,
3}.

A. Strong interference regime

Here, we extend the results of Theorem 6, i.e., Ci“ and
Setl, to the Gaussian case. The strong interference con-
ditions of Setl, i.e., (34)-(37), for the above Gaussian
model become:

W2 > 1 (58)
Pi(hi5 — 1)+ 2p1y/P1Ps(his — hay) = Ps(1 = p3)(h3, — 1) (59)
Py(h235 — 1) + 2poy/PaPs (a3 — hay) = P3(1 — p2)(h3, — 1)  (60)

My, 11y, 1y = X g

Figure 4 Gaussian MA-CIFC.
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Pl(h%3 - 1) + P2(h%3 — 1) + 2,01\/P1P3(h13 - h31)
+2p2y/PaP3(has — ha1) > P3(h3, — 1)
where - 1 < p, < 1 is the correlation coefficient
between X,, and X3, i.e., E(Xy, X3) = pu+/PuP3 for u e {1,
2}.
Theorem 8: For the Gaussian MA-CIFC satisfying con-
ditions (58)-(61), the capacity region is given by

ey = U

—1=p1,p2<Lipl+p3<1

R <0(P5(1— p7 — p3))

(61)

{(R11R21R3) : R11R21R3 = 0
(62)

Ry +R3 <90 (Pl +h3,Ps(1 — p3) + 2h31,01\/P1P3> (63)

R, +R3 <0 <P2 + h§1P3(1 — pf) + 2”!31,02\/1)21)3) (64)

Ry +R; +R3 <
65
9(P1 +P2+h§1P3+2h31\/P3(p1\/P1+,02\/P2))} ( )
where, to simplify notation, we define
1
6(x) = 5 log(1 +x). (66)
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Remark 9: Condition (58) implies that Tx3 causes
strong interference at Rx1. This enables Rx1 to decode
ms3. Moreover, (59)-(61) provide strong interference con-
ditions at Rx3, under which all messages can be decoded
in Rx3 in a MAC fashion.

Proof: The achievability part follows from C§" in Theo-
rem 6 by evaluating (38)-(41) with zero mean jointly
Gaussian channel inputs X;, X, and Xj;. That is,
X1 ~N(0,P1), X ~N(0,P,), and X3~ N(0,P3),
where E(X1,X5) = 0, E(Xi,X3)=p1/PiP3 and
E(X2,X3) = pz\/P2P3. The converse proof is based on
reasoning similar to that in [26] and is provided in
“Appendix C”.

It is noted that the channel parameters, i.e., P1,P5,P3,
h31,hi3,h03, must  satisfy  (58)-(61) for all
—1<p1,p2 <1:p?+p? <1 to numerically evaluate
the C¢ using (62)-(65). Here, we choose
Py =P, =P3=06,hs =hi3 = hy3 = /1.5 which satisfy
strong interference conditions (58)-(61); hence, the
regions are derived under strong interference conditions.

Figure 5 shows the capacity region for the Gaussian
MA-CIFC of Theorem 8, for P; = P, = P3 = 6, and
hs; = hy3 = hoz = V1.5, where p; = p, is fixed in each
surface. The p; = p, = 0 region corresponds to the no
cooperation case, where the channel inputs are indepen-
dent. It can be seen that as p; = p, increases, the bound

1.5+

R (bits)

0.5+

1
1.5

R 2(bits) 25

25 R (bits)

Figure 5 The capacity region for the Gaussian MA-CIFC for fixed p; = p, under the strong interference conditions.

1.5
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on R3 becomes more restrictive while the sum-rate
bounds become looser; because Tx3 dedicates parts of
its power for cooperation. This means that, as Tx3 allo-
cates more power to relay m;, m, by increasing p; = p.,
R; and R, improve, while R; degrades due to the less
power allocated to transmit 3. The capacity region for
this channel is the union of all the regions obtained for
different values of p; and p,, satisfying pf + p3 < 1. This
union is shown in Figure 6. In order to better perceive
the effect of cooperation, we let R, = 0 in Figure 7. It is
seen that by increasing p; = p,, the bound on R; + R3
becomes looser and R; improves, while R; decreases due
to the more power dedicated for cooperation.

B. Weak interference regime

Now, we consider the Gaussian MA-CIFC with weak
interference at the primary receiver (Rx1), which means
h31 < 1. We remark that, since there is no cooperation
between receivers, the capacity region for this channel is
the same as the one with the same marginal outputs
p(Y1x], x5, x5) and p(y51x], x5, x5). Hence, we can state
the following useful lemma.

Lemma 2: The capacity region of a Gaussian MA-
CIFC, defined by (55) and (56) when /3; < 1, is the
same as the capacity region of a Gaussian MA-CIFC
with the following channel outputs:
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{/1,,‘ = Xl,i +X2’i + h31Y§’i + Z/l,i (67)
?3[1' = h13X1,i + h23X2,i + Yé,i (68)

where Y3, = X3,; + Z3,; and Zj; ~N(0,1—hj)).
Therefore, the degradedness condition in (29) holds for
the Gaussian MA-CIFC when /3; < 1.

Proof: The proof follows from [6, Lemma 3.5].

Next, we use the inner bound of Theorem 2 and the
outer bound of Theorem 4 to derive the capacity region,
which shows that the capacity-achieving scheme in this
case consists of DPC at the cognitive transmitter and
treating interference as noise at both receivers.

Theorem 9: For the Gaussian MA-CIFC, defined by
(55) and (56), when h3; < 1, the capacity region is given
by

s = U

{(R11R21R3) :R11R21R3 > 0

—1=prp<lip+p3<1 (69)
Rs < 6(Ps(1 - p} — p3))
2
(v/P1 + h31p14/P3)
Ry =90 2 2 2 (70)
h3P3(1—p1 —p3) +1

1.5+

1.5
R, (bits)

Figure 6 The capacity region for the Gaussian MA-CIFC under the strong interference conditions.

1.5

R (bits
25 25 1( )
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p,=p,=0

ANAN

P =P, increases

0.5

R 3(blts)

R . (bits)

Figure 7 The capacity region for the Gaussian MA-CIFC under the strong interference conditions when R, = 0.

(\/P2+h31,02\/P3)2 ) (71)

Ry <
<h§11’3(1 —pi—p3)+1

Ri+R; <
0 <(«/P1 + hSIPI\/PS)z + (VP2 +h31;02«/P3)2>} (72)

W3 P3(1—p} —p3)+1

where 6(:) is defined in (66).

Remark 10: By evaluating (2) with jointly Gaussian
channel inputs, one can easily achieve (69). However,
this results in the Gaussian counterparts of the bounds
in (7)-(10). Therefore, some conditions are necessary to
make these bounds redundant, similar to the ones in
(30)-(33). However, we show that (12) is also evaluated
to (69), if we apply DPC with appropriate parameters.
Hence, conditions (30)-(33) are unnecessary in the
Gaussian case. This means that DPC completely miti-
gates the effects of interference for the Tx3-Rx3 pair
and leaves the link between them interference-free for
fixed values of p;, p,. Consequently, C$ is independent
of /3 and /1y3.

Remark 11: If we omit Tx2, the model reduces to a
CIFC and by setting P, = p, = Ry = 0,CS coincides with
the capacity region of the Gaussian CIFC with weak
interference, which was characterized in [6, Lemma 3.6].

Proof: The rate region in Theorem 2 can be extended
to the discrete-time Gaussian memoryless case with
continuous alphabets by standard arguments [23].
Hence, it is sufficient to evaluate (3)-(6) and (12) with
an appropriate choice of input distribution to reach
(69)-(72). Let Ry = 0, Mg = @, and T = ¢, since Tx1 and
Tx2 have no common information. Also, let U/ and V be
deterministic constants. We choose zero mean jointly
Gaussian channel inputs X;, X, and Xj3. In fact,
Xj ~N(0,P) for j € {1,2,3}, where E(X;,X;) = 0,
E(X1,X3) = p1v/P1Ps, and E(X,, X3) = pay/P,P3. Noting
the p.m.f (13), consider the following choice of input
distribution for certain {—1 < p1,pp < 1: pf +p3 < 1}

X1 ~N(0,P1), Xs ~ N(0, P3)
W = X3 + a1 X1 +02Xp, X5 ~ N(0, (1 — p? — p2)P3)

Ps Ps
X5 =X, X X
3 3+'01\/P1 1+/)2\/P2 2

Therefore, (3)-(6) are easily evaluated to (70)-(72). In
“Appendix D”, we derive (69) by evaluating (12) with
appropriate parameters. The converse proof follows by
applying the bounds in the proof of Theorem 4 to the
Gaussian case and utilizing Entropy Power Inequality
(EPI) [23,27]. A detailed converse proof is provided in
“Appendix D”.

(73)
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Remark 12: According to Theorems 8 and 9, jointly
Gaussian channel inputs X;, X, and X3 are optimal for
the Gaussian MA-CIFC under the strong and weak
interference conditions, determined in the above
theorems.

Figure 8 shows the capacity region for the Gaussian
MA-CIFC of Theorem 9, for P, = P, = P; = 6, and
hs = +/0.55, where p; = p, is fixed in each surface. It is
noted that the capacity region is independent of /;3 and
hy3. The p; = po = 0 region corresponds to the no coop-
eration case, where channel inputs are independent. We
see that when Tx3 dedicates parts of its power for coop-
eration, i.e., p; = po = 0.5, the rates of the primary users
(Ry, Ry) increase, while R3 decreases. The capacity region
for this channel is the union of all the regions obtained
for different values of p; and p, satisfying, p? + p3 < 1,
which is shown in Figure 9. Similar to Figure 7, we
investigate the capacity region for R, = 0 in Figure 10 in
the weak interference regime. It is seen that, when Tx3
dedicates more power for cooperation by increasing p;
= po, Ry improves and R; decreases.

7. Conclusion

We investigated a cognitive communication network
where a MAC with common information and a point-
to-point channel share a same medium and interfere
with each other. For this purpose, we introduced
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Multiple Access-Cognitive Interference Channel (MA-
CIEC) by merging a two-user MAC as a primary net-
work and a cognitive transmitter-receiver pair in which
the cognitive transmitter knows the message being sent
by all of the transmitters in a non-causal manner. We
analyzed the capacity region of MA-CIFC by deriving
the inner and outer bounds on the capacity region of
this channel. These bounds were proved to be tight in
some special cases. Therefore, we determined the opti-
mal strategy in these cases. Specifically, in the discrete
memoryless case, we established the capacity regions for
a class of degraded MA-CIFC and also under two sets
of strong interference conditions. We also derive strong
interference conditions for a network with k primary
users. Further, we characterized the capacity region of
the Gaussian MA-CIFC in the weak and strong interfer-
ence regimes. We showed that DPC at the cognitive
transmitter and treating interference as noise at the
receivers, i.e., an oblivious primary receiver, are optimal
in the weak interference. However, the receivers have to
decode all messages when the interference is strong
enough, which requires an aware primary receiver.

Appendix A Proofs of Theorems 1, 2 and 3

Outline of the proof for Theorem 1: We propose the fol-
lowing random coding scheme, which contains superpo-
sition coding and the technique of [6] in defining

1.5

R3(bits)

0.5

0.4
0.6
0.8

R (bits) 1.2

Figure 8 The capacity region for the weak Gaussian MA-CIFC for fixed p; = p,.

1.2 R (bits)
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1.5+

R (bits)

0.5

]
15 15

R 2(bits) R1 (bits)

25 2.5

Figure 9 The capacity region for the weak Gaussian MA-CIFC.

1.5 T
9129220
p,=p, increases
1 —
2
2
™
o
0.5 -
2_ 2
p\=P 2:().5
0 | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R, (bits)

Figure 10 The capacity region for the weak Gaussian MA-CIFC when R, = 0.
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auxiliary RVs, i.e., U and V. The cognitive receiver (Rx3)
decodes the interfering signals caused by the primary
messages (m,, m,), while the primary receiver (Rx1)
does not decode the interference from the cognitive
user’s message (m13) and treats it as noise.

Codebook Generation: Fix a joint p.m.f as (11). Gen-
erate 2mRo i.i.d £’ sequences, according to the probability
n
[Tp(t:). Index them as t"(m,) where mgy € [1,2"]. For
i=1
each t"(my), generate 7R L.i.d (u", x7) sequences, each

n

with probability Hp(ui,xulti). Index them as
i=1

(u™(mo, my), x} (mo, m1)) where m; € [1,2"R%1]. Similarly,

for each t"(my), generate 2R i.i.d (v",x%) sequences,

n
each with probability Hp(vi, x2,i|t;). Index them as
i=1
(v*(mo, my), x5 (mo, m2)) where m, e [1,2"R2]. For each
(" (mo), u"(mo, m1), x3 (mo, m1), V" (mo, m), x3(mo, m)),
generate 27Rs i.i.d &5 sequences, according to

n
[Tp(xs,ilti, ui, x1,5 vi, x2,4). Index them as

i=1
x4 (mo, my, may, m3) where msz € [1,2"%5].

Encoding: In order to transmit the messages (m,, m,
my, ms), Txj sends ¥/ (mo, mj) for j e {1,2} and Tx3
sends x5 (mo, my, ma, ms).

Decoding:

Rx1: After receiving )Y, Rx1 looks for a unique triple
(o, My, M) and some 71, such that

(i t"(ﬁo), un(ﬁo, ﬂA’ll), xrf(ﬁo, ﬂA’ll), V"(ﬁo, 7712),
xg(ﬁo, T’ﬁz)) S AZ(Y], T, U,X], V,Xz).

For large enough # with arbitrarily high probability,
(o, i1y, 1i2) = (mo, m1, my) if (3)-(6) hold.
Rx3: After receiving yj, Rx3 finds a unique index f,

and some triple (ﬁqo, ﬁql, ﬁqz) such that

(yg,xg‘(n%, my, My, mS)r tn(ﬁlo), U"(mor ﬁl), xrll(mor 7711),

V' (o, my), x5 (o, m2)) € AL(Y3, X3, T, U, X1, V, X2).

With arbitrary high probability, fi1; = m; if # is large
enough and (2), (7)-(10) hold. This completes the
proof.

Outline of the proof for Theorem 2: Our proposed ran-
dom coding scheme, in the encoding part, contains the
methods of Theorem 1 and GP binning at the cognitive
transmitter (Tx3) which is used at Tx3 to cancel the
interference caused by my, my, m, at Rx3. In the decod-
ing part, both receivers decode only their intended mes-
sages, treating the interference as noise. Therefore,
unlike the decoding part of Theorem 1, Rx3 decodes
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only its own message (m3), while treating the other sig-
nals as noise.

Codebook Generation: Fix a joint p.m.f as (13). Gen-
erate t"(mo), u" (mo, m1), X} (mg, m1), v" (mo, ma), x3(mo, mz)
codewords based on the same lines as in the codebook
generation part of Theorem 1. Then, generate pn(Rs+L) ii.
d w" sequences. Index them as w”(ms3,l) where
ms € [1,2"8] and [ € [1,2"].

Encoding: In order to transmit the messages (mg,m,
moy,ms3), Txj sends x;l(mol m;) for j e {1,2}. Tx3 (the cog-
nitive transmitter), in addition to 13, knows m1,, m; and
m,. Hence, knowing codewords t", u", xf,v", %, to send
ms, it seeks an index [ such that

(w'(ms3, 1), " (mo), u" (mo, my), x| (mo, my), v (mo, my),
xg(mo, mz)) S AZ(W, T, U,Xl, V,Xz).

If there is more than one such index, Tx3 picks the
smallest. If there is no such codeword, it declares an
error. Using covering lemma [27], it can be shown that
there exists such an index / with high enough probabil-
ity if » is sufficiently large and

L>I(W;T,UX;,V,X). (74)

Then, Tx3 sends x} generated according to

n
[T p(xs,ilti, wi, x40, Vi, X2,4).
i=1

Decoding: The decoding procedure at Rx1 is similar
to Theorem 1 and the error in this receiver can be
bounded if (3)-(6) hold.

Rx3: After receiving ¥4, Rx3 finds a unique index s,

for some index ? such that

(v w" @37)) € A" (Y3, W).

For large enough n, the probability of error can be
made sufficiently small if

Ry +L < I(W;Y3). (75)

Combining (74) and (75) results in (12). This com-
pletes the proof.

Outline of the proof for Theorem 3: We propose the
following random coding scheme, which contains super-
position coding in the encoding part and simultaneous
joint decoding in the decoding part. All messages are
common to both receivers, i.e., both receivers decode
(mo, my, my, ms).

Codebook Generation: Fix a joint p.m.f as (18). Gen-
erate 2nRo i.i.d t” sequences, according to the probability

n
[Tp(t). Index them as ¢"(m,) where mg € [1,2"R0]. For j
i=1
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€ {1,2} and each #"(my), generate 7" i.i.d x]” sequences,
n

each with probability []p(x;ilt). Index them as
i=1

x'(mo,mj)  where m; € [1,2™). For each

(t"(mo), x| (mo, my), x5(mo, my)), generate 2nRs i.i.d xj§
n

sequences, each with probability []p(xs,ilti, x1,i, X2,i).
i=1

Index them as xj(mo, m1, My, m3) where ms € [1,2"%).

Encoding: In order to transmit message (1o, m;, m,,
m3), Txj sends %] (mo, m;) for j € {1,2} and Tx3 sends
x4 (mo, my, my, ms).

Decoding:

Rx1: After receiving )Y, Rx1 looks for a unique triple
(0, My, M) and some 73 such that

(Y'f,t"(ao), x’f(ﬁo,ﬁﬂ, xg(ﬁo, 1712), xg(morﬁllﬁz,ﬁﬂ)
S AZ(Yl,T,Xl,Xz,X3).

For large enough #, with arbitrarily high probability
(o, My, Ma) = (mo, my, my) if

Ry +Rs < I(X1,X3;,Y1|X2, T) (76)
Ry +R3 < I(X5,X3; Y1|X1,T) (77)
RO +R1 +R2 +R3 SI(X],Xz,Xg,;Yl). (78)

Rx3: Similarly, after receiving 3, Rx3 finds a unique
index ﬁlB and some triple (1510, ﬁll, ﬁlz) such that

(yg, t"(fno)r xrf(mol 7711), xg(fno, mz),xg(rhof 77’11, ﬁ12, 7713))
S Ag(Yg, T,X],Xz,Xg,).

With the arbitrary high probability ;3 = m if 7 is
large enough and

Rs < I(X3;Y31Xy, X3, T) (79)
Ri +R3 < I(Xy,X3;Y31X2, T) (80)
Ry, + Rz < (X3, X355 Y3|X1, T) (81)
Ro+ Ry + Ry + R3 < I(X1,X5; Y31X4). (82)

This completes the proof.

Appendix B Proof of Theorem 7

Since achievability directly follows from Theorem 3, we
proceed to the converse part. We assume a code with
the properties indicated in the converse proof of Theo-
rem 6 and define 7" as (42). Four bounds in C5" are the
same as the bounds in C§", which are shown in the con-
verse proof of Theorem 6. Therefore, it is necessary to
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prove the three bounds. Moreover, similar to Lemma 1,
we have:

Lemma 3: If (48)-(50) hold for all distributions that
factor as (18), then

I(XT, YTIX5, T") < I(XY; Y IX5, T") (83)
I(X5 Y8XT, T < I(X%; YRIXT, T (84)
I(XT; X5, YT) < I(XY; Y5 1X5). (85)

We next prove the remaining three bounds of Theo-
rem 7. Applying Fano’s inequality, similar to (45), we
have:

n(R1 + R3) — 1’1(61,1 + 837!)
< I(Mq, X7, YT Mo, My, X3) + I(X5; Y5 Mo, M1, My, X1, X3)

© 100, YO, My, X2 + I(X3; YIIT", My, My, X7, X2)

(b)
< I(XY; Y5IT", My, X3) + I(X5; Y5|T", My, My, X7, X3)  (86)

(c)
<I(My, X1, X5 YEIT", My, X5)

(2 D I(X, X35 Y3ilX0,, Ti)
i=1

where (a) follows from (42) and the deterministic rela-
tion between X} and M;, (b) is obtained from (83), (c) is
due to the fact that mutual information is non-negative,
and (d) follows from the facts that conditioning does
not increase entropy and the channel is memoryless.

Using a similar approach and condition (84), it can be
shown that

n
n(Ry + R3) — 1n(82y + 83) < ZI(XZ,irXS,iY3,i|X1,i/ T:). (87)
i1

Finally, using (47) we obtain the last sum-rate bound
as:
n(RO + R1 + Rz + R3) — n(80n + 81,1 + (Szn + 83n)
< I(Mo, M1, My, X7, X5; YT)
+I(X%; YT Mo, My, My, X7, X2
(a)
= (XY, X5, Y7) + (XG55 Y31XT, X3) (88)
(b)
= I(XT, X3 Y5) + 1(X5; Y3 IXT, X3)
n
= I(X}, X5, X5, Y3) < ) I(X1,4,X2,X3,i; Y3,1)
i=1
where (a) is obtained from the deterministic relation
between X}' and (Mo, M) for j € {1,2}, and (b) follows
from (85). Using a standard time-sharing argument for
(44)-(47) and (86)-(88) completes the proof.
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Appendix C Proof of the converse part for
Theorem 8

For any rate triple (R, R2R3) € C, Rx1 is able to decode
m and m, reliably. Then, Rx1 is able to construct

T Yi—- X1 — X,
T hs

1
= h13X1 + h23X2 +X3 + Zl.
h31

+ h13X1 + h23X2

If condition (58) holds, then Yy is a less noisy version of
Y5. Since Rx3 has to decode m3, Rx1 can decode 5 via
Y, with no rate penalty. Therefore, (R, R,, R3) is con-
tained in the capacity region of a three-user MAC with
common information [19] at Rx1, where R, and R, are
the common rates between Tx1-Tx3 and Tx2-Tx3,
respectively; Rs is the private rate for Tx3; and the private
rates for Tx1 and Tx2 are zero. From the maximum
entropy theorem [23], this region is largest for Gaussian
inputs and is evaluated to (63)-(65). The bound in (62)
follows by applying the standard methods as in (44).

Appendix D Detailed proof for Theorem 9
First, we derive (69) by evaluating (12) with appropriate
parameters. Consider the mapping in (73). We choose

(23] =f3<h13+,01\/£j> —Pl\/ﬁj (89)
o = Bhas + Pz\/iz) - Pz\/iz (90)

S P(1—pf—p3)+1

It is noted that (91) makes (1 - B)X’; - fZ3 and X3 +
Z3 uncorrelated and hence independent since they are
jointly Gaussian. Using (12) and (73), we obtain

I(W;Y3) = I(W; T, U, X1, V,X,) = h(W|X1,X,) — h(W]Y3)

Chs) —hwyy). O

Now, we evaluate /(W|Y3):
’ P3 P3
h(W|Y3) = h(X 3+ (O{l + 01 P1 )X1 + (012 + 02 P2 )X2|Y3)
P P
=h(X'3 + (a1 + ,01\/1,3 )Xi + (02 + ,OZ\/P3 )Xa — BY3]Y3)
1 p)
(93)

Vi1 - B — 231003 + o1 2

P
+(h23 + pz\/[)3 )Xz +X/3 +Z3
2

b
(1= p)X's — BZ3IX'5 + Z3) = h(X'5|X'5 + Z3)
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(89),  (90),
Ps P , . .
Y13 + pl\/P )X] + (l’l7_3 + pz\/P )X2 +X3 +Z3 is obtained
1 2

because, by applying (91), (1 — B)X; — BZ3, X5 + Z3, Xy,
X; and X, are jointly independent. By applying (93) to
(92), we can evaluate (12) as:

where (a) follows from and

h(X'5) — h(W|Y3) = h(X'3) — h(X'51X 5 + Z3)
=I(X'5;X'5 + Z3) = 0(P3(1 = pi — p3))

This completes the achievability proof.

Converse: Utilizing the power constraint (57), we
derive the bounds of R! for the Gaussian MA-CIFC
when /37 < 1. It can be easily shown that we can set
T = ¢, since Ry = 0 and Mg = (4. Applying the degraded-
ness condition (29) to (19), which holds due to Lemma
2, we obtain:

Rz <I(X3; Y3, Y1|U, X1, V, Xo) = I(X3; Y3|U, X3, V, X3)

1 (94)
=h(Y3|U, X1, V, X;) — ) log2rme.

Using the fact that conditioning does not increase the
entropy and (57) with j = 3 yields:

1
h(Ys|U, X1, V, Xa2) = h(Y3|U, X1, V, X3, X3) = ) log2me
h(Y3|U,X1,V,X2) = h(X3 +Z3|U,X1,V,X2,X3)

1
< h(X3 +Zg) < 5 lngJTZ(P_’, + 1)

Hence, there exists 0 < A < 1 such that

1
h(Y3|U,X1,V,X2) = 5 log2ne(AP3 + l) (95)
Combining (94) and (95) results in
1
R3 < I(X3; Y3|U,X1,V,X2) = 5 lOg()\.Pg, + 1) (96)

for some 0 < A < 1. Now, considering that the Gaus-
sian distribution maximizes the entropy of a RV for a
given value of the second moment, we have:

h(Ys3|U, X1, V,X2) < h(X3 + Z3|1X1,X3)

1 (97)
=, log2me(P3(1 = pf = p3) +1)
E(X;, X
where —1<p;,pp<1l:pi+p3<1,p1 = E/; P3)’
1P3
E(X;, X
and p; = (X2 3). Considering (95) and (97), we
/P2Ps3
obtain:

A<1—pi—p;

Moreover, since (69) is achievable and R; does not
appear in (70)-(72), it can be shown that
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A=1-p}—p3. (98)

Consequently, (69) follows from (96) and (98). Now,
consider the bound in (3):

Ry = h(11V, X3) — h(Y11U, X3, V, X3). (99)
We can compute the first term as
h(Y1|V, X3)
< ; log (P1 + 13,P3(1 = p3) + 2hat,n/PiPs + 1) (100)

which incorporates the fact that Gaussian distribution
maximizes the entropy of a RV for a given value of the
second moment.

To compute the second term in (99), the Entropy
Power Inequality (EPI) [23,27] is used to obtain:

22h(V|UX1,V.X;) @ 92h(hs Y'5+Z1|UX1V.X2)
O by Y51UX V.%0) L o 2h(Z UK,V Xs)

>2 +2 (101)
= 13, 22N BIUXVX) | de(1 — ki)

©
= 2me(1 +h3,P5(1 — pi — p3))

where (a) follows from (67), (b) is obtained from EPI,
and (c) follows from (95) and (98). Therefore, (3) is
evaluated to (70) by combining (99)-(101).

Utilizing (101), one can easily evaluate (4) and (5) to
(71) and (72), respectively. This completes the converse
proof for Theorem 9.
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